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Abstract

Due to the well-known limitations of diffusion tensor imaging (DTI), high an-
gular resolution diffusion imaging (HARDI) is used to characterize non-Gaussian
diffusion processes. One approach to analyze HARDI data is to model the appar-
ent diffusion coefficient (ADC) with higher order diffusion tensors (HODT). The
diffusivity function is positive semi-definite. In the literature, some methods have
been proposed to preserve positive semi-definiteness of second order and fourth
order diffusion tensors. None of them can work for arbitrary high order diffusion
tensors. In this paper, we propose a comprehensive model to approximate the ADC
profile by a positive semi-definite diffusion tensor of either second or higher order.
We call this model PSDT (positive semi-definite diffusion tensor). PSDT is a con-
vex optimization problem with a convex quadratic objective function constrained
by the nonnegativity requirement on the smallest Z-eigenvalue of the diffusivity
function. The smallest Z-eigenvalue is a computable measure of the extent of posi-
tive definiteness of the diffusivity function. We also propose some other invariants
for the ADC profile analysis. Experiment results show that higher order tensors
could improve the estimation of anisotropic diffusion and the PSDT model can

*This work was partly supported by the Research Grant Council of Hong Kong, a postdoctoral
fellowship from the Department of Applied Mathematics at the Hong Kong Polytechnic University, a
grant from the Ph.D. Programs Foundation of Ministry of Education of China (No0.200805581022) and
the National Natural Science Foundation of China (No0.10926029).

"Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon,
Hong Kong. E-mail: maqilq@polyu.edu.hk.

tJiangxi Key laboratory of numerical simulation technology, School of Mathematics
and Computer Sciences, GanNan Normal University, Ganzhou, 341000, China. E-mail:
maghyu@163.com. Present address: Department of Applied Mathematics, The Hong Kong
Polytechnic University, Hung Hom, Kowloon, Hong Kong.

$Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong
Kong. E-mail: ewu@eee.hku.hk.



depict the characterization of diffusion anisotropy which is consistent with known
neuroanatomy.

Keywords: Positive Semi-Definite Diffusion Tensor, Apparent Diffusion Co-
efficient, Z-Eigenvalue, Convex Optimization Problem, Invariants.

1. Introduction

The diffusion tensor imaging model (DTI) was proposed in 1994 by Basser
et al [6, 7], and is now used widely in biological and clinical research [5].
However, DTTI is known to have a limited capability in resolving multiple
fibre orientations within one voxel. This is mainly because the probability
density function for random spin displacement is non-Gaussian in complex
fiber configuration such as fiber bundles cross or diverge within the same
voxel. Thus, the modeling of self-diffusion by a second order tensor breaks
down in such cases.

In order to describe the non-Gaussian diffusion process, high angular
resolution diffusion imaging (HARDI) has been proposed by Tuch et al
[34]. The idea of HARDI is to sample the sphere in N discrete gradient
directions and compute the apparent diffusion coefficient (ADC) profile
along each direction, without a priori assumption about the nature of the
diffusion process within the voxel. A number of approaches have been put
forth to analyze HARDI data [1, 11, 12, 14, 20, 33]. One natural gener-
alization is to model the ADC profile with higher order diffusion tensors
(HODT) [23]. This model does not assume any a priori knowledge about
the diffusivity profile and has potential to describe the non-Gaussian diffu-
sion. Also, there are some other models such as the continuous mixture of
Gaussian model [18] which could also deal with complex local geometries.

An intrinsic property of the diffusivity profile is positive semi-definiteness
(3, 4, 9, 15, 35]. Hence, the diffusion tensor, either second or higher or-
der, must be positive semi-definite. For second order diffusion tensor, one
may diagonalize the second order diffusion tensor and project it to the
symmetric positive semi-definite cone by setting the negative eigenvalues
to zero [11]. Recently, the authors in [4] proposed a ternary quartics ap-
proach to preserve positive semi-definiteness for a fourth order diffusion
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tensor. In [15], by mapping a 4th order 3-dimensional tensor to a 2nd
order 6-dimensional tensor which is a 6 X 6 matrix, the authors extended
the Riemannian framework from 2nd order tensors [2, 19, 25] to the space
of 4th order tensors. Furthermore, they proceeded to use the Riemannian
framework for S* in the space ST(6) to guarantee a positive diffusion
function. However, none of them is comprehensive to work for arbitrary
high order diffusion tensors.

