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A diffusion kurtosis (DK) tensor is a fourth order three-dimensional fully symmetric tensor,
which is used in diffusion kurtosis imaging (DKI), a new model in medical engineering.
To understand the biological and clinical meaning of the DK tensor, we have to measure
and calculate some quantities and parameters which are independent from coordinate
system choices. In this paper we study such quantities and parameters. They include the
largest, the smallest and the average apparent kurtosis coefficients (AKC) values, which
are invariant from the coordinate system choices, and some parameters measured in the
inherent coordinate system, which is formed by the eigenvector system of the second order
diffusion tensor. We study their computational formulas and relationships.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Diffusion magnetic resonance imaging (D-MRI) has been developed in biomedical engineering for decades. It measures
the apparent diffusivity of water molecules in human or animal tissues, such as brain and blood, to acquire biological and
clinical information. In tissues, such as brain gray matter, where the measured apparent diffusivity is largely independent
of the orientation of the tissue (i.e., isotropic), it is usually sufficient to characterize the diffusion characteristics with a
single (scalar) apparent diffusion coefficient (ADC). However, in anisotropic media, such as skeletal and cardiac muscle and
in white matter, where the measured diffusivity is known to depend upon the orientation of the tissue, no single ADC
can characterize the orientation-dependent water mobility in these tissues. Because of this, a diffusion tensor model was
proposed years ago to replace the diffusion scalar model. This resulted in diffusion tensor imaging (DTI).

A diffusion tensor D is a second order three-dimensional positive definite symmetric tensor. Under a Cartesian laboratory
coordinate system, it is represented by a real three-dimensional symmetric matrix, which has six independent elements
D = (Dij) with Dij = D ji for i, j = 1,2,3. There is a relationship

ln
[

S(b)
] = ln

[
S(0)

] − bDapp. (1)

Here S(b) is the signal intensity at the echo time, Dapp is the ADC value at the direction x,

Dapp =
3∑

i, j=1

Dij xi x j, (2)
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x = (x1, x2, x3) is the unit direction vector, satisfying
∑3

i=1 x2
i = 1, the parameter b is given by

b = (γ δg)2
(

� − δ

3

)
,

g is the gradient strength, γ is the proton gyromagnetic ratio, � is the separation time of the two diffusion gradients, δ is
the duration of each gradient lobe [8].

Combining (1) and (2), we have

ln
[

S(b)
] = ln

[
S(0)

] −
3∑

i, j=1

bDij xi x j . (3)

There are six unknown variables Dij in the formula (3). By applying the magnetic gradients in six or more non-collinear,
non-coplanar directions, one can solve (3) and get the six independent elements Dij . Let the eigenvalues of D be α1 � α2 �
α3 > 0. Then the mean diffusivity [2] can be calculated by

MD = α1 + α2 + α3

3
,

while the fractional anisotropy [2] is

F A =
√

3

2

√
(α1 − MD)2 + (α2 − MD)2 + (α3 − MD)2

α2
1 + α2

2 + α2
3

,

where 0 � F A � 1. If F A = 0, the diffusion is isotropic. If F A = 1, the diffusion is anisotropic. Since the eigenvalues of D are
invariants with respect to coordinate system rotation, MD and F A are also invariants of D . They can be used for biological
and clinical analysis.

The diffusion tensor imaging model (DTI) is now used widely in biological and clinical research [2,6,9]. However, DTI is
known to have a limited capability in resolving multiple fibre orientations within one voxel [1,10,16]. This is mainly because
the probability density function for random spin displacement is non-Gaussian in the confining environment of biological
tissues and, thus, the modelling of self-diffusion by a second order tensor breaks down. Recently, a new MRI model is
presented in [8,11].

The authors of [8,11] propose to use a fourth order three-dimensional fully symmetric tensor, called the diffusion kurtosis
(DK) tensor, to describe the non-Gaussian behavior. The values of the fifteen independent elements of the DK tensor W can
be obtained by the MRI technique. The diffusion kurtosis imaging (DKI) has important biological and clinical significance.

A diffusion kurtosis tensor W is a fourth order three-dimensional fully symmetric tensor. Under a Cartesian labora-
tory coordinate system, it is represented by a real fourth order three-dimensional fully symmetric array, which has fifteen
independent elements W = (W ijkl) with W ijkl being invariant for any permutation of its indices i, j,k, l = 1,2,3. The rela-
tionship (1) can be further expanded (adding a second order Taylor expansion term on b) to (see [8,11], for example):

ln
[

S(b)
] = ln

[
S(0)

] − bDapp + 1

6
b2 D2

app Kapp, (4)

where Kapp is the apparent kurtosis coefficient (AKC) value at the direction x (see [8,11], for example),

D2
app Kapp = M2

D

3∑
i, j,k,l=1

W ijklxi x j xkxl. (5)

Combining (4), (2) and (5), we have

ln
[

S(b)
] = ln

[
S(0)

] −
3∑

i, j=1

bDij xi x j + 1

6
b2M2

D

3∑
i, j,k,l=1

W ijklxi x j xkxl. (6)

The non-Gaussian behavior of water molecules may contain useful information related to tissue structure and patho-
physiology. Hence, the diffusion kurtosis imaging (DKI) has important biological and clinical significance. The authors of
[8,11] found sharp differences between the diffusion kurtosis in white and gray matters. They believe that DKI is potentially
of value for the assessment of neurologic diseases, such as multiple sclerosis and epilepsy, with associated white matter
abnormalities. Additional, DKI may be useful for investigating abnormalities in tissues with isotropic structures, such as gray
matter, where techniques like DTI are less applicable. This is supported by the results in many experimental studies of DKI,
where the diffusion kurtosis is not zero, while DTI models treat it as zero.

The values of the fifteen independent elements of the DK tensor W can be obtained with the six independent elements
of the diffusion tensor D together by the MRI technique and the least squares method, as suggested in [8,11]. However, these
values are not independent of the coordinate system. When the coordinate system is rotated, these values will be changed.
To understand the biological and clinical meaning of the DK tensor, a mathematical study on invariants of the DK tensor
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is necessary. In [20], Qi, Wang and Wu introduced D-eigenvalues for a DK tensor. It was shown that the D-eigenvalues of a
DK tensor are invariants of the DK tensor. The largest and the smallest D-eigenvalues of a DK tensor correspond with the
largest and the smallest AKC values of a water molecule in the space, respectively. A computational method for calculating
D-eigenvalues of a DK tensor was also presented in [20]. The concept of D-eigenvalues is an extension of the Z-eigenvalues
introduced in [17] and studied in [15,18,19].

