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An Eigenvalue Method for Testing Positive
Definiteness of a Multivariate Form

Qin Ni, Liqun Qi, and Fei Wang

Abstract—In this paper, we present an eigenvalue method for
testing positive definiteness of a multivariate form. This problem
plays an important role in the stability study of nonlinear au-
tonomous systems via Lyapunov’s direct method in automatic
control. At first we apply the D’Andrea–Dickenstein version of
the classical Macaulay formulas of the resultant to compute the
symmetric hyperdeterminant of an even order supersymmetric
tensor. By using the supersymmetry property, we give detailed
computation procedures for the Bezoutians and specified ordering
of monomials in this approach. We then use these formulas to
calculate the characteristic polynomial of a fourth order three di-
mensional supersymmetric tensor and give an eigenvalue method
for testing positive definiteness of a quartic form of three variables.
Some numerical results of this method are reported.

Index Terms—Eigenvalue method, positive definiteness, super-
symmetric tensor, symmetric hyperdeterminant.

I. INTRODUCTION

A N th degree homogeneous polynomial form of vari-
ables , where can be denoted as

It is called positive definite if

Clearly, in this case, must be even.
The positive definiteness of an even-degree homogeneous

polynomial form plays an important role in the stability study of
nonlinear autonomous systems via Lyapunov’s direct method
in automatic control. Stability analysis can be reduced, using
Lyapunov’s method, to extend a positive definite function, such
that its time derivative along the trajectories of the system is
negative. Concretely, for the system , if a multivariate
polynomial can be found such that is positive definite
and

Manuscript received July 12, 2005; revised March 10, 2007. Published
August 27, 2008 (projected). Recommended by Associate Editor W. X. Zheng.
The work of Q. Ni was supported by the National Science Foundation of
China (10471062), and the Natural Science Foundation of Jiangsu Province
(BK2006184). The work of L. Qi was supported by the Hong Kong Research
Grant Council.

Q. Ni is with the Department of Mathematics, Nanjing University of Aero-
nautics and Astronautics, Nanjing 210016, China (e-mail: niqfs@nuaa.edu.cn).

L. Qi is with the Department of Applied Mathematics, The Hong Kong Poly-
technic University, Hong Kong (e-mail: maqilq@polyu.edu.hk).

F. Wang is with the Department of Mathematics, Hunan City University,
Yiyang, Hunan 413000, China (e-mail: mafwang@126.com).

Digital Object Identifier 10.1109/TAC.2008.923679

then the system is asympototically stable. Hence,
ascertaining whether a multivariate polynomial is positive
definite for all real is often crucial to the use of Lyapunov
stability tests. In [2], Anderson and Jury showed that tests for

-dimensional filters involve tests for positive definiteness of a
set of real polynomials in variables, also see [18]. There are
more examples, such as the multivariate network realizability
theory [9], a test for Lyapunov stability in multivariable filters
[6], a test of existence of periodic oscillations using Bendixon’s
theorem [16], and the output feedback stabilization problems
[1].

Researchers in automatic control studied the conditions of
such positive definiteness intensively [5]–[8], [13], [15], [17],
[21], [28]. An explicit condition in terms of the coefficients for
quartic forms in two variables has been given in [21] (note the
comments in [28]). A sufficient condition for multivariable pos-
itivity or nonnegativity has also been given in [7]. An implemen-
tation of the Gram matrix method for the positive definiteness
of forms of even order is presented in [15] (note also the com-
ments in [13]). For , the positive definiteness of a homo-
geneous polynomial form can be checked by methods based on
Sturm’s sequences [5], [17]. In [5], the reader may find a discur-
sive documentation of Sturm’s theorem and its generalization,
resultants, theory and applications of tests for positive definite-
ness and other results of relevance in this paper.

For and , this problem is a hard problem in
mathematics. There are a few methods to answer the question,
based in decision algebra [6], [8]. In practice, these methods are
computationally expensive. This problem is also related with
Hilbert’s result on representation as sum of squares of forms
(discussed in Bose’s book [5]). A nonnegative form may not
have a sum of squares representation. In that case, a method for
testing positive definiteness of the form based upon the sum of
squares representation approach cannot find an exact solution of
this problem. In this paper, we seek a different approach based
upon eigenvalues of tensors. Our approach works even the non-
negative form does not have a sum of squares representation.

