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Abstract Numerical multilinear algebra, in which instead of matrices and
vectors the higher-order tensors are considered in numerical viewpoint, is a
new branch of computational mathematics. Although it is an extension of
numerical linear algebra, it has many essential differences from numerical
linear algebra and more difficulties than it. In this paper, we present a
survey on the state of the art knowledge on this topic, which is incomplete,
and indicate some new trends for further research. Our survey also contains
a detailed bibliography as its important part. We hope that this new area
will be receiving more attention of more scholars.
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1 Introduction

Numerical multilinear algebra is a new branch of computational mathemat-
ics. It is concerned with treating higher-order tensors in numerical way by
replacing matrix. It involves various computational topics of higher-order
tensors, such as tensor decomposition, computation of tensor rank, compu-
tation of tensor eigenvalues, lower-rank approximations of tensors, numerical
stability and perturbation analysis of tensor computation, and so on. This
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new branch has a strong practical background and wide applications in dig-
ital image restorations, psychometrics, chemometrics, econometrics, multi-
way data analysis, blind source separation and blind deconvolution in signal
processing, high-order statistics, and so on (see Refs. [3,4,6,8,11,16,41,77,79]).

The classical multilinear algebra is a branch of abstract algebra and
stresses how the operations work between tensors with R-module (over a
commutative ring). It discusses associated algebra, exterior algebra of a
module, symmetric algebra of a module, coalgebra and Hopf algebras, and so
on (see Refs. [24,54,58]). However, the modern multi-way data analysis and
signal processing need to know more properties about a higher-order tensor.
In particular, how to decompose a tensor into the sum of products of vectors,
how to approximate a tensor with a lower-rank tensor, how to compute the
eigenvalues and singular values of a tensor, how to apply the higher order
tensor in blind source separation (BSS), higher order statistics (HOS), blind
deconvolution (BD), semidefinite programming (SDP), and others. All these
constitute a new branch of computational mathematics—numerical
multilinear algebra.

Although it is a very young discipline, recently the numerical multilinear
algebra attracts much attention and gets dramatic development since there
are strong motivations from the practical background and applications.
Various experts and scholars in numerical linear algebra and engineering put
their energy in this topic. Several international workshops and conferences
on this new branch were held in USA, France, Switzerland, etc. For example,
during July 19–23, 2004, Golub, Kolda, Nagy and Van Loan organized Work-
shop on Tensor Decomposition at the American Institute of Mathematics in
Palo Alto, California. About 35 people—computer scientists, mathemati-
cians, and a broad range of scholars who use tensor decompositions in their
research—had come from eleven countries to participate in the week-long
workshop. See the webpage of the workshop [21] and the SIAM News article
on this workshop [29].

De Lathauwer and Comon further organized Workshop on Tensor
Decompositions and Applications at CIRM, Luminy, Marseille, France
during August 29—September 2, 2005. About 43 people from thirteen
countries participated in the workshop. Topics discussed at the workshop
include large-scale problems, topological properties of tensor spaces, exact
or approximate tensor decompositions, mathematical properties of tensor
decompositions, independent component analysis, applications in telecom-
munications, pattern analysis and statistical modelling, diagnostics in data
analysis, sensor array processing. See the webpage of that workshop [45].

To bridge the gap among numerical linear algebra, theoretical computer
science, and data applications, Golub, Mahony, Drineas, Lim organized Work-
shop for Modern Massive Data Set at Stanford University during June 21–24,
2006. The workshop, with 45 talks and 24 poster presentations, attracted
232 participants. See webpage [22], SIAM News and NA articles [23,46]. The
theme of the last day of the workshop was tensor-based data applications.
At his ending speech of the workshop, Golub pointed out that a new branch
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of applied mathematics has been developed.
Recently, Golub, Comon, De Lathauwer and Lim organized an ICIAM

Minisymposium on ‘Numerical Multilinear Algebra: A New Beginning’ at
Zurich, Switzerland, during July 16–20, 2007. Golub wrote: “The name
‘numerical multilinear algebra’ is not as yet in common usage. We broadly
define this as the study and use of tensors/multilinear algebra, symmetric
tensors/symmetric algebra, alternating tensors/exterior algebra, spinors/
Clifford algebra in the computational mathematics. ... It is our hope that this
minisymposium would constitute an important step towards the definition
and development of this new discipline in the computational mathematics”.

The aim of this paper is to give the development and a survey for
numerical multilinear algebra. In fact, it can be regarded as a tutorial
overview to this new area. Our survey and coverage will necessarily be
incomplete and biased. Therefore, we also refer the readers to a survey paper
by Comon [13] which discusses the tensor decompositions, and the survey
paper by Lathauwer [44] which mainly discusses the canonical decomposi-
tion algorithms of a higher order tensor. Those people who would like to
keep abreast of recent development of this new branch can attend the related
webs, for example, Refs. [21,22,45].

The rest of the paper is organized as follows. In the next section, we give
some basic notations, definitions and preliminary knowledge needed to the
numerical multilinear algebra. In Section 3 we describe and survey the higher
order tensor decompositions which include exact and approximate canonical
decomposition, and higher order singular value decomposition, etc. Section 4
is devoted to the topic on the best rank-1 and rank-r approximation problem
to a higher order tensor. In Section 5 we consider the theory and computa-
tion of eigenvalues of higher order tensor, which is an interesting topic and a
generalization of eigenvalues of a matrix. Section 6 discusses typical applica-
tions of tensors on BSS, BD, SDP, and multivariate polynomial optimization.
Finally, Section 7 contains some concluding remarks.

2 Notations and basic definitions

A tensor of order N is an N -way array, i.e., its entries are accessed via N
indices, say i1, i2, . . . , iN with each ik ranging from 1 to Ik. For example, a
vector is of a tensor of order 1, and a matrix is a tensor of order 2.