In the literature, there are some other “eigenvalues” for a fourth order fully symmetric tensor. In particular, Lord Kelvin
[21,22] introduced such eigenvalues, also see [3,14]. We call them Kelvin eigenvalues. The calculation of the Kelvin eigenvalues
is much easier, since they are actually eigenvalues of a 6 × 6 symmetric matrix. However, the definition of D-eigenvalues is
closer to the formula (5) of AKC values than the definition of Kevin eigenvalues. In Section 2, we will explain this point.

The largest and the smallest AKC values are two important invariants of a DK tensor. Apart from them, there are other
important invariants of a DK tensor. For example, the spherical average AKC value should be another important invariant
of the DK tensor. We study the computational formulas and properties of this quantity in Section 3. We show that it is a
linear function of the diagonal and sub-diagonal elements of the DK tensor.

It is well known that the eigenvector system of the second order diffusion tensor forms a Cartesian coordinate system.
The eigenvector associated with the largest eigenvalue of the diffusion tensor is parallel to the direction of the dominant
tissue structure (such as white matter fiber along which the water molecules diffuse the most), while the eigenvectors
associated with the other two eigenvalues are perpendicular to the direction of the dominant tissue structure. Hence, this
coordinate system has its physical meanings. We call this coordinate system the inherent coordinate system of the DK tensor.
Since this coordinate system is not arbitrary, the form of the DK tensor under this system should have some physical
meanings too. In Section 4, we study the computational formulas of this special form of the DK tensor, and the average AKC
value over the characteristic ellipsoidal surface of the ADC values. We call this average AKC value the ellipsoidal average AKC
value, which is a kind of weighted average AKC values. We show that it is a linear function of the diagonal and sub-diagonal
elements of the form of the DK tensor in the inherent coordinate system. The AKC values along the coordinate directions of
the inherent coordinate system were studied in [7].

The coefficients of the linear functions of the spherical and the ellipsoidal AKC values involve surface integrals over the
spherical and the ellipsoidal surfaces. In Section 5, we use the eigenvalues of the diffusion tensor to scale the inherent
coordinate system to smooth the characteristic ellipsoidal surface of the ADC values to a spherical surface. Then, we find
that the average AKC value over this surface is equal to one fifth of the sum of the diagonal elements plus two fifths of the
sum of the sub-diagonal elements of the form of the DK tensor in the scaled inherent coordinate system. We show that this
value is equal to one fifth of the sum of the six Kelvin eigenvalues of this special form of the DK tensor. We then show that
all the AKC values are bounded by the largest and the smallest Kelvin eigenvalues of this special form, but there are gaps
between the largest/smallest Kelvin eigenvalue and the largest/smallest AKC value. This further justifies the significance of
D-eigenvalues.

In Section 6, we provide two numerical examples and five maps which are based upon the magnetic resonance diffusion
data acquired out of rat spinal cord samples. Some final remarks are made in Section 7. To make the paper self-contained,
we include an appendix as Section 8 on the calculation of D-eigenvalues and D-eigenvectors.

2. D-eigenvalues and Kelvin eigenvalues

We use x = (x1, x2, x3)
T to denote the direction vector, which is denoted as n = (n1,n2,n3)

T in [8,11].
As described in [8,11], the ADC and AKC values for a single direction can be determined by acquiring data at three or

more b values (including b = 0) and fitting to Eq. (4). Then, by solving the resulted nonlinear system via, for example,
the least-squares method, the apparent diffusion coefficient Dapp and the apparent kurtosis coefficient Kapp for the given
direction can be obtained.

As noted in the introduction, W is a fourth order three-dimensional fully symmetric tensor. Hence, W has 15 indepen-
dent elements. For those elements of W which are equal to each other because of symmetry, we use the element W ijkl
with i � j � k � l to represent them. So if we say that W1122 = 3, this automatically implies that W1212 = W2112 = W2121 =
W1221 = W2211 = 3. Then, the 15 independent elements of W are W1111, W2222, W3333, W1122, W1133, W2233, W1112, W1113,

W1222, W1333, W2223, W2333, W1123, W1223, W1233. We call W1111, W2222, W3333 the diagonal elements of W , and W1122,

W1133, W2233 the sub-diagonal elements of W .
Denote the largest and the smallest AKC values as Kmax and Kmin respectively. By [20],

Kmax = max M2
D

3∑
i, j,k,l=1

W ijklxi x j xkxl

s.t.
3∑

i, j=1

Dij xi x j = 1, (7)

and
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Kmin = min M2
D

3∑
i, j,k,l=1

W ijklxi x j xkxl

s.t.
3∑

i, j=1

Dij xi x j = 1. (8)

The critical points of the maximization problem (7) and the minimization problem (8) satisfy the following system for
some λ ∈ � and x ∈ �3:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3∑
j,k,l=1

W ijklx j xkxl = λ

3∑
j=1

Dij x j, i = 1,2,3,

3∑
i, j=1

Dij xi x j = 1.

(9)

A real number λ satisfying (9) with a real vector x is called a D-eigenvalue of W , and the real vector x is called the
D-eigenvector of W associated with the D-eigenvalue λ. Since D-eigenvectors are critical points of the maximization prob-
lem (7) and the minimization problem (8), by the theory of optimization, they are local maximizers, local minimizers and
saddle points of the optimization problems (7) and (8), while D-eigenvalues are corresponding Lagrangian multipliers. These
are the geometrical meanings of D-eigenvalues and D-eigenvectors. The following two theorems are proved in [20].

Theorem 1. D-eigenvalues are real numbers and always exist. If x is a D-eigenvector associated with a D-eigenvalue λ, then

λ =
3∑

i, j,k,l=1

W ijklxi x j xkxl.

Denote the largest and the smallest D-eigenvalues of W as λmax and λmin respectively. Then

Kmax = M2
Dλmax, (10)

and

Kmin = M2
Dλmin. (11)

Theorem 2. The D-eigenvalues of W are invariant under rotations of coordinate systems.

By these two theorems, Kmax and Kmin are also invariants of W . Computational formulas were given in [20] for calcu-
lating D-eigenvalues. Hence, we may calculate Kmax and Kmin by the method given in [20].