In the next section, we propose to approximate the ADC profile by
a positive semi-definite diffusion tensor of either second or higher order.
We show that this model is a convex optimization problem with a convex
quadratic objective function. In a certain sense, this model is the least
squares problem under the positive semi-definiteness constraint. Under a
full rank assumption on the sample gradient directions, we show that this
model has a unique global minimizer. If the least squares solution is in
the positive semi-definite region, then it is the global minimizer of this
model. Otherwise, we show that the global minimizer of this model is on
the boundary of the positive semi-definiteness region.

The constraint of the model discussed in Section 2 is not explicit. On
the other hand, the smallest Z-eigenvalue of the diffusivity function is a
computable measure for the extent of positive definiteness of the diffusivity
function. In Appendix (Section 7), we explain the definition of the smallest
Z-eigenvalue and present a computational method for calculating it.

In Section 3 we propose a comprehensive model to approximate the
ADC profile. We call this model PSDT (positive semi-definite diffusion
tensor). In essence, PSDT is the model in Section 2, with an explicit con-
straint, i.e., the smallest Z-eigenvalue of the diffusivity function is nonneg-
ative. We show that the smallest Z-eigenvalue is a concave function of the
diffusivity function. We also give an optimality condition for PSDT, and
the expression of the subdifferential of the smallest Z-eigenvalue function.

In the DTI model, there are several characteristic quantities for the
ADC profile. These include the three eigenvalues of the second-order
diffusion tensor, the mean diffusivity and the fractional anisotropy. In
[24], Ozarslan, Vemuri and Mareci proposed some rotationally invariant



parameters for HODT. In Section 4, we propose several characteristic
quantities for PSDT.

Performance of PSDT is depicted on synthetic data as well as MRI
data, in Section 5. Experiment results show that higher order tensors
could improve the estimation of anisotropic diffusion and the PSDT model
can depict the characterization of diffusion anisotropy which is consistent
with known neuroanatomy. Section 6 is a conclusion section.

2. Positive Semi-Definite Diffusion Tensor

We use g = (g1, g2, g3)T to denote the magnetic field gradient direction [4].
Assume that we use an m'* order diffusion tensor. Then the diffusivity
function can be expressed as

d(g) => Y dijgighgy (1)

A diffusivity function d can be regarded as an m'" order symmetric tensor
8, 11, 12, 23, 26]. Clearly, there are

m+1

n:Zi:%(erl)(erQ)

1=1

terms [23, 11] in (1). Hence, each diffusivity function can also be regarded
as a vector in R".

We may think that any vector in R" is indexed by ij, where j =
0,---,m—1,2=0,---,m. In this way, we may regard ¢ as a vector in
R", whose ijth component is g} g% g5 ~""J_ Then we may rewrite (1) as

d(g) =d'yg,

i.e., we may regard d(g) as the scalar product of vectors d and g. This
point of view will be useful later.

We say that d is positive semi-definite if for all g € R3, d(g) > 0.
Since we may regard d as a vector in R”, we say that d is a positive
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semi-definite vector in R" in this case. Clearly, m should be even such
that there are nonzero positive semi-definite vectors. Denote the set of all
positive semi-definite vectors as S,,, or simply & when m is fixed.

Theorem 1 S is a closed convex cone in R".

Proof. Let dV,d® € S and a,b > 0. Let d = ad® + bd®. For any
ge R’

3

dg) =) > digiggs =) ( o+ bdl? )) giggs
1=0 5=0 1=0 j

I
o

= adV(g) + bd?(g) > 0.