The th degree homogeneous polynomial form of vari-
ables is equivalent to the tensor product of an th-order

-dimensional supersymmetric tensor and defined by

The tensor is called supersymmetric as its entries
are invariant under any permutation of their indexes ,
where for [19]. The supersym-
metric tensor is called positive definite if is positive def-
inite.

Recently, motivated by the study of positive definiteness of
homogeneous polynomial, Qi [24] introduced the concepts of
eigenvalues of a real supersymmetric tensor . For a vector
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, Qi [24] used to denote its components and to denote
a vector in such that

for all . By the tensor product, for a vector
denotes a vector in , whose th component is

Qi [24] called a number and a nonzero vector
an eigenvalue of A and an eigenvector of associated with the
eigenvalue respectively, if they are solutions of the following
homogeneous polynomial equations:

(1)

If is real, then is also real. In this case, and are called
an H-eigenvalue of and an H-eigenvector of associated
with the H-eigenvalue , respectively. Otherwise, is called
an N-eigenvalue of . In the case , (1) reduces to the
definition of eigenvalues and corresponding eigenvectors of a
square matrix.

It was proved in [24] that H-eigenvalues exist for a real su-
persymmetric tensor of even order , and is positive defi-
nite if and only if all of its H-eigenvalues are positive. Thus, the
smallest H-eigenvalue of an even-order supersymmetric tensor

is an indicator of positive definiteness of . The values of the
eigenvalues of are directly connected with the computation
of the symmetric hyperdeterminant. In [24], the symmetric
hyperdeterminant of is defined as the resultant of the system

. One may use formulas of the resultant to compute
it [11], [14], [27], but so far there are no explicit formulas of
the resultant for in the general case. Classically, there are
Macaulay formulas [22], which express the multivariate resul-
tant as a quotient of two determinants. Recently, D’Andrea and
Dickenstein [12] gave a new version of the classical Macaulay
formulas, by involving matrices of considerably smaller size,
whose nonzero entries include coefficients of the given poly-
nomials and coefficients of their Bezoutians. However, how to
calculate such coefficients of Bezoutians and how to order the
monomials still need to be specified in the computation. When
the resultant size is very small, these can be determined easily.
In general, these are still implementation tasks ahead.

The following theorem given by Qi [24] reveals an important
relation between the eigenvalues and the symmetric hyperdeter-
minant.

Theorem 1.1: Suppose that is even. A number is
an eigenvalue of if and only if it is a root of the following
one-dimensional polynomial in :

where is unit supersymmetric tensor whose entries are

if
otherwise

(2)

The one-dimensional polynomial was called the character-
istic polynomial of .

In this paper, we apply the D’Andrea–Dickenstein version of
the classical Macaulay formulas of the resultant to compute the

symmetric hyperdeterminant of an even order supersymmetric
tensor. By using the supersymmetry property, we give detailed
computation procedures for the Bezoutians and specified or-
dering of the monomials in this approach. Furthermore, we im-
plement our formulas to calculate the characteristic polynomial
of a fourth-order three-dimensional supersymmetric tensor. We
propose an eigenvalue method for testing positive definiteness
of a quartic form of three variables.

This paper is organized as follows. We give preliminary
statements about symmetric hyperdeterminants and resul-
tants in Section II. We establish computable formulas of the
symmetric hyperdeterminant of in Section III when is
even. We discuss the detailed computation of the characteristic
polynomial of a fourth order three dimensional supersymmetric
tensor in Section IV. We discuss methods for testing positive
definiteness of in Section V. In Section VI, we give some
preliminary numerical test results. Some final comments are
made in Section VII.

II. PRELIMINARY STATEMENTS

The following lemma, theorem, and proposition were given
in [24].

Lemma 2.1: The symmetric hyperdeterminant of ,
is the resultant of

and is a homogeneous polynomial of the entries of , with the
degree .