We now discuss Kelvin eigenvalues of W . Let X be a second order three-dimensional symmetric tensor with ele-
ments Xij . Define W X as another second order symmetric tensor with its elements as

(W X)i j =
3∑

k,l=1

W ijkl Xkl.

If a number μ and a nonzero second order symmetric tensor X satisfy

W X = μX,

then we say that μ is a Kelvin eigenvalue of W and X is an eigentensor of W associated with the Kelvin eigenvalue μ.
There is an isomorphism between the Kelvin eigenvalues and eigentensors of W , and the eigenvalues and eigenvectors

of the six-dimensional symmetric matrix

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

W1111 W1122 W1133
√

2W1112
√

2W1113
√

2W1123

W1122 W2222 W2233
√

2W1222
√

2W1223
√

2W2223

W1133 W2233 W3333
√

2W1233
√

2W1333
√

2W2333√
2W1112

√
2W1222

√
2W1233 2W1122 2W1123 2W1223√

2W1113
√

2W1223
√

2W1333 2W1123 2W1133 2W1233√
2W1123

√
2W2223

√
2W2333 2W1223 2W1233 2W2233

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, the six Kelvin eigenvalues of W are all real. If X is an eigentensor of W , associated with a Kelvin eigenvalue μ
of W , then the vector (X11, X22, X33,

√
2X12,

√
2X13,

√
2X23)

T is an eigenvector of U associated with the eigenvalue μ
of U . See [3].
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It is easy to see that Kelvin eigenvalues of W are also invariants of W . They are much easier to be calculated as they
are actually eigenvalues of the matrix U . However, it can be shown that they are less close to the largest and the smallest
AKC values. Let the largest and the smallest Kelvin eigenvalues of W be μmax and μmin respectively, we have

μmax = max
3∑

i, j,k,l=1

W ijkl Xi j Xkl

s.t.
3∑

i, j=1

X2
i j = 1, (12)

and

μmin = min
3∑

i, j,k,l=1

W ijkl Xi j Xkl

s.t.
3∑

i, j=1

X2
i j = 1. (13)

The optimization problems (12) and (13) are matrix optimization problems as their optimization variables are the matrix
X = (Xij). Comparing (12) and (13) with (7) and (8), we see that D-eigenvalues reflect more the extremal AKC values than
Kelvin eigenvalues. Suppose that we have a feasible solution x for (7) and (8). Let Xij = xi x j for i, j = 1,2,3. Then we have
a feasible solution X for (12) and (13). On the other hand, a feasible solution X of (12) and (13) does not produce a feasible
solution x for (7) and (8), unless the rank of the matrix X is one. Thus, the feasible set of (12) and (13) is larger and includes
feasible solutions X which cannot be decomposed as Xij = xi x j for i, j = 1,2,3 for some x. Hence, we cannot use Kelvin
eigenvalues to represent the largest and the smallest AKC values. This justifies the significance of D-eigenvalues.

3. The spherical average AKC value

Denote the unit sphere as

S := {
x ∈ �3: x2

1 + x2
2 + x2

3 = 1
}
.

Then the spherical average AKC value is defined as

M S = 1

S

∫ ∫
S

Kapp dA = M2
D

4π

∫ ∫
S

∑3
i, j,k,l=1 W ijklxi x j xkxl(∑3

i, j=1 Dij xi x j
)2

dA, (14)

where the denominator S = 4π is the area of the surface S . Here, we slightly abuse the symbol S for both the surface and
its area.

Theorem 3. We have

Kmin � M S � Kmax. (15)

The quantity M S is invariant under rotation of coordinate systems. It is a linear function of the diagonal and sub-diagonal elements
of W . It is also invariant if D is scaled, i.e., if D is changed to βD and W has no change, where β is a positive number, then M S has no
change.

Proof. Formula (15) follows from (14) directly. The surface S is independent from rotations of coordinate systems. Hence
M S is invariant under rotations of coordinate systems. By the definitions of M S as well as the symmetry of the elements of
W , we have its computational formulas as follows.

M S = M2
D

4π
[A1W1111 + A2W2222 + A3W3333 + 4A4W1112 + 4A5W1113 + 4A6W1222

+ 4A7W2223 + 4A8W1333 + 4A9W2333 + 6A10W1122 + 6A11W1133 + 6A12W2233

+ 12A13W1123 + 12A14W1223 + 12A15W1233],
where

Ai =
∫ ∫

ai(x)(∑3
i, j=1 Dij xi x j

)2
dA
S
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with a1(x) = x4
1, a2(x) = x4

2, a3(x) = x4
3, a4(x) = x3

1x2, a5(x) = x3
1x3, a6(x) = x1x3

2, a7(x) = x3
2x3, a8(x) = x1x3

3, a9(x) = x2x3
2,

a10(x) = x2
1x2

2, a11(x) = x2
1x2

3, a12(x) = x2
2x2

3, a13(x) = x2
1x2x3, a14(x) = x1x2

2x3 and a15(x) = x1x2x2
3. By symmetry, we see that

Ai = 0 for i = 4, . . . ,9 and i = 13,14,15, These show that M S is a linear function of the diagonal and sub-diagonal elements
of W .

Let D be changed to βD , where β is a positive number. In (14), M2
D will be changed to β2M2

D and the denominator of
the fraction will be multiplied by β2. Then M S is not changed. The theorem is proved. �

The coefficients Ai cannot be computed exactly in general. But they can be computed numerically. For the integral over S ,
we may use the parametric expression

x =
( cos θ sin φ

sin θ sin φ

cosφ

)

for S , where 0 � θ < 2π,0 � φ � π . Then

∫ ∫
S

f (x)dA =
2π∫
0

π∫
0

f (cos θ sin φ, sin θ sin φ, cosφ) sin φ dφ dθ.

4. The inherent coordinate system and the ellipsoidal average AKC value

We may make an orthogonal transformation to the coordinate system such that the three orthonormal eigenvectors of D
are used as the coordinate base vectors. As we said in the introduction, this coordinate system has its own physical meaning
and is fixed when D is fixed. We call this coordinate system the inherent coordinate system of W , and call the form of D
and W in this coordinate system the inherent forms of D and W respectively.