Hence d € S. This proves that that S is a convex cone. Let {d¥)} C S
and limy,_,. d® = d. For any g € R*,

d(g) = lim d®(g) > 0.

k—o0
This shows that § is closed. The proof is complete. Il

Suppose that we sample the ADC values in NV gradient directions { gt
[ =1,---,N}, N > n, and the corresponding ADC values on these N
gradients are {b; : | = 1,---,N}. Then {3 : I = 1,--- N} are N
vectors in R". We assume that {§¥) : 1 = 1,--- , N} spans R", i.c., there
are n vectors among these N vectors. which are linearly independent, or
we say that {g) : I = 1,---, N} has rank n. We call this assumption
the full rank assumption. This assumption is necessary such that the
N gradient directions {g") : [ = 1,---, N} can reflect the ADC profile
sufficiently. When N is relatively big, this assumption would be satisfied
in general. Let A be an n x N matrix, whose column vectors are §\V), [ =
1,---,N. Let B = AAT. Then B is an n X n positive semi-definite
symmetric matrix. Under the full rank assumption, B is a positive definite

symmetric matrix. We also let b be a vector in R, with components
{by:1l=1,--- N}



The least squares problem for finding a diffusivity function to reflect
the ADC profile is to find d € R" such that

L(d) = min L(d), (2)

where

N 9 N T 2
L) =Y (de™) —b) = ((@@) d - m) .

It is well-known that under the full rank assumption the solution of the
least squares problem (2) is

d = B~ Ab. (3)
As d may not be positive semi-definite, we formulate a new model as

L(d*) = min L(d). (4)
deS
In a certain sense, (4) is the least squares problem under the positive
semi-definiteness constraint.
The function L is a convex quadratic function. Actually, by (3), for
any d € ", we have

L(d) = (d —d)" B(d — d). (5)

The constraint of (4) is not in an explicit function form. However,
we may use PSDT to get some important theoretical properties of the
solution. In particular, we will show that if d € S, then d* is on the
boundary of . This property is useful for calculating d* in this case. We
now have the following theorem:

Theorem 2 Problem (4) is a convex optimization problem with a convex
quadratic objective function. If d € S, then d* = d is a global minimizer
of (4).

Furthermore, assume that the full rank assumption holds. Then (4)
has a unique solution d*. In this case, if d € S, then d* is on OS, the
boundary of S.



Proof. The first two conclusions follow directly from Theorem 1, (4),
and (5).

We now assume that the full rank assumption holds. Clearly, d = 0 is
in S, hence a feasible solution of (4). Hence, we may add an additional
constraint

L(d) < L(0),

le.,

(d—d)'B(d—d)<d' Bd
to (4). As the full rank assumption holds, B is positive definite. Then,
the additional constraint makes the feasible region compact. Thus, (4)
has a global minimizer d* in this case. According to convex analysis [31],
the optimality condition of (4) is
—VL(d*) € Ns(d"), (6)

where Ng(d*) is the normal cone of S at d*. By (5), VL(d*) = 2B(d* —d).
By the definition of the normal cone [31], (6) implies that for any d € S,
we have

(d—d")"B(d—d*) <0.
Suppose that d** is also a global minimizer of (4). Then the above in-
equality implies that
(d—d)"B(d™* —d) <0
and )
(d—d™*)" B(d" — d*) <0.
Summing up these two inequalities, we have

Since B is positive definite, this implies that d** = d*, i.e., d* is the unique
global minimizer of (4).

Under the full rank assumption, if d € S, then d* # d as d* € S.
Consider the segment

[d*,d = {d*+t(d—d):0<t<1}.
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As S is a closed convex set, d¢ S and d* € S, thereis ty € [0, 1) such that
d* + to(d — d*) is on OS, the boundary of S. As d* is the unique global
minimizer of (4), we have

L(d") < L(d" + to(d — d")),
le.,
(@ —d)"B(d* —d) < (& +to(d— d*) = d) " B (d" + to(d — d*) — d)
= (1 —t)*(d* — d)" B(d* — d).
As (d* — d)"B(d* — d) > 0, this implies that ty = 0, i.e., d* is on S, the
boundary of §. This completes the proof. ]
Then, how to identify d € S or not? In Appendix, we will show that

d € S if and only if Apin(d), the smallest Z-eigenvalue of d is nonnegative.
We will also provide there a computational method for calculating Ay, (d).

3. The PSDT model

With the discussion in the above section, we are in position to formulate
an explicit constraint for (4). We call this model the PSDT (positive
semi-definite tensor) model. It is as follows:

L(d*) = min{L(d) : Amin(d) > 0}. (7)

The function value of Ay, (d) is computable with the method provided in
the last section.