Throughout this paper, unless specified otherwise, variables take their
values in the real field although all the statements hold true in the complex
field. Vectors will be denoted by bold lowercase letters (e.g. u), while ma-
trices will be defined by uppercase letters (e.g. A). Higher-order tensors will
be denoted by calligraphic, uppercase letters (e.g. A ). The entries of arrays
are scalar quantities and are denoted with plain letters, such as ui or Ti,j,...,l,
the (i, j, . . . , l)-element of a tensor T .

A tensor of order N enjoys the multilinearity property after a change of
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the coordinate system. In order to identify the ideas, consider a third order
tensor T with entries Ti1i2i3 , and a change of coordinates defined by three
squares invertible matrices A, B and C with elements Ai1j1 , Bi2j2 and Ci3j3 ,
respectively. The tensor T can be written as

Ti1i2i3 =

J1∑

j1=1

J2∑

j2=1

J3∑

j3=1

Sj1j2j3Ai1j1Bi2j2Ci3j3 , (2.1)

and is denoted by

T = A
S

? B
S

? C, (2.2)

where S is a (J1 × J2 × J3)-tensor, A, B and C are matrices of order
I1 × J1, I2 × J2 and I3 × J3, respectively. Representation (2.1)-(2.2) of
tensors is referred to as the Tucker model (or Tucker product) [77], which is
widely used in factor analysis, multi-way data processing and psychometrics.

The outer product of two vectors is defined as

C = u ◦ v = uvT (2.3)

with element Cij = uivj , which is a matrix. The outer product of N vectors,
u(i) (i = 1, . . . , N), is defined as

T = u(1) ◦ u(2) ◦ · · · ◦ u(N) (2.4)

with (i1, i2, . . . , iN )-element

Ti1i2···iN
= u

(1)
i1

u
(2)
i2

· · ·u
(N)
iN

,

which is said to be a rank-1 tensor of order N. In general, for two tensors
A and B of order M and N respectively, one can define outer product
C = A ◦ B as a tensor of order M + N :

Ci1 ···iM j1···jN
= Ai1···iM

Bj1···jN
. (2.5)

Given two tensors, A = {Ai1···iM
} and B = {Bj1···jN

}, having the same
first dimension (I1 = J1), one can define the mode-1 contraction product (or
inner product)

(A • B)i2 ···iM j2···jN
=

I1∑

i1=1

Ai1···iM
Bj1···jN

. (2.6)

This product is induced from standard matrix multiplication. In fact, for
given two matrices A and B, if the column number of A and the row number
of B are the same (= p), then the standard matrix product is

(AB)ij =

p∑

k=1

AikBkj , (2.7)
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which can be written in mode-1 contraction product

AB = AT • B (2.8)

with element

(AB)ij = (AT • B)ij =

p∑

k=1

(AT)kiBkj . (2.9)

Similarly, we can define mode-p contraction product as long as tensors A

and B have the same p-th dimension. Therefore, the Tucker product (2.1) is
also regarded as a contraction product and sometimes is denoted by

T = S • A • B • C (2.10)

or
T = S ×1 A ×2 B ×3 C, (2.11)

where ×k denotes summing on ik. This representation also induces several
higher-order rank-factorization and higher-order singular value decomposi-
tion.

Given two tensors A and B of order N with the same dimensions. One
defines their Hadamard product C = A � B with element as

Ci1···iN
= Ai1···iN

Bi1···iN
.

It says that the Hadamard product of two tensors gives a tensor with the
same order and same dimension with A and B.

As usual, the Kronecker product of two vectors u and v of m × 1 and
n × 1, respectively, is defined as the vector of mn × 1 with all the possible
cross-product as follows:

a ⊗ b :=




a1b

a2b
...

amb


 =




a1b1

...
a1bn

...
ambn




.

The Kronecker product of two matrices A and B of m× n and p× q, respec-
tively, is defined as the matrix of mp × nq :

A ⊗ B := (aijB)mp×nq , i = 1, . . . , m; j = 1, . . . , n.

The operator that transforms a matrix to a vector is known as the vec
operator. If the m×n matrix A has ai as its i-th column, then vec(A) is the
mn × 1 vector given by

vec(A) =




a1

a2

...
an


 .
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We can give some definitions of supersymmetric tensor, tensor scalar prod-
uct and tensor Frobenius norm, which are the generalization of matrix case
in a straightforward way.

Definition 2.1 (supersymmetric tensor) A tensor is called supersymmetric
if its entries are invariant under any permutation of their indices.

Definition 2.2 (tensor scalar product) The scalar product 〈S , T 〉 of two
tensors S and T with the same order N and same dimensions is defined by

〈S , T 〉 =
∑

i1,...,iN

Si1···iN
Ti1···iN

. (2.12)

Definition 2.3 (Frobenius norm of a tensor) The Frobenius norm of a
tensor T of order N is defined as

‖T ‖F = 〈T , T 〉 =

( ∑

i1,··· ,iN

T
2

i1···iN

)1/2

. (2.13)

For further detailed notation and definitions of matrix and tensor com-
putation, we refer to Refs. [15,20,40,67,74].

3 Rank and factorization: From matrix to tensor

Bergman [2] and Harshman [25] first noticed that it was difficult to extend
the concept of rank from matrices to higher-order arrays. However, there
are still several ways to extend the concept of rank of matrix to higher-order
tensor.

Let m×n matrix A ∈ Rm×n
r be of rank r, and let B ∈ Rm×r

r and C ∈ Rr×n
r

be full-rank matrices, where Rm×n
r denotes the space of all m×n real matrices

of rank r. We have

A = BC = [b1, . . . ,br]




cT
1
...

cT
r


 =

r∑

i=1

bic
T
i =

r∑

i=1

bi ◦ ci, (3.1)

which is called the rank-1 factorization of matrix A (or BC factorization).
Here r is the rank of matrix A and the number of rank-1 matrix whose linear
combination yields A (see Ref. [26]).