Let the columns of an orthogonal matrix P consist of three orthonormal eigenvectors of D . Denote P = (pij). Let x be
converted to y = P x. Then D and W are converted to their inherent forms D̂ and Ŵ , where the elements of D̂ and Ŵ are
defined by

D̂i j =
3∑

i′, j′=1

Di′ j′ pi′ i p j′ j,

and

Ŵ ijkl =
3∑

i′, j′,k′,l′=1

W i′ j′k′l′ pi′ i p j′ j pk′k pl′l

respectively, see [17] for the definition of orthogonal similarity. By the knowledge of linear algebra, we know that P , as an
orthogonal matrix, either is a rotation matrix, or the product of a rotation matrix and a reflection matrix, depending upon
the system of the orthonormal eigenvectors of D are right-handed or left-handed. Then, since the columns of P consist of
three orthonormal eigenvectors of D , D̂ is a diagonal matrix with the eigenvalues of D as its diagonal elements, i.e.,

D̂ =
(

α1 0 0
0 α2 0
0 0 α3

)
.

The elements Ŵ ijkl have their own physical meanings. By (5), we have the following theorem.

Theorem 4. The AKC value along the direction of the eigenvector associated with the eigenvalue αi of D for i = 1,2,3, is

Ki = M2
D

α2
i

Ŵ iiii .

Thus, Ki for i = 1,2,3, along with Kmax, Kmin, and K S , form important reference quantities of W . Since Ki , for i = 1,2,3,
are calculated on the inherent coordinate system, we call them and the other quantities discussed in the latter part of our
paper as inherent parameters. For some further discussions on Ki for i = 1,2,3, see [7].

We now consider the average AKC value over the characteristic ellipsoid surface of ADC:

S E := {
y ∈ �3: D̂ y2 = 1

} = {
y ∈ �3: α1 y2

1 + α2 y2
2 + α3 y2

3 = 1
}
.

Then the ellipsoidal average AKC value is defined as

ME = 1

S E

∫ ∫
Kapp dA = M2

D

S E

∫ ∫ 3∑
i, j,k,l=1

Ŵ ijkl yi y j yk yl dA, (16)
S E S E
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where the denominator S E is the area of the surface S E ,

S E =
∫ ∫
S E

dA.

Again, we use the symbol S E for both the surface and its area.

Theorem 5. We have

Kmin � ME � Kmax. (17)

The quantity ME is a linear function of the diagonal and sub-diagonal elements of Ŵ . It is also invariant if D is scaled, i.e., if D is
changed to βD and W has no change, where β is a positive number, then ME has no change.

Proof. The formula (17) follows from (16) directly. By the definition of ME as well as the symmetry of the elements of W ,
we have its computational formulas as follows.

ME = M2
D

S E
[B1Ŵ1111 + B2Ŵ2222 + B3Ŵ3333 + 4B4Ŵ1112 + 4B5Ŵ1113 + 4B6Ŵ1222

+ 4B7Ŵ2223 + 4B8Ŵ1333 + 4B9Ŵ2333 + 6B10Ŵ1122 + 6B11Ŵ1133 + 6B12Ŵ2233

+ 12B13Ŵ1123 + 12B14Ŵ1223 + 12B15Ŵ1233],
where

Bi =
∫ ∫
S E

bi(y)dA

with b1(y) = y4
1, b2(y) = y4

2, b3(y) = y4
3, b4(y) = y3

1 y2, b5(y) = y3
1 y3, b6(y) = y1 y3

2, b7(y) = y3
2 y3, b8(y) = y1 y3

3, b9(y) =
y2 y3

3, b10(y) = y2
1 y2

2, b11(y) = y2
1 y2

3, b12(y) = y2
2 y2

3, b13(y) = y2
1 y2 y3, b14(y) = y1 y2

2 y3 and b15(y) = y1 y2 y2
3. By symmetry,

we see that Bi = 0 for i = 4, . . . ,9 and i = 13,14,15, These show that M S is a linear function of the diagonal and sub-
diagonal elements of Ŵ .

Let D be changed to βD , where β is a positive number. For (16), it involves an integral over S E , we may use the
parametric expression

y =

⎛
⎜⎜⎝

1√
α1

cos θ sin φ

1√
α2

sin θ sin φ

1√
α3

cosφ

⎞
⎟⎟⎠

for S E , where 0 � θ < 2π , 0 � φ � π . Then

∫ ∫
S E

f (y)dA =
2π∫
0

π∫
0

f

(
1√
α1

cos θ sin φ,
1√
α2

sin θ sin φ,
1√
α3

cosφ

)
sin φ

×
√

1

α1α2
cos2 φ + 1

α3

(
1

α1
sin2 θ + 1

α2
cos2 θ

)
sin2 φ dφ dθ,

where

f (y) =
3∑

i, j,k,l=1

Ŵ ijkl yi y j yk yl.

When D is changed to βD , α1,α2 and α3 are changed to βα1, βα2 and βα3 respectively. So this integral is multiplied with

a factor 1
β3 . For ME in (16), this integral needs to be multiplied with

M2
D

S E
. Since M2

D will be changed to β2M2
D and S E will

be changed to S E
β

, ME is not changed. The theorem is proved. �
The coefficients Bi as well as the area S E cannot be computed exactly in general. But they also can be computed

numerically. For the integral over S E , we may use the formulas used in the proof of Theorem 5. The fundamental difference
between the formulas of Ai in the last section and the formulas of Bi in this section is that Ai can be calculated in any
Cartesian coordinate system while Bi only can be calculated in the inherent coordinate system. We regard ME also as an
inherent parameter. As we said in the introduction, it is a kind of weighted average AKC values.
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5. The scaled inherent coordinate system

Let zi = √
αi yi for i = 1,2,3. Then the ellipsoidal surface S E is scaled to a spherical surface

S Z = {
z ∈ �3: z2

1 + z2
2 + z2

3 = 1
}
.

Correspondingly, we may scale Ŵ by

W̄ ijkl = M2
D Ŵ ijkl√

αiα jαkαl
.

By (5), the AKC value along the direction y is now

Kapp = M2
D

∑3
i, j,k,l=1 Ŵ ijkl yi y j yk yl(∑3

i, j=1 D̂i j yi y j
)2

=
∑3

i, j,k,l=1 W̄ ijkl zi z j zk zl

(z2
1 + z2

2 + z2
3)

2
. (18)

Then the average AKC value on the surface S Z is

M Z = 1

4π

∫ ∫
S Z

3∑
i, j,k,l=1

W̄ ijkl zi z j zk zl dA.