Theorem 3 A\, (d) is a continuous concave function. Hence, PSDT (7)
18 a conver optimization problem.

Furthermore, suppose that the full rank assumption holds and d € S.
Then d* is the unique global minimizer of PSDT (7) if and only if there
1s a positive number p such that

B —d) = ug
{ /\min(d*) = g;g (8)
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where §* is a subgradient [31] of the concave function Ay at d*. By (8),
we have B
{ (d)'B(d"—d) = 0, (9)
(g*)"l’d* — 07

Proof. LetdV, d® e R, 0<t<1andd=td"+(1—1t)d?. Suppose
g* is a global minimizer of (13). Then (g})? + (g5)* + (¢5)* = 1 and

Muin(d) = d(g") = td D (g)+(1=)d (g") = Ehun(d) + (1) A (@),

This shows that Apin(d) is a concave function. Since Apy, is a concave
function defined in the whole space R", according to convex analysis [31],
it is a continuous function. Since L is a convex quadratic function, PSDT
is also a convex optimization problem.

Furthermore, suppose that the full rank assumption holds and d & S.
By Theorem 2, (4), hence PSDT (7) has a unique global minimizer d*,
and d* is on the boundary of S. Since Ayin(d) is continuous, we have
Amin(d*) = 0. Since d € S, we know that d* # d and VL(d*) # 0. Now, (8)
follows from (5) and the optimality condition of the convex optimization
problem PSDT (7). By (15), we have

From this and the second equation of (8), we have the second equation of
(9). Let the two sides of the first equation of (8) take inner product with

d*. Combining with the second equation of (9), we have the first equation
of (9). O

Suppose that g is a global minimizer of (13). By (15), we have
Amin(d) = §'d. (10)

When m is even, if g is a global minimizer of (13), then h = —g is also a
global minimizer of (13). However, we have § = h in this case. Therefore,
such ¢ in (10), generated by a global minimizer g, may still be unique
even if the global minimizers are not unique. By convex analysis, we
know that if such g in (10) is unique, then Ay, (d) is differentiable at d
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and its gradient is ¢. If such ¢ is not unique, then any of such g is a
subgradient of Ap,(d) at d and the subdifferential of A, (d) at d is the
convex hull of all such g.

Based on these, we may solve PSDT (7) by a standard convex pro-
gramming method [17]. Under the full rank assumption, we may use (3)
to calculate d. If Ayn(d) > 0, then d* = d and the task is completed. If
Amin(d) < 0, by Theorem 3, A\puin(d*) = 0. Hence, in this case, we only
need to solve the following model:

L(d*) = min{L(d) : Amin(d) = 01, (11)

which has only an equality constraint. But it is not a convex optimization
problem. On the other hand, (8) is still its optimality condition. If we
use the subgradient of A\yi,(d) as a substitute of its gradient, according
to numerical optimization [22], we may use a gradient descent method to
solve (11).

We may also apply the analytical center cutting plane method in [16]
to solve the nondifferentiable convex optimization problem (7). Then
problem (7) is polynomial-time solvable theoretically by [16]. In Section
5, where the gradient descent method is used, we may also see that this
problem is practically solvable.

4. Characteristic Quantities of PSDT

In the DTIT model, there are some characteristic quantities, which play
important roles in the ADC profile analysis of DTI. These characteris-
tic quantities are rotationally invariant, independent from the choice of
the laboratory coordinate system. They include the three eigenvalues
A1 > A9 > A3 of the second order diffusion tensor D, the mean diffusivity
(Mp), the fractional anisotropy (F'A), etc. The largest eigenvalue \; de-
scribes the diffusion coefficient in the direction parallel to the fibres in the
human tissue. The other two eigenvalues describe the diffusion coefficient
in the direction perpendicular to the fibres in the human tissue. The mean
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diffusivity 18
AL+ Ao+ A
\ 1 32 37

while the fractional anisotropy is

3 (M — Mp)2+ (\a— Mp)2+ (N3 — Mp)?
FA=,/= ,
2 A+ A+

where 0 < FFA < 1. If FA = 0, the diffusion is isotropic. If FFA = 1, the
diffusion is anisotropic.