Theorem 2. 1: The eigenvalues of the supersymmetric tensor
have the following properties.
a) (Gershgorin-type theorem) The eigenvalues of lie in the

following disks:

for , where the symbol refers to (2).
b) The number of eigenvalues of is and

the product of all eigenvalues of is equal to det .
c) The summation of all the eigenvalues of is

, where denotes the trace of
which is the summation of all diagonal elements of .

Proposition 2.1: Suppose that , where and
are supersymmetric tensors, and are two real numbers.

Then is an eigenvalue (H-eigenvalue) of if and only if

and is an eigenvalue (H-eigenvalue) of . In this case, they
have the same eigenvectors.

So far, there are no explicit formulas of the symmetric hyper-
determinant for a general tensor. We use the resultant theory in
[12] to establish the formula of the symmetric hyperdeterminant
of an even order supersymmetric tensor. It is also easy to extend
this formula to odd order tensors.

Let be homogeneous polynomials in variables
with degree , respectively. In order to describe the
results of the resultant theory in [12], we state the definition of
the Bezoutian associated with in [3]. For each pair
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with , denote for the incremental
quotient

It is remarked that
can be divided by . Hence,

we may express as this quotient no matter whether
or not. Then we define the determinant

(3)

where
are nonnegative integers,
and are defined similarly. The

determinant is a representative of the Bezoutian asso-
ciated with . It is a homogeneous polynomial in
variables and of degree .

Define some sets of monomials as follows:

there exists

where is a nonnegative integer and is an
integer. Define by a dual basis of . Note that
and for any nonnegative . If is negative, then

is the empty set. Let be the isomorphism
associated with the monomial bases in and denote by

the elements in the dual basis. We use the convention
that all spaces in this paper have a monomial basis, or a dual
monomial basis, and all these bases have a fixed order (usually
the grade lexicographic order; see Definition 1). Thus, there is
no ambiguity when we define matrices in the monomial bases.

Define two linear maps

and let and denote the matrices of and in the
monomial bases, respectively. Denote

where is the dual of , i.e.,

Let be the matrix of in the monomial bases. Denote by
the submatrix of whose columns are indexed by the mono-
mials in , and whose rows are indexed by the

monomial in for which there exist two different indexes
such that .

The following lemma is from [12].
Lemma 2.2: For any

are nonzero polynomials but that they might
vanish for a given choice of coefficients for . Let

be the resultant of . Then

where and .

is a square matrix of size ,

where can be computed by the following formula:

When , the size of is minimal.
By using this lemma, we can establish a formula of the

symmetric hyperdeterminant of an even-order supersymmetric
tensor.

III. THE SYMMETRIC HYPERDETERMINANT OF AN EVEN

ORDER SUPERSYMMETRIC TENSOR

Assume that is an even number and is a positive
integer. Denote by

for . Let , denote by
the number of all combinations with repetitions of

. Then after combining like monomials, we have

Let

(4)

Then

(5)

where , and . Hence,
are homogeneous polynomials in variables
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with degree , i.e.,

and they include

(6)

monomials. From Lemma 2.2, we obtain the following propo-
sition.

Proposition 3.1: Let be an th-order supersymmetric
tensor, be an even number and , and be
defined by (4). Then the symmetric hyperdeterminant of is
computed by the following formula:

When , the size of is minimal and

where .
Proof: Because is an even number, is also an even

number. Hence, . The proposition follows from
Lemmas 2.1 and 2.2.

At first, we discuss the computation of in (see
Lemma 2.2). is a matrix whose entries are Bezoutians. In
order to compute the Bezoutian associated with ,
we define

and have the following lemma.
Lemma 3.1: Let

(7)

Then

(8)

for where is a subset of and
its entries include s, .

Proof: From (5) and (7), it follows that

As remarked before,
can be divided by .