We now show that M Z has a simple form. Note that W̄1122 + W̄1133 + W̄2233 is equal to one sixth of the sum of the
sub-diagonal elements of W̄ .

Theorem 6. The quantity M Z is equal to one fifth of the sum of the diagonal elements plus two fifths of the sum of the sub-diagonal
elements of W̄ , i.e.,

M Z = 1

5
(W̄1111 + W̄2222 + W̄3333 + 2W̄1122 + 2W̄1133 + 2W̄2233)

= M2
D

5

(
Ŵ1111

α2
1

+ Ŵ2222

α2
2

+ Ŵ3333

α2
3

+ 2Ŵ1122

α1α2
+ 2Ŵ1133

α1α3
+ 2Ŵ2233

α2α3

)
.

Proof. As the proofs of Theorems 3 and 5, we may show that

M Z = 1

4π
[C1W̄1111 + C2W̄2222 + C3W̄3333 + 6C10W̄1122 + 6C11W̄1133 + 6C12W̄2233],

where

Ci =
∫ ∫
S Z

ci(z)dA

with c1(z) = z4
1, c2(z) = z4

2, c3(z) = z4
3, c10(z) = z2

1z2
2, c11(z) = z2

1z2
3 and c12(z) = z2

2z2
3. By symmetry, we see that C1 = C2 = C3

and C10 = C11 = C12. With the formula at the end of Section 3, we have

C3 =
2π∫
0

π∫
0

(cosφ)4 sin φ dφ dθ = 4π

5
.

We also see that

C1 + C2 + C3 + 2C10 + 2C11 + 2C12 =
∫ ∫
S Z

(
z2

1 + z2
2 + z2

3

)2
dA = S Z = 4π.

Putting these together, we have the conclusion. �
The quantity M Z is also an inherent parameter and a kind of weighted average AKC values. But its computational formula

is much simpler.
We now show that M Z is equal to one fifth of the sum of the six Kelvin eigenvalues of W̄ .

Theorem 7. The quantity M Z is equal to one fifth of the sum of the six Kelvin eigenvalues of W̄ .
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Proof. By the discussion in Section 2, we know that the six Kelvin eigenvalues of W̄ are the six eigenvalues of the following
matrix Ū :

Ū =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

W̄1111 W̄1122 W̄1133
√

2W̄1112
√

2W̄1113
√

2W̄1123

W̄1122 W̄2222 W̄2233
√

2W̄1222
√

2W̄1223
√

2W̄2223

W̄1133 W̄2233 W̄3333
√

2W̄1233
√

2W̄1333
√

2W̄2333√
2W̄1112

√
2W̄1222

√
2W̄1233 2W̄1122 2W̄1123 2W̄1223√

2W̄1113
√

2W̄1223
√

2W̄1333 2W̄1123 2W̄1133 2W̄1233√
2W̄1123

√
2W̄2223

√
2W̄2333 2W̄1223 2W̄1233 2W̄2233

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the sum of the six eigenvalues of Ū is the sum of the diagonal elements of Ū (the trace of Ū ), by Theorem 6, the
conclusion of this theorem holds. �

This theorem shows that after adequate scaling (this scaling corresponds to adding the D coefficients in the constraints
of (7) and (8) to (12) and (13), the average Kelvin eigenvalues is corresponding to the average AKC value on a certain surface.

The following is some further relationship between the AKC values and the Kelvin eigenvalues of W̄ .

Theorem 8. Denote the largest and the smallest Kelvin eigenvalues of W̄ by μmax and μmin . Then we have

μmin � Kmin � Kmax � μmax. (19)

The inequalities in (19) can be strict. In fact, for any number c < 4
3 , there is an example such that μmax � cKmax .

Proof. For any two second order three-dimensional tensors X = (Xij) and Y = (Yij), denote their inner product as

X T Y =
3∑

i, j=1

Xij Yi j .

Let y be a direction. By (18), there is a z ∈ S E such that the AKC value at the direction y is

Kapp =
3∑

i, j,k,l=1

W̄ ijkl zi z j zk zl = X T W̄ X = v T Ū v,

where X = (zi z j) and v = (z2
1, z2

2, z2
3,

√
2z1z2,

√
2z1z3,

√
2z2z3)

T . Then

v T v = (
z2

1 + z2
2 + z2

3

)2 = 1.

By linear algebra, we have

μmin � v T Ū v � μmax.

This proves (19). Now let W̄ iiii = 1 for i = 1,2,3, and other W̄ ijkl are zero. We see that Kmin = 1
3 in this example but

μmin = 0. This shows that the first equality in (19) can be strict. Let W̄ iiii = 1 for i = 1,2,3, W̄1122 = W̄1212 = W̄1221 =
W̄2112 = W̄2121 = W̄2211 = a > 1 and other W̄ ijkl are zero. Then Kmin = 1

2 , Kmax = 1+3a
2 , and μmax = 2a. This proves the

remaining conclusions. �
The first conclusion of this theorem shows that after adequate scaling, the largest Kelvin eigenvalue is an upper bound

of the AKC value, while the smallest Kelvin eigenvalue is a lower bound of the AKC value. The second conclusion of this
theorem shows it is possible that such an upper bound is greater than the largest AKC value and such a lower bound is
smaller than the smallest AKC value. On the other hand, Theorem 1 indicates that the largest and the smallest D-eigenvalues,
after multiplied by M2

D , equal to the largest and the smallest AKC values. These further show that D-eigenvalues are better
tools to study the extremal AKC values.

6. Numerical examples

In this section, we report some computational results on the principal invariants and inherent parameters of some
diffusion kurtosis tensors derived from data of MRI experiments on rat spinal cord specimen fixed in formalin. The MRI
experiments were conducted on a 7 Tesla MRI scanner at Laboratory of Biomedical Imaging and Signal Processing at The
University of Hong Kong.

