
Journal of Computational and Applied Mathematics 221 (2008) 150–157
www.elsevier.com/locate/cam

D-eigenvalues of diffusion kurtosis tensorsI
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Abstract

Diffusion kurtosis imaging (DKI) is a new model in medical engineering, where a diffusion kurtosis (DK) tensor is involved. A
DK tensor is a fourth-order three-dimensional fully symmetric tensor. In this paper, we introduce D-eigenvalues for a DK tensor.
The largest, the smallest and the average D-eigenvalues of a DK tensor correspond with the largest, the smallest and the average
apparent kurtosis coefficients (AKC) of a water molecule in the space, respectively. We present their computational methods and
discuss related anisotropy value of AKC.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A popular magnetic resonance imaging (MRI) model in medical engineering is called diffusion tensor imaging
(DTI) [1,4]. The MR measurement of an effective diffusion tensor of water in tissues can provide unique biologically
and clinically relevant information that is not available from other imaging modalities. A diffusion tensor D is a
second-order three-dimensional fully symmetric tensor. It has six independent elements. After obtaining the values of
these six independent elements by MRI techniques, the medical engineering researchers will further calculate some
characteristic quantities of this diffusion tensor. These characteristic quantities are rotationally invariant, independent
from the choice of the laboratory coordinate system. They include the three eigenvalues λ1 ≥ λ2 ≥ λ3 of D, the mean
diffusivity (MD), the fractional anisotropy (F A), etc. The largest eigenvalue λ1 describes the diffusion coefficient in
the direction parallel to the fibres in the human tissue. The other two eigenvalues describe the diffusion coefficient in
the direction perpendicular to the fibres in the human tissue. The mean diffusivity is

MD =
λ1 + λ2 + λ3

3
,
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while the fractional anisotropy is

F A =

√
3
2

√
(λ1 − MD)2 + (λ2 − MD)2 + (λ3 − MD)2

λ2
1 + λ2

2 + λ2
3

,

where 0 ≤ F A ≤ 1. If F A = 0, the diffusion is isotropic. If F A = 1, the diffusion is anisotropic.
However, DTI is known to have a limited capability in resolving multiple fibre orientations within one voxel. This

is mainly because the probability density function for random spin displacement is non-Gaussian in the confining
environment of biological tissues and, thus, the modeling of self-diffusion by a second-order tensor breaks down [5].
Recently, a new MRI model has been presented by medical engineering researchers [3,6]. They propose to use a
fourth-order three-dimensional fully symmetric tensor, called the diffusion kurtosis (DK) tensor, to describe the non-
Gaussian behavior. The values of the fifteen independent elements of the DK tensor W can be obtained by the MRI
technique. The diffusion kurtosis imaging (DKI) has important biological and clinical significance.

What are the coordinate system independent characteristic quantities of the DK tensor W ? Are there some types
of eigenvalues of W , which can play a role here? Recently, Qi introduced in [10] H -eigenvalues and Z -eigenvalues
for higher-order tensors, and proved in [12] that Z -eigenvalues are invariant under coordinate system changes. Some
further discussions on and applications of Z -eigenvalues can be found in [8,9,11,14]. However, physically, the concept
of Z -eigenvalues cannot been applied to a DK tensor directly. In this paper, we introduce D-eigenvalues for a DK
tensor W . Here, the letter “D” means diffusion. The D-eigenvalues of W are related with the diffusion tensor D.
The largest, the smallest and the average D-eigenvalues of a DK tensor correspond with the largest, the smallest
and the average apparent kurtosis coefficients (AKC) of a water molecule in the space, respectively. We present their
computational methods and discuss the related anisotropy value of AKC.

The remaining part of this paper is distributed as follows. In Section 2, we will define these quantities and discuss
their properties. We present computational methods for D-eigenvalues in Section 3. A numerical example is given in
Section 4. Some further discussions are in Section 5.

2. Definition and properties of D-eigenvalues

We use the notation in [10–12] for the tensor and vectors. We use x = (x1, x2, x3)
T to denote the direction vector,

which is denoted as n = (n1, n2, n3)
T in [3,6]. Then the apparent diffusion coefficient (ADC) is

Dapp = Dx2
≡

3∑
i, j=1

Di j xi x j .