Now, this idea can be extended to higher-order tensor case. Let T be a
tensor of order N of dimensions I1×· · ·×IN . The tensor T can be decomposed
into a sum of the outer products of vectors. The tensor rank r is defined as
the minimal number of rank-1 tensors whose linear combination yields T ,
i.e.,

T =
r∑

i=1

u
(1)
i ◦ u

(2)
i ◦ · · · ◦ u

(N)
i , (3.2)
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where u
(1)
i ,u

(2)
i , . . . ,u

(N)
i are I1, I2, . . . , IN -dimensional vectors, respectively.

The alternative definition of tensor rank is called mode-k rank of a tensor
which is defined by mode-k matrix (or k-th matrix unfolding).

Definition 3.1 Assume that N -th order tensor A ∈ RI1×I2×···×IN . The
mode-k matrix (or k-th matrix unfolding) A(k) ∈ CIk×(Ik+1Ik+2···INI1···Ik−1)

is a matrix containing the element ai1i2···iN
.

For example, for tensor A ∈ R3×2×3 of order 3, where

I1 = 3, I2 = 2, I3 = 3,

we have

A(1) ∈ R
I1×(I2I3), A(2) ∈ R

I2×(I3I1), A(3) ∈ R
I3×(I1I2),

and

A(1) =




a111 a112 a113 a121 a122 a123

a211 a212 a213 a221 a222 a223

a311 a312 a313 a321 a322 a323


 ,

which is a 3 × 6 matrix,

A(2) =

(
a111 a211 a311 a112 a212 a312 a113 a213 a313

a121 a221 a321 a122 a222 a322 a123 a223 a323

)
,

which is a 2 × 9 matrix,

A(3) =




a111 a121 a211 a221 a311 a321

a112 a122 a212 a222 a312 a322

a113 a123 a213 a223 a313 a323



 ,

which is a 3 × 6 matrix.
For the above defined mode-k matrix A(k) (or k-th matrix unfolding)

(k = 1, . . . , N), its column vectors are said to be mode-k vectors of tensor
A .

Definition 3.2 The rank of mode-k matrix is said to be mode-k rank of
tensor A , written as

Rk = rankk(A ) = rank(A(k)). (3.3)

Obviously, an N -th order tensor has N mode-k ranks and the different
mode-k ranks of tensor are not necessarily the same. In addition, the rank
and the mode-k rank of a same tensor are not necessarily equal even though
all the mode-k ranks are equal.

Now, much discussion and research on definitions and computation of
tensor rank are in processing.

Higher-order singular value decomposition (HOSVD) due to Lathauwer
etc. [41] is extended from SVD of matrices and is an important part of tensor
decomposition.
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Let A be an m × n real matrix. Then there are orthogonal matrices

U = [u1,u2, . . . ,um] ∈ R
m×m, V = [v1,v2, . . . ,vn] ∈ R

n×n,

such that

UTAV = D =

[
Σ 0
0 0

]
, (3.4)

where
Σ = diag(σ1, . . . , σr), σ1 > σ2 > · · · > σr > 0.

It means that

A = U




σ1

. . . 0

σr

0 0


 V T =

r∑

i=1

σiuiv
T
i , (3.5)

where σi is called the singular value of A, vectors ui and vi are said to be left
singular vectors and right singular vectors, respectively (see Ref. [26]). If let
A and D be I1×I2 matrices, U and V be I1×I1 and I2×I2 orthogonal matrices
respectively, and set U (1) = U, U (2) = V T, then the SVD decomposition (3.5)
can be written in the following form:

A = UDV T

= D ×1 U (1) ×2 U (2)

= D •U (1) • U (2)

=: U (1) D
• U (2), (3.6)

where the symbol ×k denotes summing on ik. For example, for I1 × I2 × I3

tensor A of order 3 and J × I1 matrix U, the component of product is

(A ×1 U)ji2i3 =

I1∑

i1=1

Ai1i2i3Uji1 .

In matrix SVD, we have the following properties.

1) Range(A) = span{u1, . . . ,ur}, Null(A) = span{vr+1, . . . ,vn}.

2) ‖A‖2
F = σ2

1 + · · · + σ2
r .

3) The matrix SVD indicates that a given matrix can be approximated
well by a lower-rank matrix. If

k < r = rank(A), Ak =

k∑

i=1

σiuiv
T
i ,

then
min

rank(B)=k
‖A − B‖2 = ‖A − Ak‖2 = σk+1. (3.7)
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The above SVD (3.6) of matrices and its properties can be extended to
higher-order tensor case.

Theorem 3.3 (HOSVD) Any (I1 × I2 ×· · ·× IN )-tensor A of order N can

be expressed as

A = S ×1 U (1) ×2 U (2) ×3 · · · ×N U (N), (3.8)

or

A = U (1) S
• U (2) S

• · · ·
S
• U (N) (3.9)

with elements

Ai1i2···iN
=

I1∑

j1=1

I2∑

j2=1

· · ·

IN∑

jN=1

Sj1j2···jN
U

(1)
i1j1

U
(2)
i2j2

· · ·U
(N)
iN jN

, (3.10)

where

1) U (k) = (u
(k)
1 ,u

(k)
2 , . . . ,u

(k)
N ) is an orthogonal Ik × Ik matrix.

2) S is an (I1 × I2 × · · · × IN )-tensor of the same size as A , and its

subtensors Sik=α, obtained by fixing the k-th index to α, have the properties

of

a) all-orthogonality: two subtensors Sik=α and Sik=β are orthogonal for

any possible values of k and α 6= β, in the sense that

〈Sik=α, Sik=β〉 =
∑

i1,··· ,ik−1,ik+1,··· ,iN

Si1···ik−1αik+1···iN
Si1···ik−1βik+1···iN

= 0;

(3.11)
b) ordering: for all k,

‖Sik=1‖ > ‖Sik=2‖ > · · · > ‖Sik=Ik
‖ > 0. (3.12)

The Frobenius norm ‖Sin=i‖, symbolized by σ
(k)
i , are mode-k singular values

of A and the vector u
(k)
i is the i-th mode-k singular vector.