In MRI experiments, the AKC and ADC values for a given gradient x ∈ R3 can be determined by acquiring data at three
or more b values [8] including b = 0. In our experiments, we take six b values 0, 800, 1600, 2400, 3200 and 4000, in unit of
s/mm2. In each example, we take 30 gradient directions and get the corresponding AKC and ADC values as the averages of
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Table 1
D-eigenvalues and eigenvectors of W

x1 x2 x3 λ × 10−7 AKC

1 −26.6953 −76.0271 13.2301 3.8340 2.1782
2 8.3561 −69.1354 28.6108 2.4323 1.3819
3 58.9844 −42.6590 17.9274 0.6773 0.3848
4 −62.4736 −35.3967 20.0392 3.8173 2.1687
5 29.1437 −52.2572 33.9600 2.4900 1.4146
6 34.8925 49.2278 31.7172 1.0247 0.5822
7 −21.9794 −31.4925 44.7823 −0.0738 −0.0419
8 24.4491 −12.3897 46.0146 2.0092 1.1415
9 −12.2897 23.6850 47.6412 2.0563 1.1682

10 −66.1780 11.3946 25.5877 5.3545 3.0420
11 11.5202 18.0765 47.7258 2.2194 1.2609
12 65.6942 7.1795 21.9765 −1.2420 −0.7056

the 100 pixels. From these ADC and AKC values, we obtain the elements of the diffusion tensor D and the diffusion kurtosis
tensor W by the using the least squares method and (6), as suggested in [8] and [11].

Our first example is taken from the white matter. The diffusion tensor D is

D =
⎛
⎝ 0.1755 0.0035 0.0132

0.0035 0.1390 0.0017

0.0132 0.0017 0.4006

⎞
⎠ × 10−3

in unit of square mm per second, and the fifteen independent elements of the diffusion kurtosis tensor W are
W1111 = 0.4982, W2222 = 0, W3333 = 2.6311, W1112 = −0.0582, W1113 = −1.1719, W1222 = 0.4880, W2223 = −0.6162,
W1333 = 0.7639, W2333 = 0.7631, W1122 = 0.2236, W1133 = 0.4597, W2233 = 0.1519, W1123 = −0.0171, W1223 = 0.1852 and
W1233 = −0.4087, respectively. It is easy to find that

M2
D =

(
D11 + D22 + D33

3

)2

= 5.6813 × 10−8.

To find the largest and the smallest AKC values, we need first obtain the largest and the smallest D-eigenvalues. Using
the method provided in [20], we compute all the D-eigenvalues of W , and the associated eigenvectors, which are listed in
Table 1.

From the above table we can see that the largest and the smallest AKC values for this example as 3.0420 and −0.7056,
attained at

(−66.1780,11.3946,25.5877)� and (65.6942,7.1795,21.9765)�,

respectively. The spherical average AKC value M S is 1.4601, which is in the interval [Kmin, Kmax] = [−0.7056,3.0420] and
the six coefficients A1, A2, A3, A10, A11, A12 in the proof of Theorem 3 are

[0.2514,0.6445,0.8619,0.1406,0.1523,0.2499] × 10−8.

To compute the inherent parameters, we first find the eigen-decomposition of the diffusion tensor D, D̂ = P T D P , where D̂
is a diagonal matrix whose diagonal elements (α1,α2,α3) = (0.4013,0.1751,0.1387) ∗ 10−3 and

P =
⎛
⎝ 0.0584 0.9939 0.0938

0.0073 0.0935 −0.9956

0.9983 −0.0589 0.0018

⎞
⎠ .

The differences among the values (α1,α2,α3) are relatively large, reflecting the anisotropic property of the white matter.
The fifteen independent elements of Ŵ are Ŵ1111 = 2.8190, Ŵ2222 = 0.7561, Ŵ3333 = −0.1641, Ŵ1112 = 0.7160, Ŵ1113 =
−0.6065, Ŵ1222 = −1.1675, Ŵ2223 = 0.0512, Ŵ1333 = 0.6359, Ŵ2333 = −0.4408, Ŵ1122 = 0.1521, Ŵ1133 = 0.2403, Ŵ2233 =
0.3019, Ŵ1123 = 0.4521, Ŵ1223 = −0.1710 and Ŵ1233 = 0.1219, respectively. The AKC values along the three eigenvectors of
D (columns of P ) are respectively 0.9943, 1.4017 and −0.4848. The ellipsoidal average AKC value ME = 0.9812 which is
also in the interval [Kmin, Kmax] = [−0.7056,3.0420], the six coefficients B1, B2, B3, B10, B11, B12 in the proof of Theorem 5
are

[0.0450,0.3603,1.5698,0.0020,0.0757,0.1534] × 10−3,

and S E = 0.3072.
We also compute the D-eigenvalues of D̂ and Ŵ and the results are the same as those listed in Table 1, showing the

rotation invariant property of D-eigenvalues, as indicated by Theorem 2.

Now we check the result in Theorem 6. We compute the tensor W̄ by W̄ ijkl = M2
D Ŵ ijkl√

αiα jαkαl
. Then the fifteen independent el-

ements of W̄ are W̄1111 = 0.9943, W̄2222 = 1.4017, W̄3333 = −0.4848, W̄1112 = 0.3824, W̄1113 = −0.3639, W̄1222 = −1.4294,
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W̄2223 = 0.1067, W̄1333 = 1.1044, W̄2333 = −1.1594, W̄1122 = 0.1230, W̄1133 = 0.2453, W̄2233 = 0.7066, W̄1123 = 0.4108,
W̄1223 = −0.2352 and W̄1233 = 0.1884, respectively.

We have M Z = 0.8122, and the six coefficients C1, C2, C3, C10, C11, C12 in the proof of Theorem 6 are

[2.5133,2.5133,2.5133,0.8378,0.8378,0.8378].
From the above number, it easy to see that the equalities in Theorem 6 hold, i.e.,

M Z = 1

5
(W̄1111 + W̄2222 + W̄3333 + 2W̄1122 + 2W̄1133 + 2W̄2233)

= M2
D

5

(
Ŵ1111

α2
1

+ Ŵ2222

α2
2

+ Ŵ3333

α2
3

+ 2Ŵ1122

α1α2
+ 2Ŵ1133

α1α3
+ 2Ŵ2233

α2α3

)
.

The six-dimensional matrix Ū is⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.9943 0.1230 0.2453 0.5408 −0.5147 0.5810

0.1230 1.4017 0.7066 −2.0215 −0.3327 0.1509

0.2453 0.7066 −0.4848 0.2664 1.5619 −1.6396

0.5408 −2.0215 0.2664 0.2460 0.8216 −0.4705

−0.5147 −0.3327 1.5619 0.8216 0.4906 0.3767

0.5810 0.1509 −1.6396 −0.4705 0.3767 1.4132

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The six eigenvalues of Ū are 3.2568, 2.5848, −2.5724, −1.6020, 1.2318, and 1.1621, and its smallest and largest eigen-
values are −2.5724 and 3.2568 respectively. We can see that these two values are out of the range of the AKC values:
[−0.7056,3.0420].