In [24], Ozarslan, Vemuri and Mareci generalized the well-known FA
measure for HARDI data fitting with higher order tensors. They pro-
posed a generalized anisotropy (GA) measure which is based on the gen-
eralization of the trace and the variance of the normalized diffusivity

A

dy(g) = %. Let the unit hemisphere is denoted by €2, then the

generalized trace gentr(d(g)) is defined as

gentr(d(g)) = — / d(g)dy.

T or

The generalized variance of normalized diffusivity is given by

v % <gentr(dN(g)2) - %) |

And the final generalized anisotropy (GA) measure is defined as

1 1
GA=1— here e(V) =1+ —————.
T @sovym Where elV) =1+ 7= aaey

Just as FA in the DTI case, GA also possesses the property of being
scaled between 0 and 1. Furthermore, GA does not assume any specified
approximation order.

According to [26, 27], the Z-eigenvalues are also rotationally invariant.
Hence, we may use them and their functions as characteristic quantities
of PSDT. In [8], Z-eigenvalues have already been proposed for HODT.

After find the global minimizer d* of PSDT, we may use the method
in Appendix to calculate Apin = Amin(d*) and the other Z-eigenvalues of
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d"as Ay > Xy > - > )\, > 0. Then A\ = A\pax and A\, = Ay By [21],
we may conclude that in the regular case, the number v of Z-eigenvalues
of d* satisfies v < m? —m + 1.

As we discussed before, A\, is a measure of the extent of positive
definiteness of d*. On the other hand, if (g™, Anax) is a solution of (14),
then g™ is the principal ADC direction as discussed in [8]. Along this
principal direction g™®*, the ADC value of d* attains its maximum.

We define the PSDT mean value

1 14
Mpspr = ~ 21: Ais

and the PSDT fractional anisotropy similarly in [32, 30] as

v I-/_ )\z — M 2
FApspr = \/ - 1\/221(271 )\ZPSDT) )

Then we have 0 < FApgspr < 1. If FApgspr = 0, the diffusion is isotropic.
If FApspr = 1, the diffusion is anisotropic.

5. Numerical Examples

Here we present some numerical examples to explain our experiments and
their motivations. Firstly, we report some computational results on the
synthetic data experiment. We generated the synthetic diffusion weighted
images using the following multi-tensor model [1]:

f

S(gi) =Y pre PP + noise, (12)
k=1

where f € {0,1,2,3} is the number of fibers, py is the proportion of tissue
in the voxel that corresponds to the £ fiber (Z£:1 pr = 1), b is the b-
value, g; is the i'" gradient direction for i € {1,---,81}, and Dy is the
diffusion tensor of the k' fiber. The noise was typically generated by
Rician noise (complex Gaussion noise) with standard deviation of 1/,
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Figure 1: Comparison of our method with the least squares method for 1 fiber test,
fitting with a 4th order tensor.
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producing a signal to noise ratio (SNR) of ¢. In our experiments, the
b value equals to 3000 sec/mm? and the diffusion tensors were selected
such as Dy = diag(1700,100,100) x 1079 mm?/sec for k = 1,2,3. We
generated Rician-corrupted data S as done in [13, 36]. For each noise-free
data x, we computed S as:

g x 2 x 2
TG

where n, and n; ~ A4(0,0%). The value S is the realisation of a random
variable with a Rician p.d.f. of parameters x and o.

In order to compare the robustness of our method in the presence of
noise, we generated the signals by (12) at 10 different SNR ranging from
5 to 50 and repeated the experiments 10 times. Then, as done in [11],
we computed the mean of the point-wise squared difference between the
estimated ADC points and points on the ground truth ADC profiles (noise-
free in (12)), i.e., E; = (S(g;) — Sirue(gi))?. The results are plotted in Fig.
1 and Fig. 2 which correspond to ADC functions fitting with a 4th order
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Figure 2: Comparison of our method with the least squares method for 1 fiber test,
fitting with a 6th order tensor.
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diffusion tensor and a 6th order tensor, respectively. The CPU time of
Z-eigenvalue calculation at each iteration is about 0.06s when the ADC
function fits with a 4th order tensor, or 0.2s while it fits with a 6th order
tensor. As would be expected the mean of the squared errors decreases
as the SNR increases. The PSDT method compares favorably to the least
squares (LS) method. As can be seen from Fig. 1 and Fig. 2, the mean
of the squared errors will also decrease when the ADC function fits with
a higher order tensor. In Fig. 1, when the SNR is greater than 15, the
mean squared errors generated by PSDT method are below 0.0026 and the
errors generated by LS method are about 0.0018. In Fig. 2, the PSDT
method and the LS method generated a similar mean squared error. We
can see from Fig. 2 that even at a low SNR of 10 the mean squared error
generated by PSDT method is about 0.01 while at an SNR of 25 it drops
to 0.0007.