Furthermore, an equivalent matrix representation of the HOSVD in (3.8)
can be obtained by unfolding matrix of A and S :

A(k) = U (k) · S(k) · (U
(k+1) ⊗ · · · ⊗ U (N) ⊗ U (1) ⊗ · · · ⊗ U (k−1))T

=: U (k) · Σ(k) · S̃(k) · (U
(k+1) ⊗ · · · ⊗ U (N) ⊗ U (1) ⊗ · · · ⊗ U (k−1))T

=: U (k) · Σ(k) · V (k)T, 1 6 k 6 N, (3.13)

where

V (k) := S̃(k) · (U
(k+1) ⊗ U (k+2) ⊗ · · · ⊗ U (N) ⊗ U (1) ⊗ · · · ⊗ U (k−1))

is orthogonal and

Σ(k) := diag(σ
(k)
1 , σ

(k)
2 , . . . , σ

(k)
Ik

).
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In HOSVD, we have the following properties.

1) The mode-k Range(A(k)) = span(u
(k)
1 , . . . ,u

(k)
rk

).

2) The mode-k null space Null(AT
(k)) = span(u

(k)
rk+1, . . . ,u

(k)
Ik

).

3)

‖A ‖2 =

r1∑

i=1

(σ
(1)
i )2 = · · · =

rN∑

i=1

(σ
(N)
i )2 = ‖S ‖2.

4) Let Â be a tensor obtained by discarding the smallest mode-k singular

values σ
(k)
I′

k
+1, σ

(k)
I′

k
+2, . . . , σ

(k)
rk

for given values of I ′

k (1 6 k 6 N), i.e., set the

corresponding parts of S equal to zero. Then

‖A − Â ‖2
6

r1∑

i1=I′

1
+1

σ
(1)2

i1
+

r2∑

i1=I′

2
+1

σ
(2)2

i2
+ · · · +

rN∑

i1=I′

N
+1

σ
(N)2

iN
.

By Theorem 3.3 and comparison of the matrix and tensor cases, we know
that the left and the right singular vectors of a matrix (can be regarded
as mode-1 and mode-2 singular vectors) are generalized to mode-k singular
vectors (k = 1, 2, . . . , N). Next, the role of the singular values in HOSVD
is taken over by Frobenius norm of the (N − 1)-th subtensors of S . Note
that, in matrix SVD, the matrix D in (3.6) is diagonal or pseudo-diagonal.
However, unfortunately, the tensor S in HOSVD (3.8) is a full tensor instead
of being pseudo-diagonal form. Lathauwer [41] shows that in general, it
is impossible to reduce higher-order tensors to a pseudo-diagonal form by
means of orthogonal transformations. This conclusion reduces the value of
HOSVD because pseudo-diagonal form in HOSVD is also important, like
in matrix SVD. So, we now face to a challenging topic: how to make an
approximate pseudo-diagonalization hold via computational methods or via
‘approximation’ and/or ‘relaxation’.

Caroll and Chang [7] provided the first canonical decomposition algorithm
(CANDecomp) of a three-way array. Comon proposed to approximately de-
compose a d-way array into d terms, which is referred to as independent
component analysis (ICA) [9]. Leurgans et al. [47] proposed SVD-based algo-
rithms to compute CANDecomp of the third-order tensor in large dimension.
Lathauwer et al. [44] point out that the CANDecomp can be computed, in
theory, by means of a matrix eigenvalue decomposition (EVD). However, one
can actually reformulate CANDecomp as an orthogonal simultaneous matrix
decomposition. So, the CANDecomp can be used in symmetric and unsym-
metric case. It should be pointed out that the concepts of tensor rank and
the decomposition of a tensor into a sum of outer-product of vectors was the
product of much earlier work by Hitchcock in 1927 [27,28].

Canonical decomposition (CANDecomp) (or parallel factors model
(PARAFAC)) is a decomposition of a given tensor as a linear combination of
a minimal number of possible non-orthogonal rank-1 tensors. It is a multi-
linear generalization of diagonalizing a matrix by an equivalence or congru-
ence transformation. Lathauwer et al. [44] reformulate the problem as a
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simultaneous genaralized Schur decomposition (SGSD), and give a technique
for the actual computation of the SGSD. The uniqueness of the decomposi-
tion for third-order real-valued and complex-valued tensors is derived in Refs.
[34] and [71] respectively. The result is generalized to arbitrary tensor orders
in Ref. [72].

The CANDecomp is defined as follows.

Definition 3.4 (CANDecomp) A canonical decomposition of an N -th or-
der tensor A ∈ RI1×I2×···×IN is a decomposition of A as a linear combination
of a minimum number of rank-1 terms:

A =

r∑

i=1

λiU
(1)
i ◦ U

(2)
i ◦ · · · ◦ U

(N)
i . (3.14)

There are several numerical methods to get CANDecomp. To look for
CANDecomp, one method is that we can minimize the quadratic cost function

f(Â ) = ‖A − Â ‖2 (3.15)

over all mode-k rank tensors A , which is parameterized as

Â =
r∑

i=1

λ̂iû
(1)
i ◦ · · · ◦ û

(N)
i . (3.16)

It is possible to do it by use of an alternating least-squares (ALS) algorithm, in
which the vector estimates are updated mode per mode. In each step, a clas-
sical linear least-squares problem is solved for different mode numbers. So,
several classical methods for least-squares problems can be used, for example,
Gauss-Newton method, Levenberg-Marquardt method, etc., in which all the
CANDecomp factors are updated simultaneously (see Refs. [44,55,59,75]).
These techniques are used for overcoming the illposedness and indetermi-
nancy of the decomposition.

An interesting alternative procedure is used by use of a simple matrix
eigenvalue decomposition (EVD) if (3.14) is exactly valid (see Ref. [47]).
Otherwise, a least-squares matching of both sides of (3.14) can be initialized
with the EVD result.