Our second example is taken from the gray matter. The diffusion tensor D is

D =
⎛
⎝0.3755 0.0105 0.0013

0.0105 0.2603 −0.0077

0.0013 −0.0077 0.4081

⎞
⎠ × 10−3

in unit of square mm per second, and the fifteen independent elements of the diffusion kurtosis tensor W are
W1111 = 1.5248, W2222 = 0, W3333 = 1.9725, W1112 = 0.1276, W1113 = −0.1082, W1222 = 0.0803, W2223 = −0.1722,
W1333 = 0.1994, W2333 = 0.1057, W1122 = 0.3324, W1133 = 0.2443, W2233 = 0.1581, W1123 = 0.0008, W1223 = −0.0526
and W1233 = −0.0326, respectively. The largest and the smallest AKC values for this example are 1.5022 and −0.1587, at-
tained at (6.8833,6.3098,48.8746)� and (−2.3765,60.2395,12.9539)� , respectively. The spherical average AKC value M S

is 1.1068. To compute the inherent parameters, we first find the eigen-decomposition of the diffusion tensor D, D̂ = P T D P ,
where D̂ is a diagonal matrix whose diagonal elements (α1,α2,α3) = (0.4085,0.3764,0.2589) and

P =
⎛
⎝ 0.0246 0.9956 −0.0899

−0.0500 0.0911 0.9946

0.9984 −0.0200 0.0520

⎞
⎠ .

The differences among the values (α1,α2,α3) are relatively small, reflecting the isotropic property of the grey matter. The
fifteen independent elements of Ŵ are Ŵ1111 = 1.9625, Ŵ2222 = 1.5702, Ŵ3333 = −0.0423, Ŵ1112 = 0.1877, Ŵ1113 = 0.1601,
Ŵ1222 = −0.0944, Ŵ2223 = 0.0712, Ŵ1333 = −0.1270, Ŵ2333 = −0.0171, Ŵ1122 = 0.2258, Ŵ1133 = 0.1896, Ŵ2233 = 0.3228,
Ŵ1123 = −0.0250, Ŵ1223 = −0.0023 and Ŵ1233 = −0.0674, respectively. The AKC values along the three eigenvectors of D
are respectively 1.4239, 1.3416 and −0.0764. The ellipsoidal average AKC value ME = 1.2351.

Now we check the result in Theorem 6. We compute the tensor W̄ by W̄ ijkl = M2
D Ŵ ijkl√

αiα jαkαl
. The fifteen independent el-

ements of W̄ are W̄1111 = 1.4239, W̄2222 = 1.3416, W̄3333 = −0.0764, W̄1112 = 0.1419, W̄1113 = 0.1459, W̄1222 = −0.0775,
W̄2223 = 0.0734, W̄1333 = −0.1826, W̄2333 = −0.0257, W̄1122 = 0.1778, W̄1133 = 0.2170, W̄2233 = 0.4010, W̄1123 = −0.0238,
W̄1223 = −0.0022 and W̄1233 = −0.0803, respectively.

We have M Z = 0.8561. The six-dimensional matrix Ū is⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1.4239 0.1778 0.2170 0.2007 0.2064 −0.0336

0.1778 1.3416 0.4010 −0.1096 −0.0031 0.1038

0.2170 0.4010 −0.0764 −0.1136 −0.2583 −0.0363

0.2007 −0.1096 −0.1136 0.3556 −0.0475 −0.0045

0.2064 −0.0031 −0.2583 −0.0475 0.4340 −0.1607

−0.0336 0.1038 −0.0363 −0.0045 −0.1607 0.8020

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

whose six eigenvalues are 1.6778, 1.3338, 0.8244, 0.4686, −0.3347, 0.3107. Its smallest and largest eigenvalues are −0.3347
and 1.6778 respectively. Again, they are out of the AKC value range: [−0.1587,1.5022].
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Fig. 1. The map of MS .

Fig. 2. The map of ME .

Figs. 1–5 show the maps of M S , ME , M Z , the largest and the smallest AKC values, respectively, on the rat spinal cord sam-
ples. In the figures, the values are scaled to [0,1], where 0 is the darkest part, and 1 is the brightest part. The ranges of M S ,
ME , M Z , the largest and the smallest AKC values are M S : [−0.1285,0.5191]; ME : [−0.2761,0.8099]; M Z : [−1.8371,2.0628];
Kmax: [0.0001,6.9012]; and Kmin: [−3.2542,0.5852] respectively.

7. Final remarks

In this paper, we studied some principal invariants and inherent parameters of a DK tensor W . The largest AKC value
Kmax, the smallest AKC value Kmin and the spherical average AKC value M S are the principal invariants of W . They can
be calculated in any Cartesian coordinate system. The inherent form Ŵ and its elements, the ellipsoidal average AKC value
ME , and the weighted average AKC value M Z are inherent parameters. They must be calculated in the inherent coordinate
system of W . We hope that some of these quantities can be useful in the DKI practice.

In Sections 2 and 5, we compared the D-eigenvalues and the Kelvin eigenvalues. It is shown that the D-eigenvalues
reflect exactly the largest and the smallest AKC values (Theorem 1), while the Kelvin eigenvalues, after adequate scaling,
only give upper and lower bounds of AKC values, and such bounds have positive gaps with the largest and the smallest
AKC values. This is not surprising in mathematics, as the Kelvin eigenvalue approach regards the vector product (xi x j) as a
matrix X = (Xij), then drops the rank-one restriction on X . The Kelvin eigenvector X in general is not a rank-one matrix,
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Fig. 3. The map of M Z .

Fig. 4. The map of the largest AKC.

i.e., we cannot make Xij = xi x j in general. Thus, the Kelvin approach inevitably produces positive gaps when they are used
to estimate the largest and the smallest AKC values. On the other hand, the D-eigenvalue approach generates the largest and
the smallest AKC values exactly, as Theorem 1 indicates. Besides, Theorem 6 indicates that the sum of the Kelvin eigenvalues
is related with M Z . This shows that Kelvin eigenvalues are closer to the average AKC values in a certain sense.

Actually, a fourth order tensor W is a multi-linear operator

g(x, y, z, w) =
3∑

i, j,k,l=1

W ijklxi y j zk wl.