Hence, we may express as this quotient no matter
whether or not. If

does not include , then the terms with this index in
and are identical, and they are canceled in (7). If

, then from

it follows (8). The proof is complete.
From Lemma 3.1, it is seen that the components in the th

column of have the same monomials and have
only different coefficients in monomials, . According to
the properties of determinants, we conclude that each element
in is a product of a constant, an de-
terminant and a monomial with . Define an

determinant

where . We have the following lemma.
Lemma 3.2: is the coeffi-

cient of a monomial in the determinant, det .
Proof: Let be an entry in where

is a monomial, . It follows that from (8)
that is also an entry in

. Hence, the coefficient of in
is

The proof is complete.
According to Lemma 2.2, we have that

where is the coefficient of in .
In order to determine the permutation of elements of , we
need to choose the proper order of monomials, and recall the
definition of the lex (lexicographic) order and the grlex (graded
lexicographic) order of monomials [10], where is the set of
integers and is the set of nonnegative integers.

Definition 1: Let
and . We say , if in the vector difference

the leftmost nonzero entry is positive. We will
write if . We say , if ,
or and . We will write if

.
We let

and divide the monomials of into sets
by
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for [see (8)]. Here includes all monomials
of -variables and -variables in

.
Define

such that for all

where

and denote

where [see (3)], ,
and are ordered by the grlex order. We present an
algorithm for computing as follows.

Algorithm 3.1:
Step 1) Initialization. Set .

and .
Step 2) Check termination. If , then stop. Otherwise

choose from .
Step 3) For each combination in

, assume that the coefficient of in
is with .

i) Determine and such that

ii) Let .
Step 4) Let . Set

and go to Step 2).
Now, we discuss the computation of and . is the

matrix of the map in the monomial basis

and is a submatrix of .
If , then are empty sets and

does not include . If , then there is only
a constant 1 in each base of and
is matrix

(9)

Lemma 3.3: Let . Then

where is the matrix of the mapping

Moreover, is a sparse matrix, there are identical nonzero
entries

in each of its columns.

Proof: Assume that all monomials in by the grlex
order are , and that all monomials in by the
grlex order are . Let be the matrix of .
Then

(10)

which implies that is a matrix.
It is seen from (5) and (6) that there are terms

in each and the coefficients of
are the same. This means that in each

column of there are identical nonzero entries.
According to Lemma 2.2, we know that is a submatrix

, whose columns are indexed by the monomials in
, and whose rows are indexed by the mono-

mials in where

For convenience, we denote

where the columns of are indexed by the monomials in

. If

(11)

then is indexed by an empty set, and according to the con-
vention we define .

In order to determine the exact position of the nonzero entries
of and exact indexes of row and column of , we need to
discuss the monomial ordering in and other sets. For the
grlex order, we define the functions rank and unrank on some
set, , which consist of monomials. The concept of these func-
tions refers to [20].

Let be a set of finitely many monomials, , and
define

where rank is a ranking function defined on in the grlex order,
and unrank is the inverse function of the function rank.

In the following lemma, we give a formula for calculating the
rank of a term of .

Lemma 3.4: Let a term in be expressed by

with
. Then the rank of this term is

where .
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Proof: We partition the change from the first term to
this term as follows:

In the first stage (i.e., ),

(12)

For the th stage,

is decomposed into two differences

and

It is not difficult to obtain

(13)

This lemma follows from (12), (13), and .
Now we give an algorithm for determining the unrank func-

tion of the monomials in , the in-
dexes of columns in , the indexes of
rows of , and an array which stores the position of nonzero
entries in .

Algorithm 3.2:
Step 1) Determine the unrank function of all monomial in

which are stored in unrank . Let . For

; do
.

Step 2) Determine the unrank function of all mono-
mial in which are stored in unrank

, the indexes of columns of
stored in , and the indexes
of the rows of stored in .

2.1) Set
; and .

2.2) For ; ; ;
; do

1) .
i) if there exists in poly such that

, then
;

ii) if there exists and such
that , then

.
2) For , do

if , then
i)

;
ii) If there exists in poly such that

, then
.

3) If , then
.

Step 3) Determine the array where
. For

, do
i) ;

ii) , where the compu-
tation of rank is determined by the formula in
Lemma 3.4.

In the following proposition we give an approach for deter-
mining and .

Proposition 3.2: The matrix is determined by Lemma
3.3 and the array generated by Algorithm 3.2. In each

, there are identical nonzero entries,
in each of its columns. While

the positions of nonzero entries in the th column of
are .