Consider A ∈ RI1×I2×I3 and assume that I1 = I2 = r. The problem

CANDecomp is to find vectors u
(1)
i , u

(2)
i , u

(3)
i , and λi, such that

A '

r∑

i=1

λiu
(1)
i ◦ u

(2)
i ◦ u

(3)
i . (3.17)

The mode-k matrices of A are

A(k) = U (k) · Λ(U (l) ⊗ U (m))T, (3.18)

where (k, l, m) is an arbitrary permutation of (1, 2, 3).
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Consider a linear transformation of the vector space RI3 to the matrix
space RI1×I2 :

V = fA (W ) = A ×3 W. (3.19)

Substitution of (3.19) into (3.14) shows that the image of W can be expressed
in terms of CANDecomp-components:

V = U (1) · D · U (2),

where
U (k) := [u

(k)
1 , . . . ,u

(k)
Ik

], k = 1, 2,

D := diag{(λ1, . . . , λr)} · diag{U (3)TW}.

Note that any matrix in the range of the mapping fA can be diagonalized.
Let the range be spanned by the matrices V1, V2, . . . , VK . Then we have the
simultaneous decomposition:

V1 = U (1) · D1 · U
(2)T,

V2 = U (1) · D2 · U
(2)T,

(3.20)
· · ·

VK = U (1) · DK · U (2)T,

where D1, . . . , DK are diagonal. In this case, corresponding to (3.15), the
cost function is

f̃(Û (1), Û (2), {D̂k}) =

K∑

k=1

‖Vk − Û (1) · D̂k · Û (2)T‖2. (3.21)

The Schur decomposition of a matrix is a generalization of the spectral
decomposition in which the goal is to obtain a diagonal matrix. In the Schur
decomposition, it turns out that for general case of any real square m × m
matrix A, we can find a unitary matrix X, such that X∗AX is a triangular
matrix, i.e.,

X∗AX = T,

where T is an upper triangular matrix with the eigenvalues of A as its diagonal
elements (see Ref. [26]).

If the m × m matrix A has real eigenvalues, then there exists an m × m
orthogonal matrix X, such that

XTAX = T,

where T is an upper triangular matrix.
Now, in CANDecomp, introducing QR-factorization

U (1) = QTR′, U (2)T = R′′ZT
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yields the SGSD equations:

Q · V1 · Z = R1 = R′ · D1 · R
′′,

Q · V2 · Z = R2 = R′ · D2 · R
′′,

(3.22)
· · ·

Q · VK · Z = RK = R′ · DK · R′′,

where Q, Z ∈ Rr×r are orthogonal, and R′, R′′, R1, . . . , RK are upper trian-
gular (see Refs. [44,78]). In this case the CANDecomp is to determine Q
and Z such that R1, . . . , RK are upper triangular. Lathauwer [44] discussed
related numerical results.

In addition, some supersymmetric decomposition of cumulant tensors and
applications [5], decomposition of quantics in sums of powers of linear forms
[10], some canonical decomposition [15], lower-rank decomposition [51], or-
thogonal tensors decompositions [32], and other singular value decomposition
for higher-order tensors are presented.

4 Best rank-1 and rank-r approximation of tensors

The best rank-1 tensor approximation problem is stated as follows. Given an
N -th order n×n×· · ·×n dimensional supersymmetric tensor, if there exists
a scalar λ and a unit-norm vector u, such that the rank-1 tensor

Â := λu?N := λuN

minimizes the least-squares cost function

min f(Â ) = ‖A − Â ‖2
F

(4.1)
s.t. ‖u‖2 = 1

over the manifold of rank-1 tensors, then Â = λu?N is called the best rank-1
approximation to tensor A .

Similarly, for general case (not necessarily supersymmetric case), if there
exist a scalar λ and N unit-norm vectors u(j) ∈ Rn, j = 1, · · · , N, such that
the rank-1 tensor

Â := λu(1) ? u(2) ? · · · ? u(N)

minimizes
f(Â ) = ‖A − Â ‖2

F (4.2)

over the manifold of rank-1 tensors, then

Â = λu(1) ? u(2) ? · · · ? u(N)

is called the best rank-1 approximation to tensor A .
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The minimization problem (4.1) is equivalent to the dual problem of max-
imizing

max g(u) =
∑

i1,...,iN

Ai1···iN
ui1ui2 · · ·uiN

= 〈A ,u?N 〉

(4.3)
s.t. ‖u‖2 = 1.

The corresponding value of λ is λ = g(u).
Similar to the matrix Rayleigh quotient, we define the generalized Rayleigh

quotient (or higher-order Rayleigh quotient) as

h(u) =
〈A ,u?N 〉2

〈u,u〉N
=

(
∑

i1,...,iN
Ai1···iN

ui1ui2 · · ·uiN
)2

〈u,u〉N
, (4.4)

whose maximization corresponds to (4.3).
For the maximization problem (4.4), several classical methods exist and

can be extended to higher-order case, for example, higher-order power method
[31,39], generalized Newton method [81] and others.

The stationary point of (4.4) is the solution of the following equations:

∑

i2,...,iN

Ai1i2···iN
ui2ui3 · · ·uiN

= λui1 for all i1,

· · · , (4.5)
∑

i1,...,iN−1

Ai1i2···iN
ui1ui2 · · ·uiN−1

= λuiN
for all iN

with λ = 〈A ,u?N 〉.
We have proved the following property. For a nonzero N -th order n-

dimensional supersymmetric tensor A with N = 2l for some positive integer
l, there exist l unit-norm vectors u(1),u(2), . . . ,u(l), such that

λ = A (u(1))2 ◦ (u(2))2 ◦ · · · ◦ (u(l))2.

For problem (4.5), the higher-order power method (HOPM) is suggested
in Refs. [39,42]. In general case, let A be a tensor with order N and dimen-

sion I1 × I2 ×· · · × IN . Given an initial unit-norm Ik-vector u
(k)
0 , the general

iteration is defined as follows. For i = 1, 2, . . . , let

ũ
(k)
i = u

(1)
i

A

? · · ·
A

? u
(k−1)
i

A

? I
A

? u
(k+1)
i−1

A

? · · ·
A

? u
(N)
i−1 ,

λ
(k)
i = ‖ũ

(k)
i ‖, (4.6)

u
(k)
i =

ũ
(k)
i

λ
(k)
i

.