The Kelvin eigenvalue approach treats W as a linear operator

g(X, Y ) =
3∑

i, j,k,l=1

W ijkl Xi j Ykl.

This certainly misses the multi-linearity information of W .
In Section 6, we presented two numerical examples based upon the MRI data acquired out of rat spinal cord samples. In

these two examples, W has 12 D-eigenvalues. This reflects that the optimization problems (7) and (8) are highly nonlinear,
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Fig. 5. The map of the smallest AKC.

namely, with a quartic objective function and a quadratic constraint, which result in possibly 12 critical points. Among
these 12 D-eigenvalues, the largest and the smallest one are more meaningful. They reflect the largest and the smallest AKC
values. The other D-eigenvalues are local maximum, local minimum and saddle point AKC values. They are less important.

In these two examples, some AKC values are negative. A negative AKC value means that the diffusion displacement prob-
ability distribution is more sharply peaked than a Gaussian distribution; while a positive AKC values implies the diffusion
displacement probability distribution is less sharply peaked than a Gaussian distribution. To ensure the model has physical
meaning, we only need to guarantee that

bDapp − 1

6
b2 D2

app Kapp (20)

is positive along any direction. To guarantee the positivity of the above function, it suffices that the diffusion tensor D is
positive definite and the b-value chosen to fit Eq. (4) is smaller than bmin := 3/(Dapp Kapp). How can we guarantee a positive
definite diffusion tensor D? This problem has only been recently tackled in the literature related to Diffusion Tensor Imaging.
See for example [4,23]. How to obtain a positive definite diffusion tensor D and to guarantee the positiveness of (20) should
be further studied carefully.

Recently, there are increasing interests on invariants of a fourth order tensor, such as the elasticity tensor in solid
mechanics [12,13].

In this paper, we mainly study invariants of the DK tensor W from the mathematical side. A further collaboration
of applied mathematicians and biomedical engineering researchers may further reveal the physical, biological and clinical
meanings of such invariants.

Appendix A. Calculation of D-eigenvalues and D-eigenvectors

From the definition of the D-eigenvalues and D-eigenvectors (9), for finding these values, we need to solve the polynomial
equations (9). A direct method for solving such polynomial equations was introduced in [20]. Here we describe that method
to make our paper self-contained.

Let W̃ be the fourth-order symmetric tensor, whose elements are defined as

W̃ ijkl =
3∑

i′=1

D−1
ii′ W i′ jkl, i, j,k, l = 1,2,3.

Then, (9) can be reformulated as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3∑
j,k,l=1

W̃ ijklx j xkxl = λxi, i = 1,2,3,

3∑
Dij xi x j = 1.

(A.1)
i, j=1
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We have the following result, which is Theorem 4 in [20]. The proof is omitted here and the interested reader is referred
to [20].

Theorem A.1.

(a) If W̃2111 = W̃3111 = 0, then λ = W̃1111
D11

is a D-eigenvalue with a D-eigenvector x = (±
√

1
D11

,0,0)�.

(b) For any real root t of the following equations{−W̃2111t4 + (W̃1111 − 3W̃2112)t3 + 3(W̃1112 − W̃2122)t2 + (3W̃1122 − W̃2222)t + W̃1222 = 0,

W̃3111t3 + 3W̃3112t2 + 3W̃3122t + W̃3222 = 0,

x = ± 1√
D11t2 + 2D12t + D22

(t,1,0)� (A.2)

is a D-eigenvector of W with the D-eigenvalue λ = ∑3
i, j,k,l=1 W ijklxi x j xkxl .

(c) For any real root u and v of the following solutions⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−W̃3111u4 − 3W̃3112u3 v + (W̃1111 − 3W̃3113)u3 − 3W̃3122u2 v2 + (3W̃1112 − 6W̃3123)u2 v

+ (3W̃1113 − 3W3133)u2 − 3W3223uv2 − W̃3222uv3 + 3W̃1122uv2 + (6W̃1123 − 3W̃3233)uv

+ (3W̃1133 − W̃3333)u + W̃1222 v3 + 3W̃1223 v2 + 3W̃1233 v + W̃1333 = 0,

−W̃3111u3 v + W̃2111u3 − 3W̃3112u2 v2 + (3W̃2112 − 3W̃3113)u2 v + 3W̃2113u2 − 3W̃3122uv3

+ (3W̃2122 − 6W̃3123)uv2 + (6W̃2123 − 3W̃3133)uv + 3W̃2133u + 3W̃2223 v2 − W̃3222 v4

+ (W̃2222 − 3W̃3223)v3 − 3W̃3233 v2 + (3W̃2233 − W̃3333)v + W̃2333 = 0,

x = ± 1√
D11u2 + 2D12uv + D22 v2 + 2D23 v + D33

(u, v,0)� (A.3)

is a D-eigenvector of W with the D-eigenvalue λ = ∑3
i, j,k,l=1 W ijklxi x j xkxl .

All the D-eigenpairs of tensors D and W are given by (a)–(c) if W̃2111 = W̃3111 = 0, and by (b) and (c) otherwise.

From the above theorem, we can see that the main task in finding the D-eigenvalues and D-eigenvectors is to solve the
systems (A.2) and (A.3). (A.2) is a system of polynomial equations with a single variable t , which can be solved easily. (A.3)
is a system of polynomial equations in two variables u and v . For solving such a system, we first regard it as a system of
polynomial equations of variable u and rewrite it as{

γ0u4 + γ1u3 + γ2u2 + γ3u + γ4 = 0,

τ0u3 + τ1u2 + τ2u + τ3 = 0,

where γ0, . . . , γ4, τ0, . . . , τ3 are polynomials of v , which can be calculated by (A.3). The above system of polynomial equa-
tions in u possesses solutions if and only if its resultant vanishes [5]. The resultant of this system of polynomial equations
is the determinant of the following 7 × 7 matrix

V :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0 γ1 γ2 γ3 γ4 0 0

0 γ0 γ1 γ2 γ3 γ4 0

0 0 γ0 γ1 γ2 γ3 γ4

τ0 τ1 τ2 τ3 0 0 0

0 τ0 τ1 τ2 τ3 0 0

0 0 τ0 τ1 τ2 τ3 0

0 0 0 τ0 τ1 τ2 τ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is a polynomial equation in variable v . After finding all real roots of this polynomial, we can substitute them to (A.3)
to find all the real solutions of u. Correspondingly, all the D-eigenvalues and the corresponding D-eigenvectors can be found.
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