A key formula for the DK tensor W is as follows [3,6]:

Kapp =
M2

D

D2
app

W x4, (1)

where Kapp is the apparent kurtosis coefficient in the direction x , and

W x4
≡

3∑
i, j,k,l=1

Wi jkl xi x j xk xl .

As noted in the introduction, D and W are fully symmetric. It is known that Dx is a vector in R3 with its i th
component as

(Dx)i =

3∑
j=1

Di j x j ,

for i = 1, 2, 3. As in [10–12], we denote W x3 as a vector in R3 with its i th component as

(W x3)i =

3∑
j,k,l=1

Wi jkl x j xk xl ,
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for i = 1, 2, 3. It is easy to see that maximizing (minimizing) Kapp is equivalent to the following maximization
(minimization) problem:

max W x4

s.t. Dx2
= 1. (2)

Without loss of generality, we may assume that D is positive definite. In practice, this assumption is natural, as ADC
should be positive in general.

Obviously, the critical points of problem (2) satisfy the following equation for some λ ∈ R:{
W x3

= λDx,
Dx2

= 1.
(3)

A real number λ satisfying (3) with a real vector x is called a D-eigenvalue of W , and the real vector x is called a
D-eigenvector of W associated with the D-eigenvalue λ.

Theorem 1. D-eigenvalues always exist. If x is a D-eigenvector associated with a D-eigenvalue λ, then

λ = W x4. (4)

The largest AKC value is equal to M2
Dλmax, and the smallest AKC value is equal to M2

Dλmin, where λmax and λmin
are the largest and the smallest D-eigenvalues of W respectively.

Proof. The feasible region of (2) is compact. The objective function of (2) is continuous. Hence, the optimization
problem (2) has at least a maximizer and a minimizer. They are critical points of (2) and satisfy (3) with corresponding
Lagrangian multipliers. Hence, D-eigenvalues always exist. By (3), we have (4). According to the optimization theory,
(1) and (4), we see that the other conclusions of this theorem also hold. �

This theorem justifies our definition of D-eigenvalues.
We may use the second equation of (3) to homogenize the first equation of (3) as

W x3
= λ(Dx2)Dx . (5)

According to algebraic geometry [2], the resultant of (5) is a one-dimensional polynomial φ of λ. We call φ(λ) the
D-characteristic polynomial of W .

Theorem 2. A D-eigenvalue is always a real root of the D-characteristic polynomial φ(λ).

Proof. According to the resultant theory [2], the Eq. (5) has a nonzero complex solution x if and only if λ is a root of
its resultant. The conclusion follows. �

Note that a real root of φ(λ)may not be a D-eigenvalue, as at such a real root (5) may have only conjugate complex
solutions x . See [10] for the discussion on E-eigenvalues and Z -eigenvalues.

We say that W is regular if the following system has no nonzero complex solutions:{
W x3

= 0,
Dx2

= 0.
(6)

When W is irregular, φ(λ) is a zero polynomial. A further study is needed in this case.
With an approach similar to that used in [8], we may conclude that the degree of φ is at most 13. Then, in the regular

case, the number ν of D-eigenvalues of W satisfies ν ≤ 13. We may order the D-eigenvalues as λ1 ≥ λ2 ≥ · · · ≥ λν .
Then λ1 = λmax and λν = λmin.

We define the mean kurtosis value

MK =
1
ν

ν∑
i=1

λi ,
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and the fractional kurtosis anisotropy as

F AK =

√
ν

ν − 1

√√√√√√√√
ν∑

i=1
(λi − MK )2

ν∑
i=1

λ2
i

.

Then we have the average AKC value as M2
D MK , and 0 ≤ F AK ≤ 1. If F AK = 0, the diffusion kurtosis is isotropic.

If F AK = 1, the diffusion kurtosis is anisotropic.

Theorem 3. D-eigenvalues, MK and F AK are invariant under rotations of coordinate systems.

Proof. With a rotation, x , D and W are converted to x = Py, D̂ = D P2 and Ŵ = W P4, where P = (pi j ) is the
rotation matrix, the elements of D̂ and Ŵ are defined by

D̂i j =

3∑
i ′, j ′=1

Di ′ j ′ pi ′i p j ′ j ,

and

Ŵi jkl =

3∑
i ′, j ′,k′,l ′=1

Wi ′ j ′k′l ′ pi ′i p j ′ j pk′k pl ′l

respectively, see [10] for the definition of orthogonal similarity. If λ is a D-eigenvalue with a D-eigenvector x , then
by (3) and the above discussion, we have{

Ŵ y3
= λD̂y,

D̂y2
= 1.