Then we obtain

Â = λu(1) A

? u(2) A

? · · ·
A

? u(N), (4.7)
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which is a best rank-1 approximation to tensor A .
In supersymmetric case, the general iteration is defined as follows. For

i = 1, 2, . . . , let

ũi = I
A

? (ui−1)
A

? (N−1),

λi = ‖ũi‖, (4.8)

ui =
ũi

λi
.

Then we obtain

Â = λu
A

? N . (4.9)

In addition, for system (4.5), Newton’s method can be applied, which is
called generalized Rayleigh-Newton iteration in Ref. [81]. The competitive
numerical results are reported about generalized power method and gener-
alized Rayleigh-Newton method for the best rank-1 tensor approximation
problem.

Using a sequence of the best rank-1 approximation, we can consider the
decomposition of a supersymmetric tensor into the sums of supersymmetric
rank-1 tensors. We proposed a greedy method to decompose a higher-order
supersymmetric tensor into successive supersymmetric rank-1 tensors (see
Ref. [80]). Several approximations to tensors and their applications in signal
processing, and their perturbation analysis are discussed in Refs. [30,43].

5 Eigenvalues of tensors and their applications

In this section we discuss the eigenvalues of N -th order n-dimensional tensor
A .

Recently, Qi defined eigenvalues and eigenvectors of a real supersymmet-
ric tensor, and explored their applications in determining positiveness of an
even order tensor, and in finding the best rank-1 approximation to a su-
persymmetric tensor. This work is an extension of the classical concept of
eigenvalues of square matrices (see Refs. [57,61,62]). These works have been
generalized to the nonsymmetric case in Ref. [63].

Let A be a real N -th order n-dimensional supersymmetric tensor. The
tensor A defines an N -degree homogeneous polynomial f(x),

f(x) := A xN :=
n∑

i1,...,iN=1

Ai1···iN
xi1 · · ·xiN

, (5.1)

where xN can be regarded as an N -th order n-dimensional rank-1 tensor with
entries xi1 · · ·xiN

. Qi [61] defines the concepts of H-eigenvalue (eigenvalue)
and Z-eigenvalue (E-eigenvalue) of a real supersymmetric tensor A .

For a vector x ∈ Rn with components xi, we use x[N ] to denote a vector
in Rn such that

x[N ] := [xN
1 , . . . , xN

n ]T, i.e., x
[N ]
i = xN

i
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for all i. Let A xN−1 be a vector in Rn whose i-th component is

(A xN−1)i =

n∑

i2,...,iN=1

Aii2···iN
xi1 · · ·xiN

.

A real number λ is called an H-eigenvalue of A if it and a real nonzero vector
x satisfy the following homogeneous polynomial equation:

A xN−1 = λx[N−1]. (5.2)

If a complex number λ and a complex vector x satisfy (5.2), they are called
eigenvalue and eigenvector of A , respectively.

A real number λ and a real nonzero vector x ∈ Rn are called a Z-eigenvalue
and a Z-eigenvector of A , respectively, if they satisfy the following system:

{
A xN−1 = λx,

xTx = 1.
(5.3)

If a number λ ∈ C and a nonzero vector x ∈ Cn satisfy (5.3), then we say
that they are E-eigenvalue and E-eigenvector, respectively.

Theorem 5.1 H-eigenvalues and Z-eigenvalues always exist for an even

order supersymmetric tensor. An even order supersymmetric tensor is posi-

tive definite (semidefinite) if and only if all of its H-eigenvalues or all of its

Z-eigenvalues are positive (nonnegative).

Theorem 5.2 a) A number λ ∈ C is an eigenvalue of A if and only if it

is a root of the characteristic polynomial φ(λ) = det(A − λI ).
b) The number of eigenvalues of A is d = n(N − 1)n−1. Their product

is equal to det(A ). The sum of all the eigenvalues of A is (N − 1)n−1tr(A ).
c) The n(N − 1)n−1 eigenvalues are distributed in n disks in C. The

centers and radii of these n disks are the diagonal elements, and the sums of

the absolute values of the corresponding off-diagonal elements, of that super-

symmetric tensor.

d) E-eigenvalues are invariant under orthogonal transformations.

In addition, the Gerschgorin-type theorem also holds for eigenvalues of
supersymmetric tensors. These properties do not hold for E-eigenvalues
of higher order supersymmetric tensors. However, the invariant property
does not hold for eigenvalues of higher order supersymmetric tensors, but
it does hold for E-eigenvalues. It was shown that the E-eigenvalues are in-
variant under orthogonal transformation. It was also shown that, when the
E-characteristic polynomial is converted to a monic polynomial, the coeffi-
cients of that monic polynomial are invariants of that tensor, i.e., they are
invariant under coordinate system changes. Therefore, in Ref. [63], the E-
eigenvalues of supersymmetric tensor are extended to nonsymmetric case and
the invariant property in nonsymmetric case is established.
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By use of recession vector of a tensor, we can define the rank of a tensor.
Suppose that A is an N -th order tensor. We call the vector y a recession
vector of A if

y · A = 0,

where ‘·’ means the inner product. All recession vectors of A form the
recession space VR of A which is a linear subspace. Let

VB = {x | y · x = 0, ∀ y ∈ VR}

and let the dimension of VB be r. We say that the rank of tensor A is r.
Independently, with a variational approach, Lim [50] defines eigenvalues

of tensors in the real field. The l2 eigenvalues of tensors defined in Ref. [50]
are just Z-eigenvalues in Ref. [61], while the lN eigenvalues of tensors defined
in Ref. [50] are H-eigenvalues in Ref. [61]. Notably, Lim [50] proposed a mul-
tilinear generalization of Perron-Frobenius theorem based upon the notion of
lN eigenvalues (H-eigenvalues) of tensors.

In fact, in the matrix case, eigenvalues and eigenvectors of a symmetric
matrix A are the critical values and critical points of its Raleigh quotient
xTAx/‖x‖2

2, equivalently, the critical values and points of the problem

min xTAx
(5.4)

s.t. ‖x‖2 = 1.