The matrix is determined by , the array and .
is a submatrix of , , and

Proof: From Step 1) of Algorithm 3.2, unrank (1), un-
rank(2), , unrank are all monomials in by the grlex
order, and they are all monomials in any .
unrank stores the th monomial in . According
to Lemma 3.3 and Step 3) of Algorithm 3.2, it follows that

are the rank of all monomials of
in by grlex order. From (10) it is seen that

are the position of nonzero entries in
the th column of . From Algorithm 3.2, the indexes of

columns of are stored in , and
the indexes of the rows of are stored in . Thus, we
obtain the form of in this lemma.

Hence, the symmetric hyperdeterminant of an even order su-
persymmetric tensor is completely determined by Proposition
3.2, Algorithms 3.1 and 3.2.
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IV. THE CHARACTERISTIC POLYNOMIAL OF A FOURTH ORDER

THREE-DIMENSIONAL SUPERSYMMETRIC TENSOR

In this section, we consider the detailed computation of the
characteristic polynomial of a fourth-order three-dimensional
supersymmetric tensor. Let and . By the definition
of eigenvalues, an eigenvalue together with its eigenvector
satisfies the following homogeneous polynomial equation:

(14)

Let . Then

if
otherwise

(15)

In order to give the expressions of and
, we denote

where the monomials with degree 3 are ordered by the grlex
order. Let be the subscripts of these monomials
by the grlex order. Then

According to the definition, we know that de-
notes the number of all permutations of from which it
follows that

Denote

(16)

where and

(17)

Then from (14), we have

From Lemma 3.1, we obtain

for . Define the 3 3 determinant

Let where are the
coefficients of with and . Then the
grlex orders of and are

Denote

and

Using Algorithm 3.1, we obtain the following 100 elements
where some determinants are combined, zero determinants are
deleted, and the subscripts are permuted in the grlex order ac-
cording to the properties of determinants.
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(18)

In this case, , i.e., . From (9),
we have

where and are defined in (16) and (17). In addition, the
condition (11) is satisfied which implies .

Hence from Proposition 3.1 we obtain the characteristic poly-
nomial of a fourth-order 3-D tensor

(19)

where the 100 elements in are computed by (18), and
refer to (16) and (17).

V. TESTING POSITIVE DEFINITENESS OF A FOURTH-ORDER

THREE-DIMENSIONAL SUPERSYMMETRIC TENSOR

Let

where , be the characteristic polynomial
of an th-order -dimensional supersymmetric tensor . From
Theorem 2.1, we have

When and . By directly computing, we
have

However, other coefficients of are hard to be computed
directly.

We choose 24 equidistant points

(20)

, where is a positive number, and have

(21)

for . It is seen that this is a Vandermonde system
of linear equations. We use the Björck–Pereyra [4] algorithm to
solve this system, and get .

For improving accurateness of computation, we may scale the
characteristic polynomial. Proposition 2.1 implies that we can
get all eigenvalues of by computing all roots of the character-
istic polynomial of , denoted by .

From Theorem 2.1 it follows that all nonpositive real roots of
lie in where

If , then and . If
, let . Let . Then has a

nonpositive roots if and only if has a nonpositive root, and
all nonpositive real roots of lie in . In order to find if

has a nonpositive real root, we recall Sturm’s theorem [5].
Theorem 5.1: Let be a nonconstant polynomial with

real coefficients and let and , with , be two real num-
bers such that . If the sequence
is defined by the conditions
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where and . The sequence
is called a sequence of Sturm. Denote

by the number of changes of signs in the sequence
. Then the number of distinct zeros

of on the interval is equal to .
For example, if , then we have

, i.e., has one distinct root in , though this root is a
double root.

According to the conclusion in [24], if has at least
a nonpositive real root with odd multiplicity, then is not
positive definite. Let be the set of nonpositive real roots
of , which have even multiplicities. Since

, i.e., if , and
. If for any , then has

at least a nonpositive real root with odd multiplicity. This
implies that is not positive definite. If for any

, then is a root of , we may find a such
that and . This implies that the
multiplicity of is . If is odd or , then
is not positive definite. If is even and , then

. We may record in and use instead
of to check other nonpositive roots of .