This implies that D-eigenvalues are invariant under rotations of coordinate systems. Since MK and F AK are functions
of D-eigenvalues, they are also invariant under rotations of coordinate systems. �

3. Computation of D-eigenvalues

We cannot use the D-characteristic polynomial to calculate D-eigenvalues. First, it is difficult to calculate the
resultant of a system of more than two variables [2]. Second, some real roots of the D-characteristic polynomial
may not be D-eigenvalues, as stated in Section 2. It is difficult to distinguish which real roots of the D-characteristic
polynomial are D-eigenvalues. Third, in the irregular case, the D-characteristic polynomial is a zero polynomial,
which does not make any sense. Fourth, in practice, it is not enough to have D-eigenvalues only, but also desirable
to know the D-eigenvectors as they are the directions at which those special AKC values apply. In this section, we
present a direct method to find all the D-eigenvalues and their corresponding D-eigenvectors. The key idea here is
to reduce the three variable system (3) to a system of two variables. Here, we regard λ as a parameter instead of a
variable. Then, we may use the Sylvester formula of the resultant of a two variable system [2] to solve this system. As
assumed in Section 2, we assume that D is positive definite. Then its three diagonal elements D11, D22 and D33 are
positive. It is also not difficult to find its inverse D−1

= (d̄i j ). We now transform system (3) to{
D−1(W x3) = λx,
Dx2

= 1.

By a short deduction, we can write the system above as{
W̄ x3

= λx,
Dx2

= 1
(7)

where W̄ is a fourth-order three-dimensional tensor such that its entries satisfy W̄i jkl =
∑3

h d̄ih Whjkl for i, j, k, l =

1, 2, 3. Note that although the tensor W̄ is not fully symmetric, it is symmetric with respect to the last three indices.
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Based on this conversion, we have the following theorem.

Theorem 4. (a) If W̄2111 = W̄3111 = 0, then λ =
W̄1111
D11

is a D-eigenvalue of W with a D-eigenvector x =

(±

√
1

D11
, 0, 0)>.

(b) For any real root t of the following equations:{
−W̄2111t4

+ (W̄1111 − 3W̄2112)t
3
+ 3(W̄1112 − W̄2122)t

2
+ (3W̄1122 − W̄2222)t + W̄1222 = 0,

W̄3111t3
+ 3W̄3112t2

+ 3W̄3122t + W̄3222 = 0,
(8)

x = ±
1√

D11t2 + 2D12t + D22
(t, 1, 0)> (9)

is a D-eigenvector of W with the D-eigenvalue λ = W x4.

(c) λ = W x4 and

x =
±(u, v, 1)>

D11u2 + 2D12uv + 2D13u + D22v2 + 2D23v + D33
(10)

constitute a D-eigenpairs of W , where u and v are a real solution of the following polynomial equations:

−W̄3111u4
− 3W̄3112u3v + (W̄1111 − 3W̄3113)u

3
− 3W̄3122u2v2

+ (3W̄1112 − 6W̄3123)u
2v

+ (3W̄1113 − 3W̄3133)u
2
− 3W̄3223uv2

− W̄3222uv3
+ 3W̄1122uv2

+ (6W̄1123 − 3W̄3233)uv
+ (3W̄1133 − W̄3333)u + W̄1222v

3
+ 3W̄1223v

2
+ 3W̄1233v + W̄1333 = 0,

−W̄3111u3v + W̄2111u3
− 3W̄3112u2v2

+ (3W̄2112 − 3W̄3113)u
2v + 3W̄2113u2

− 3W̄3122uv3

+ (3W̄2122 − 6W̄3123)uv
2
+ (6W̄2123 − 3W̄3133)uv + 3W̄2133u + 3W̄2223v

2
− W̄3222v

4

+ (W̄2222 − 3W̄3223)v
3
− 3W̄3233v

2
+ (3W̄2233 − W̄3333)v + W̄2333 = 0.

(11)

All the D-eigenpairs of tensor W are given by (a), (b) and (c) if W̄2111 = W̄3111 = 0, and by (b) and (c) otherwise.