Introduce the Lagrange function L(x, λ) with Lagrange multiplier λ,

L(x, λ) = xTAx − λ(‖x‖2
2 − 1). (5.5)

The vanishing of ∇L yields the definition of eigenpairs

Ax = λx. (5.6)

Similarly, singular values and singular vectors are the critical values and
critical points of xTAy/(‖x‖2 ‖y‖2). Introduce the Lagrange function

L(x, y, σ) = xTAy − σ(‖x‖2 ‖y‖2 − 1). (5.7)

The first order condition yields

Ayc

‖yc‖2
=

σxc

‖xc‖2
,

ATxc

‖xc‖2
=

σyc

‖yc‖2

at a critical point (xc, yc, σc). Writing

uc =
xc

‖xc‖2
, vc =

yc

‖yc‖2
,

we get
Avc = σcuc, ATuc = σcvc, (5.8)
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which give the singular values and singular vectors.
We extend the above variational approach to the eigenvalues and singular

values of tensors. Let A ∈ Rd1×···×dN ,

A (x1, . . . , xN ) =

d1∑

i1=1

· · ·

dN∑

iN=1

Ai1···iN
x

(1)
i1

· · ·x
(N)
iN

, (5.9)

∇xi
A (x1, . . . , xN ) = A (x1, . . . , xi−1, Idi

, xi+1, . . . , xN ). (5.10)

We define the singular values and singular vectors of A as the critical
values and critical points of

A (x1, . . . , xN )

‖x1‖p1
· · · ‖xN‖pN

, (5.11)

where ‖ · ‖pi
denotes the lpi

-norm, i = 1, . . . , N.
Introduce Lagrange function

L(x1, . . . , xN , σ) := A (x1, . . . , xN ) − σ(‖x1‖p1
, . . . , ‖xN‖pN

− 1). (5.12)

Vanishing the gradient,

∇L = (∇x1
L, . . . ,∇xN

L,∇σL) = (0, . . . ,0, 0)

and setting
‖x1‖p1

= · · · = ‖xN‖pN
= 1,

give: when p1 = · · · pN = 2,

A (x1, . . . , xi−1, Idi
, xi+1, . . . , xN ) = σxi, i = 1, . . . , N ; (5.13)

when p1 = · · · = pN = N,

A (x1, . . . , xi−1, Idi
, xi+1, . . . , xN ) = σx

[N−1]
i , i = 1, . . . , N ; (5.14)

(5.13) and (5.14) give the l2-singular values and lN -singular values, respec-
tively.

Let ‖ · ‖αi
be a norm on Rdi , i = 1, . . . , N. The norm of A is defined by

‖A ‖α1,...,αN
:= sup

|A (x1, . . . , xN )|

‖x1‖α1
· · · ‖xN‖αN

, (5.15)

where the supremum is taken over all nonzero xi ∈ Rdi (see Ref. [18]). By
use of the above norm, we have

σmax(A ) = ‖A ‖p1,...,pN
. (5.16)

In particular, in the case of supersymmetric tensor, (5.12) is reduced to

L(x, λ) = A (x, . . . , x) − λ(‖x‖N
p − 1). (5.17)
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Vanishing the gradient,

∇L = (∇xL,∇λL) = (0, 0)

gives that when p = 2,

A (In, x, . . . , x) = λx, ‖x‖2 = 1 (5.18)

and when p = N,
A (In, x, . . . , x) = λx[N−1], (5.19)

and in this case the unit-norm constraint is superfluous. Obviously, the l2-
eigenvalue defined by (5.18) is just Z-eigenvalue defined in (5.3); and the
lN -eigenvalue defined by (5.19) is just the H-eigenvalue in (5.2) (see Ref.
[61]).

Z-eigenvalues/Z-singular values and H-eigenvalues/H-singular values have
wide applications. In §4, we have discussed that we can solve the rank-1 ap-
proximation of tensors by using Z-eigenvalues. In Refs. [1,17], Z-eigenvalues
of supersymmetric tensor are used for approximating solutions of constraint
satisfaction problems. Lim [50] gives a generalization of the Perron-Frobenius
theorem by use of H-eigenvalues.

Theorem 5.3 Let A ∈ Rn×···×n be irreducible and A > 0. Then A has a

positive real H-eigenvalue with its eigenvector x∗ that may be chosen to have

all entries non-negative. In fact, x∗ is unique and has all entries positive.

6 Applications of numerical multilinear algebra

The blind source separation (BSS) problem in signal processing has wide
applications. For example, mobile communications and the surveillance of
radio-communications in civil context, interception and classification in mil-
itary applications resort to BSS. The BSS problem usually uses high-order
statistics which are tensor objects. The BSS problem is to separate and
recover a number of statistically independent sources from a set of sensor
observations without a priori knowledge of either the sources or the chan-
nels, in other words, the BSS problem is to separate and recover statistically
independent stochastic process by using linear mixing form

y = Ax + v, (6.1)

where y is an observed random variable of dimension n, A : m× n a mixing
matrix, x = [x1, . . . , xn]T a source vector, v a noise vector and independent
of x. The usual method to recover a source is to project the observed value
y to an m × 1 vector u which is selected such that the source estimate
z = uTy is absolutely maximized (see Refs. [9,12,53,76]). Lathauwer et al.
[39] shows that this maximization is equivalent to the best approximation to
a forth-order cumulant tensor by another rank-1 tensor. Since such a tensor
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is supersymmetric, the symmetric higher-order power method (S-HOPM) can
be used. Reference [39] proves that when

g(u) =
∑

i1,...,iN

Ai1···iN
ui1 · · ·uiN

is convex (or concave), S-HOPM converges to a (local) maximum of |g| on unit
sphere. The requirement of convexity is satisfied in BSS. The computational
expenses of S-HOPM is N times less than HOPM. In Ref. [52], Luo and
Lu formulate BSS problem as an optimization problem using the mutual
information criterion, and solve the resulting optimization problems with an
extended Newton’s method.