We now set . Then we check and . If
, or 0 or is an odd-multiple root of , then is not positive

definite. Otherwise, if 0 or is an even-multiple root of , then
we may record it to and replace by as described above. If

, then has an odd-multiple nonpositive root and is
not positive definite. In the remaining case, both and
are positive.

Then we may use the Sturm sequence of or if
, to know whether or has nonpositive real roots

in or not. If has no nonpositive real roots, then is
positive definite. Otherwise we check the value of or
at the midpoint of and use the Sturm sequence if neces-
sary. We may repeat this process until either we find that is
not positive definite because has an odd-multiple nonpositive
root, or we have used the Sturm sequence to separate all dis-
tinct nonpositive roots of . For a nonpositive root of which
has been separated in an interval or its reduced poly-
nomial is positive at both and by the above procedures.
Then we may easily conclude that has an even-multiple root
in . This also implies that has an odd-multiple
root in this interval. Then we may apply the bisection method to

or the derivative function of the reduced polynomial
of , to find an approximate value of this root if necessary.

If has nonpositive roots and all the nonpositive roots of
are of even multiplicity, then we call this case the hard case. In
this case we have to find if there exist real eigenvectors of ,
associated with these nonpositive roots in order to determine
the positive definiteness of .

Let be a nonpositive real root of . Then the eigenvector
associated with can be determined by the following equations:

(22)

(23)

for . Because [see (5)] are homogeneous func-
tions in 3 variables with degree 3, , we can obtain two

systems of polynomial equations

(24)

(25)

and

(26)

(27)

which are equivalent to (22)–(23). It is remarked that (24)–(25)
is directly solved by eliminating . While (26)–(27) can be
solved by the Levenberg-Marquardt algorithm for solving non-
linear least squares problems. If we find a real eigenvector asso-
ciated with a nonpositive real eigenvalue, then is not positive
definite.

Now we present an algorithm to test positive definiteness of a
multivariate form in detail. In this algorithm, we use to denote
a set of intervals, each of which has more than one nonpositive
distinct roots of , and to denote a set of intervals, each of
which has one nonpositive even-multiple distinct root of .

Algorithm 5.1: (An eigenvalue method for testing positive
definiteness of a multivariate form)

Step 0) If for some , is not
positive definite. Compute the lower bound of real
eigenvalues, by the formula (21). If ,
then is positive definite, stop. If , then
set . Let

and .

Step 1) Compute the matrices and by
Proposition 3.2, Algorithms 3.1 and 3.2, where

(see Proposition 3.1). When and
is defined in (19).

Step 2) Compute all coefficients in the characteristic
polynomial of , by the
Björck–Pereyra algorithm. When and

[see (19)].

Step 3) If , then is not positive definite. If
or , check its multiplicity. If

0 or is an odd-multiple root of , then is not
positive definite. Stop in these two cases. If 0 or

is an even-multiple root of , record it to and
replace by a reduced polynomial which was
described before. If the reduced polynomial is
negative at is not positive definite, stop.

Step 4) Compute the Sturm sequence of according
to Theorem 5.1. Use this sequence to check the
number of distinct roots of in . If this
number is zero and , then is positive
definite and stop. If this number is 1, put
to . If this number is bigger than 1, put to

.
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Step 5) If , take an interval from . Let
. If , then is not posi-

tive definite, stop. If , find such that
and . If is odd or

, then is not positive definite, stop.
If is even and , record to and
replace by a reduced polynomial as described
before and compute the Sturm sequence for the re-
duced polynomial . Use the Sturm sequence to
determine the numbers of distinct roots of in

and respectively. Put and
to or or discard one of them, de-

pending these two numbers are bigger than one,
exactly one, or zero. Repeat this step until either
we find that is not positive definite or .

Step 6) If , take a number, say , from . Then
is a nonpositive even-multiple root of . We may
find if has a real eigenvector associated with
or not. When and , for , solve
the system (22)–(23). If there is a real solution
in (22)–(23), then is not positive definite, stop.
Repeat this step until either we find that is not
positive definite or .