Table 1. Z-eigenvalues and eigenvectors of ADCyrg
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g1 g2 93 A

-0.0114 | -0.9312 | 0.3644 | 0.6774
0.828 0.4958 | 0.2619 | -0.0297
-0.0091 | 0.8683 | 0.4959 | 0.6988
-0.844 | -0.4156 | 0.3389 | -0.0178
-0.8376 | 0.2439 | 0.4888 | -0.0349
-0.0112 | -0.5166 | 0.8561 | 0.6854
0.8313 | -0.1746 | 0.5276 | -0.0087
-0.0063 | 0.1465 | 0.9892 | 0.6761
0.9997 | -0.0012 | 0.0234 | 0.112

© 00 O T i W N

The LS method is a simple approach to estimate the coefficients of an
ADC function, which is fast but does not guarantee positive diffusivity.
For example in the single tensor model, the ADC function (without noise)
estimated by the LS method, fitting with a 4th order tensor, is ADC(g) =
dt g, where dpg is a 15-dim vector with dyg(1) = 0.1115, ds(2) = 0.6848,
drs(3) = 0.6771, dps(4) = —0.0005, dzs(5) = 0.0408, drs(6) = 0.0096,
drs(7) = 0.0363, drs(8) = —0.0245, drs(9) = —0.0142, dr5(10) = —0.68,
drs(11) = —0.6507, drs(12) = 1.3911, dps(13) = —0.0739, drg(14) =
—0.114, drs(15) = 0.0049. In our experiment, ¢ is ordered as (1) = g,
9(2) = g3, 4(3) = g3, 9(4) = gig2, §(5) = gig3. 9(6) = 9193, 4(7) = 9395,
9(8) = qug3, 9(9) = g2g3, 9(10) = gigs, 9(11) = gig3, 9(12) = gig3,
9(13) = gigags, 9(14) = 919593, 9(15) = g1g293. Using the method pro-
vided in Appendix, we can compute all the Z-eigenvalues and the associ-
ated eigenvectors, which are listed in Table 1. From Table 1, we can see
that there are four negative eigenvalues and the smallest Z-eigenvalue is
—0.0349, attained at (—0.8376,0.2439, 0.4888).

But the PSDT method can guarantee positive diffusivity. In the same
case, the ADC function estimated by the PSDT method is ADC(g) =
dbeprd, with dpspr(1) = 0.1287, dpspr(2) = 0.7023, dpspr(3) = 0.6931,
dpspr(4) = 0.0, dpspr(5) = 0.0409, dpspr(6) = 0.0101, dpspr(7) =
0.0363, dpspr(8) = —0.0246, dpspr(9) = —0.014, dpspr(10) = —0.5627,
dpspr(11) = —0.5331, dpspr(12) = 1.5083, dpspr(13) = —0.0739, dpspr(14)
= —0.1141, dpspr(15) = 0.0049. We compute all Z-eigenvalues and the
associated eigenvectors and list them in Table 2. We can see that the
smallest Z-eigenvalue is 0.0003, attained at (—0.8454,0.1949,0.4974).
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Table 2. Z-eigenvalues and eigenvectors of ADCpgpr
91 92 93 A
-0.0070 | -0.9877 | 0.1560 | 0.6995
0.8369 | 0.5072 | 0.2056 | 0.0065
-0.0104 | 0.7920 | 0.6105 | 0.7340
-0.8539 | -0.4006 | 0.3322 | 0.0178
-0.0134 | -0.6540 | 0.7564 | 0.7213
0.8399 | -0.2026 | 0.5035 | 0.0267
-0.8454 | 0.1949 | 0.4974 | 0.0003
-0.0064 | 0.0556 | 0.9984 | 0.6928
0.9997 | -0.0012 | 0.0259 | 0.1292