The BSS problem is also known as the independent component analysis
(ICA) problem, while the problem of blind separation of convolutive mixtures
is also known as blind deconvolution (BD) problem. The problems of BD and
BSS have met with fruitful interplay in recent years. The two problems share
a common setting: one is given a mixture of independent random variables
or ‘sources’, where the mixture may be temporal or spatial, and the goal is
to restore one of the sources.

In blind deconvolution in the nonlinear channel, we consider the case
where non-i.i.d. sources (i.e., mutually independent) and/or nonlinear chan-
nels are presented. We consider a multi-source communication channel, in
which the received signal {u} comprises P components, the impulse response
is {g}M

k=0. Introduce the fourth-order cumulant tensor as a four-way array

Aijkl = cum(ui, uj , uk, ul). (6.2)

Then the Shalvi-Weinstein cost function JSW appears as the ratio

JSW(g) =

(M+1)P∑

i,j,k,l=1

Aijklgigjgkgl

/ (M+1)P∑

i=1

g2
i . (6.3)

The four-way Tucker product (outer product) will denote the rank-1 tensor

[g ? g ? g ? g]i,j,k,l = gigjgkgl. (6.4)

So, the rank-1 tensor approximation problem can be used to find a unit-norm
vector g and a scalar λ, such that

min ‖A − λg ? g ? g ? g‖2
F , (6.5)

which is the sum of squares of all elements of the array.
Note that, the unit-norm vector g and the scalar λ yield a local minimum

of (6.5) if and only if g is a local maximizer of |JSW| of (6.3), at which
λ = JSW(g).

So, blind deconvolution in the nonlinear channel is equivalent to rank-1
tensor approximation. Hence, the iterative methods, for example, higher-
order power method (HOPM) for constructing rank-1 tensor approximation
can be used for the blind deconvolution problem.
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Solving the multivariate polynomial optimization is also an important
topic of applications of tensors. Consider the problem

inf
x∈Ω

P (x), (6.6)

where P (x) is a real-valued polynomial in n variables over Rn, and Ω is Rn

or is a compact set defined by polynomial inequalities.
For this problem, the derivative-based optimization method is to look at

the first order conditions which constitute a system of polynomial equations.
Various algebraic techniques can be used for determining the real solutions to
this system of equations. Via successive changes of variables, the problem can
be transformed into a quadratically constrained optimization problem and
then a good lower bound can be obtained by solving a standard convex linear
matrix inequality relation (see Ref. [70]). By adding redundant quadratic
constraints, one may improve the lower bound and obtain the optimal value
(see Ref. [19]).

Semidefinite programming relaxation (SDP-relaxation) for unconstrained
polynomial programming has attracted a lot of attention in recent years.
The sequence of optimal values of the SDP-relaxations associated with the
original problem was shown to be convergent to the global minimum under
relatively weak assumptions [35–37], and the convergence to global minimizer
is proved [68].

The study of relationships between nonnegative and sums of squares
(SOS) polynomials, initiated by Hilbert, is of real importance in numerous
potential applications (see Ref. [38]).

As a special case of (6.1), we consider the following global polynomial
optimization problem:

min f(x) = A xN =

n∑

i1,...,iN=1

Ai1···iN
xi1 · · ·xiN

(6.7)
s.t. xTx = 1,

where x ∈ R
n, N, n > 2, f is a homogeneous polynomial of degree N with n

variables, and A is an N -th order n-dimensional real supersymmetric tensor.
A popular method for solving the polynomial minimization problem is

the SOS method, which was first introduced by Shor [69] and further devel-
oped by Nesterov [56], Lasserre [35] and Parrilo [60], etc. The SOS method
is based on semidefinite programming (SDP). Roughly speaking, there are
two approaches used in SOS method. One is that the global minimum of a
constrained polynomial optimization is approximated by a sequence of SDP
bounds (see Ref. [35]). The other is that the ideal is to compute the largest
real number such that the residual obtained by subtracting this real number
from the objective polynomial function is a sum of squares of polynomials.
The SOS method has good theoretical support and good numerical perfor-
mance in the lower dimensional case.
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The critical points of (6.7) satisfy the following system for some λ ∈ R :
{

A xN−1 = λx,

xTx = 1.
(6.8)

So, we can use Z-eigenvalue method for solving the polynomial optimization
problem (6.7). Qi et al. [63] proposed a direct Z-eigenvalue method for the
case n = 3 and an r-th order pseudo-canonical form method for the higher
dimensional case which uses lower dimensional Z-eigenvalue method and the
SOS method as subroutines. Numerical experiments show that these methods
are efficient and promising.

In addition, numerical tensor methods play an important role in numerical
optimization. As mentioned above, several topics in semidefinite program-
ming (SDP) can be dealt with by tensor methods. In Refs. [48,49], the
optimality condition and a nonsmooth Newton-type method for nonlinear
SDP problems are proposed by tensor forms. The tensor-type quasi-Newton
equation was established in Ref. [73]. Some tensor models for unconstrained
optimization have been proposed by Schnabel et al. [64–66]. However, these
works are still in a baby stage and need to do further research.

7 Conclusion

In this paper, we survey the motivation with the background, the devel-
opment, the main branches of the numerical multilinear algebra. We have
investigated tensor decompositions (for example, high-order eigenvalue de-
composition, high-order singular value decomposition, canonical and pseudo-
canonical decomposition, Schur decomposition of tensors, etc.), rank-1 and
rank-r tensor approximation, high-order eigenvalue related problems, multi-
variate polynomial optimization, and typical applications of tensors (for ex-
ample, BSS, BD, SDP, and other optimization problems). At present, various
applications in digital image restoration, signal processing, wireless commu-
nication, psychometrics, multi-way data analysis and high-order statistics are
strongly stimulating the development of this area. So far, several topics in the
area just start the first step. Numerical investigation and numerical results
are still limited. However, the area is exciting, and significant development
will be expected in the next several years.
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