Proof. The conclusion in (a) follows from (7) directly.
If x2 6= 0 and x3 = 0, then (7) becomes

W̄1111x3
1 + 3W̄1112x2

1 x2 + 3W̄1122x1x2
2 + W̄1222x3

2 = λx1,

W̄2111x3
1 + 3W̄2112x2

1 x2 + 3W̄2122x1x2
2 + W̄2222x3

2 = λx2,

W̄3111x3
1 + 3W̄3112x2

1 x2 + 3W̄3122x1x2
2 + W̄3222x3

2 = 0,

D11x2
1 + 2D12x1x2 + D22x2

2 = 1.

Let t = x1/x2. From the first three equations, we have Eq. (8). By the fourth equation, we have (9). This proves (b).
If x3 6= 0, then (7) becomes



W̄1111x3
1 + 3W̄1112x2

1 x2 + 3W̄1113x2
1 x3 + 3W̄1122x1x2

2 + 6W̄1123x1x2x3

+ 3W̄1133x1x2
3 + W̄1222x3

2 + 3W̄1223x2
2 x3 + 3W̄1233x2x2

3 + W̄1333x3
3 = λx1,

W̄2111x3
1 + 3W̄2112x2

1 x2 + 3W̄2113x2
1 x3 + 3W̄2122x1x2

2 + 6W̄2123x1x2x3

+ 3W̄2133x1x2
3 + W̄2222x3

2 + 3W̄2223x2
2 x3 + 3W̄2233x2x2

3 + W̄2333x3
3 = λx2,

W̄3111x3
1 + 3W̄3112x2

1 x2 + 3W̄3113x2
1 x3 + 3W̄3122x1x2

2 + 6W̄3123x1x2x3

+ 3W̄3133x1x2
3 + W̄3222x3

2 + 3W̄3223x2
2 x3 + 3W̄3233x2x2

3 + W̄3333x3
3 = λx3,

D11x2
1 + 2D12x1x2 + 2D13x1x3 + D22x2

2 + 2D23x2x3 + D33x2
3 = 1.

(12)
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From the first three equations, one has

−W̄3111x4
1 − 3W̄3112x3

1 x2 + (W̄1111 − 3W̄3113)x
3
1 x3 − 3W̄3122x2

1 x2
2 + (3W̄1112 − 6W̄3123)x

2
1 x2x3

+ (3W̄1113 − 3W̄3133)x
2
1 x2

3 − 3W̄3223x1x2
2 x3 − W̄3222x1x3

2 + 3W̄1122x1x2
2 x3 + (6W̄1123 − 3W̄3233)x1x2x2

3
+ (3W̄1133 − W̄3333)x1x3

3 + W̄1222x3
2 x3 + 3W̄1223x2

2 x2
3 + 3W̄1233x2x3

3 + W̄1333x4
3 = 0,

−W̄3111x3
1 x2 + W̄2111x3

1 x3 − 3W̄3112x2
1 x2

2 + (3W̄2112 − 3W̄3113)x
2
1 x2x3 + 3W̄2113x2

1 x2
3 − 3W̄3122x1x3

2
+ (3W̄2122 − 6W̄3123)x1x2

2 x3 + (6W̄2123 − 3W̄3133)x1x2x2
3 + 3W̄2133x1x3

3 + 3W̄2223x2
2 x2

3 − W̄3222x4
2

+ (W̄2222 − 3W̄3223)x
3
2 x3 − 3W̄3233x2

2 x2
3 + (3W̄2233 − W̄3333)x2x3

3 + W̄2333x4
3 = 0.

Let u = x1/x3 and v = x2/x3. Then, (11) follows. By the fourth equation of (12), we have (10). Then conclusion (c)
follows now. �

We regard the polynomial equation system (11) as equations of u. We may write it as{
α0u4

+ α1u3
+ α2u2

+ α3u + α4 = 0,
β0u3

+ β1u2
+ β2u + β3 = 0,

where α0, . . . , α4, β0, . . . , β3 are polynomials of v, which can be calculated by (11). It has complex solutions if and
only if its resultant vanishes [2]. By the Sylvester theorem [2], its resultant is equal to the determinant of the following
7 × 7 matrix:

α0 α1 α2 α3 α4 0 0
0 α0 α1 α2 α3 α4 0
0 0 α0 α1 α2 α3 α4
β0 β1 β2 β3 0 0 0
0 β0 β1 β2 β3 0 0
0 0 β0 β1 β2 β3 0
0 0 0 β0 β1 β2 β3


,

which is a one-dimensional polynomial of v.
To find the approximate solutions of all the real roots of a one-dimensional polynomial, we can use the following

Sturm Theorem [7].