© 00 NS Otk W

In the next experiment, we are interested to estimate the ADC profiles
from human brain dataset with size of 90 x 90 x 60, which was acquired on
a 1.5T scanner at b = 1000s/mm? using 60 encoding directions, with voxel
dimensions of 1.875mm x 1.875mm x 2mm. In this experiment we first
visualized some characteristic quantities of PSDT model by MATLAB 7.4,
fitting with a 4th order tensor. In Fig. 3, we show all the coefficients of
the ADC profile d in the row order. As observed in [23], the coefficients
of even degrees (such as c¢;i; or cijj, 4,j = 1,2,3) are greater than the
other coefficients. Fig. 4 shows the map of Mpgpr in which the values
are scaled to [0, 1].

Finally, for comparison, we also estimated the GA and FA pgpr at each
voxel fitting with 2nd, 4th, 6th order tensors, respectively. We found
that no negative eigenvalue happens in our experiments. So, there is
no practical difference observed between LS method and PSDT method.
When the ADC function was fitted with a second order tensor, the Z-
eigenvalues will reduce to the traditional eigenvalues of a matrix. So, in
this case, the map of FApgpr is the same as the map of FA which was
shown in Fig. 5. As we can see from Fig. 5, Fig. 6 and Fig. 7, the map
of GA is more sharp than the map of FApgpr while the latter can show
more details. Comparing the map of FApgpr in Fig. 7 with that of in
Fig. 6, we can see that higher order tensors could improve the estimation
of anisotropic diffusion as shown in Fig. 7. In a word, these results show
that PSDT model can depict the characterization of diffusion anisotropy
which was consistent with known neuroanatomy.
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Figure 3: Maps of coefficients of the ADC profile.
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Figure 4: The map of Mpspr.
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Figure 5: Comparison of GA and FApgpr, fitting with a 2nd order tensor.
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Figure 6: Comparison of GA and FApgspr, fitting with a 4th order tensor.
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Figure 7: Comparison of GA and FApgpr, fitting with a 6th order tensor.
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6. Conclusion

This paper proposed a novel model to estimate the ADC profiles by a
positive semi-definite diffusion tensor (PSDT), which could be a second
order or higher order tensor. Features of this model included minimizing
a convex optimization problem with a convex quadratic objective function
constrained by the nonnegativity requirement on the smallest Z-eigenvalue
of the diffusivity function. We also presented some numerical examples to
illustrate the robustness, effectiveness of PSDT model in the estimation of
ADC profiles on synthetic data as well as MRI data. Experiment results
show that higher order tensors could improve the estimation of anisotropic
diffusion and the PSDT model can depict the characterization of diffusion
anisotropy which is consistent with known neuroanatomy.

Acknowledgements

The authors would like to thank Prof. Rachid Deriche and three anony-
mous referees for their comments and suggestions on the first version of
the article, which lead to significant improvements of the presentation.

7. Appendix: The Smallest Z-Eigenvalue of a Diffu-
sivity Function

To formulate an explicit constraint for (4), we need to have a measure for
the extent of positive definiteness of a diffusivity function d. As d can
be regarded as an mth order symmetric tensor, its smallest Z-eigenvalue
introduced in [26] is a good measure for this purpose. The computational
methods developed in [29] show that this measure is computable. Also see
130, 28, 8]. We now describe such a method. Here we use the expression
(1) to describe the method, but actually use the Z-eigenvalue theory in
26, 29] in mind.

In fact, d is PSD if and only if the optimal value of the following
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minimization problem

min{d(g) : g; + g5 + g5 = 1} (13)

is nonnegative. Problem (13) is not convex. Hence, we cannot use any
local optimization method to solve it. As it has only three variables, we
may find all of its stationary points and solve it. According to optimization
theory, the optimality condition of (13) has the form:

( m m—i

>N idigl gy = MAgL,

i=1 j=0

m g@—i

o

> idigigy gy = mAgy, 14
\ = o (14)

m m—i—1

. : i m—i—j—1

> (m —i—j)dijgigsg5 ' = mAgs,

i=0  j=0
91+ 9+ 93 ~ 1.

The additional “m” on the right hand sides of the first three equations
make it the same as the definition of Z-eigenvalues [26, 29, 8] for the
symmetric tensor d. If (g, A) is a solution of (14), then g is a stationary
point of (13) and
A=d(g) (15)

is a Z-eigenvalue of d. Then, the smallest Z-eigenvalue of d is the optimal
value of (13).

We may solve (14) in the following way:

Case 1: g3 = go = 0. By (14), this only happens if d;,_11 = dp—10 = 0.
In this case, g1 = £1, A = dy0.

Case 2: g3 = g1 = 0. By (14), this only happens if d; ;,,—1 = dym—1 = 0.
In this case, g2 = £1, A = do -
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Case 3: g3 =0, g1 # 0 and g, # 0. Then (14) becomes

( m
Zidi,m—igi_lgén_l = MmAgi,
i=1
m—1
m — )dim_ig g = mAge,
< ZZ_;( ) 1,Mm i9192 g2 (16)
m—1
dz‘,m—z’—lgiggb_i_l = 0,
R
\ gl +92 = ]‘

We may eliminate A in (16) and have the following equations of g; and go:

(X ‘ . m—1 . .
Z idimigy g5 = X (m =) mig T gy T,
) i=0

< m—1 ' -

Y dimiagigy ™ =0,
’L'?O 5

Let t = g1/g2. We have

( m

Z idi,m_iti_l = Z (m - i)di,m—it“_l;
(17)

3 s
L

We may solve the two one-variable equations of (17) separately. If they
have common solutions ¢, then (14) has solutions

t +1
N= e 2 e

Case 4: g3 # 0. We may eliminate A in (14) and have the following
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equations of g:

( m_m—i m m—i—1
: ‘ 1 o : ]
> idiyg gy = 2 Y (m—i—j)dygi gy
i=1 j=0 =0 j=0
M m—i | m—iejtl m m—i—1 ) ) i Gl m—i—j—1
Z Z]dwglgz 93 =2 2 (m—i— Ddijgig 93 ;
i=0 j=1 =0 j=0
| G+ 5+ = 1.
(18)
Let u = g1/g3, v = g2/g3. Then we have
([ m_ m—i m m—i—1 ) )
Z idiju v = Y (m — i — j)du™to,
i=1 j=0 =0 j=0
< m 1Jn—i m m—i—1 (19)
Z jdiu’t = 3 (m —i — j)d;juvi ™,
| =0 j=1 =0 J=0

For solving system (19), we first regard it as a system of polynomial equa-
tions of variable u and rewrite it as

You™ + U ey = 0,
o™ '+ U 4+ 4 T =0,

where Yo, ,Vm, 70, , Tm_1 are polynomials of v, which can be calcu-
lated by (19). By the Sylvester theorem, the above system of polynomial
equations in u possesses solutions if and only if its resultant vanishes [10].
The resultant of this system of polynomial equations is the determinant

25



of the following (2m — 1) x (2m — 1) matrix

(%0 % = Ym2 Ymr Ym0 0
0 80 Ym-3 TYm-2 TYm-1 " 0 0
0 0 Moo 3 Ym0
v—| 00 YoM N Ym-1 Ym
’ To T1 Tme2 Tm—1 0 -+ 0 0
0 T0 Tm—3 Tm—-2 Tm—1 =°°° 0 0
0 0 e To T1 T2 Tm—1 0
\ o 0 --- 0 70 T1 Tm—2 Tm—1 )

which is a polynomial equation in variable v. After finding all real roots
of this polynomial, we can substitute them to (19) to find all the real
solutions of u. Then, using

B U B v B +1 \ =
g \/1+u2+1ﬂ’g2 \/1+u2+02’93 V1+u2+ 02

we may find all the solutions of (14) in this case.

Combine all the possible solutions of (14) in these four cases, and find
Amin(d), the smallest value of A of these solutions. Then d € § if and only
if Amin(d) > 0. This shows that the smallest Z-eigenvalue of d, A\pin(d) is
computable. By [21], in the regular case, the number v of Z-eigenvalues
of d satisfies v < m? — m + 1. This implies that the degree of the one-
dimensional polynomial equation in variable v is no more than m? —m+1.
This also implies that the complexity of finding Ay, (d) is in polynomial
time.

d(g),
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