Theorem 5. Let ψ be a nonconstant polynomial with real coefficients and let c1 and c2 be two real numbers such that
c1 < c2 and ψ(c1)ψ(c2) 6= 0. The sequence ψ0, ψ1, . . . , ψl defined by

ψ0 = ψ, ψ1 = ψ ′, ψi+1 = −ψi−1modψi , i = 1, 2, . . . , l

and ψl+1 ≡ 0 is called a sequence of Sturm. Denote by v(x) the number of changes of signs in the sequence
ψ0(x), ψ1(x), . . . , ψl(x). Then the number of distinct real roots of ψ on the interval (c1, c2) is equal to v(c1)−v(c2).

We may find the approximate solutions of all the real roots of this one-dimensional polynomial such that their
differences with the exact solutions are within a given error bound. We then substitute them to (11) to find the
corresponding approximate real solutions of u. Correspondingly, approximate values of all the D-eigenvalue and
their D-eigenvectors can be obtained.

4. A numerical example

In this section, we give a numerical example of D-eigenvalues. This example is derived from data of MRI
experiments on rat spinal cord specimen fixed in formalin. The MRI experiments were conducted on a 7 Tesla MRI
scanner at Laboratory of Biomedical Imaging and Signal Processing at The University of Hong Kong. This example
is taken from the white matter.

The diffusion tensor D is

D =

0.1755 0.0035 0.0132
0.0035 0.1390 0.0017
0.0132 0.0017 0.4006

 ∗ 10−3
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Table 1
D-eigenvalues and eigenvectors of W

x1 x2 x3 λ× 10−7 AKC

1 −26.6953 −76.0271 13.2301 3.8340 2.1782
2 8.3561 −69.1354 28.6108 2.4323 1.3819
3 58.9844 −42.6590 17.9274 0.6773 0.3848
4 −62.4736 −35.3967 20.0392 3.8173 2.1687
5 29.1437 −52.2572 33.9600 2.4900 1.4146
6 34.8925 49.2278 31.7172 1.0247 0.5822
7 −21.9794 −31.4925 44.7823 −0.0738 −0.0419
8 24.4491 −12.3897 46.0146 2.0092 1.1415
9 −12.2897 23.6850 47.6412 2.0563 1.1682

10 −66.1780 11.3946 25.5877 5.3545 3.0420
11 11.5202 18.0765 47.7258 2.2194 1.2609
12 65.6942 7.1795 21.9765 −1.2420 −0.7056

in unit of square mm per second, and the fifteen independent elements of the diffusion kurtosis tensor W are
W1111 = 0.4982, W2222 = 0, W3333 = 2.6311, W1112 = −0.0582, W1113 = −1.1719, W1222 = 0.4880,
W2223 = −0.6162, W1333 = 0.7639, W2333 = 0.7631, W1122 = 0.2236, W1133 = 0.4597, W2233 = 0.1519,
W1123 = −0.0171, W1223 = 0.1852 and W1233 = −0.4087, respectively. It is easy to find that

M2
D =

(
D11 + D22 + D33

3

)2

= 5.6813 × 10−8.

Using the method provided in Section 3, we compute all the D-eigenvalues of W , and the associated eigenvectors,
which are listed in Table 1.

We see that ν = 12, λmin = −1.2420×107, λmax = 5.3545×107 and MK = 2.0499×107. We then can calculate
that F AK = 0.6741.

In [13], more analysis on this example and another example on gray matter is given.

5. Further discussions

In this paper, we introduced D-eigenvalues for a diffusion kurtosis tensor and presented their computation methods.
We hope that this discussion in mathematics can be useful in medical engineering. We wonder if they have more
general implications in the other fields of engineering and physics. There are some questions for further research:

1. We assume that the diffusion tensor D is positive definite. Is there a practical situation where D is not positive
definite? If so, what can we do in such a case?

2. Does ν, the number of the D-eigenvalues of W , have any practical meaning?
3. In the irregular case, how can we estimate the number of the D-eigenvalues?
4. How can we estimate the error bounds of the approximate solutions of D-eigenvalues and D-eigenvectors

obtained in the last section?
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