Step 7) If , take an interval, say , from
. Apply the bisection method to on

to find an approximate root of . Then
is the approximate value of an nonpositive even-
multiple root of . We may find if has a real
eigenvector associated with or not. When
and , for , solve the system (22)–(23). If
there is a real solution in (22)–(23), then is not
positive definite, stop. Repeat this step until either
we find that is not positive definite or .
In the latter case, is positive definite.

Remarks:
1) In Step 2), it is not easy to get all coefficients of with

good precision. From numerical test we find that
[see (20)] is a good choice.

2) In Steps 4) and 5), a modified Sturm function , where
is a positive number, is generated such

that the absolute value of leading coefficient of is 1,
.

3) In Step 7), the nonpositive even-multiple roots of
in the intervals in are approximately computed by
the bisection method such that the error between approx-
imated root and exact root is less than . In addi-
tion, when (26)–(27) is solved, the minimal solution of

is found. If there is a real
such that , then . By (27), set

, and let . It
is easy to see that is a real solution of (26)–(27).
Hence, if the minimal value is less that , then we
think that there is a real solution.

VI. NUMERICAL TEST

In this section, we present some preliminary numerical tests
for fourth order three dimensional supersymmetric tensors with

Algorithm 5.1. The computation was done on a personal com-
puter (Pentium IV, 2.8 GHz) running Matlab 7.0.

Because it is difficult to find test problems in the literature,
we generate four kinds of problems by random approaches for
testing the performance of Algorithm 5.1. In the following prob-
lems let .

TP I (general case)

(28)

where is a random number in with .
TP II (special case)

(29)

where is a random number in for , and
is a parameter.

It is easy to know that when is the minimum
H-eigenvalue of . By Proposition 2.1, is the minimum
H-eigenvalue of in (29).

TP III (hard case)

(30)

where is a random number in for all
and is a parameter. Similarly, is also the minimum H-eigen-
value of in (30). However the hard case can arise when Algo-
rithm is used to solve this kind problem with negative . Nu-
merical results show that is almost always an even-multiple
H-eigenvalue of in the problems generated by (30).

TP IV (N-eigenvalue case)

(31)

where and are positive random numbers in (1 100). In
the problems generated by (31), is an N-eigenvalue of .

Tables I–IV show the performance of Algorithm 5.1 on the
four kinds of problems where

NP: the number of the problem.

ALB: the absolute value of the lower bound of real
eigenvalues [see (21)].

HE: current minimal nonpositive H-eigenvalue of in
output where “p” means that all H-eigenvalues
of are positive.

NE: minimal nonpositive N-eigenvalue of (only for
Table IV).

PD: the positive definiteness, where “y” means yes,“n”
means no.

Time: the CPU time in seconds.
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TABLE I
RESULTS OF TP I

TABLE II
RESULTS OF TP II

TABLE III
RESULTS OF TP III

TABLE IV
RESULTS OF TP IV

In Table I, we give the results of 9 different general test prob-
lems generated by (28) where we choose in 1–3,

in 4–6 and in 7–9. Algorithm 5.1 can solve these
problems very well in short time. The hard case does not arise
in the computation process of Algorithm 5.1 for solving these
nine problems.

In Table II, nine special test problems are generated by (29),
and we choose in 1–3, in 4–6 and
in 7–9. These problems are solved by Algorithm 5.1 and the
correct results are obtained. The hard case does not arise also in
the computation process of Algorithm 5.1 for solving these nine
special problems.

In Table III, nine test problems which are not positive definite
are generated by (30), and we choose in . 1–3,

in the problems 4–6 and in the problems 7–9. The
hard case arises when Algorithm 5.1 is used to solve these nine
problems. From the results in Table III we know that Algorithm
5.1 can handle the hard case in short time.

In Tables IV, 9 test problems which are positive definite are
generated by (31), and we choose in 1–3,
in the problems 4–7 and in the problems 8–9. is
N-eigenvalue of these problems. From Table IV, we know that
the correct results can be obtained by Algorithm 5.1.

Numerical results show that Algorithm 5.1 is a feasible and
efficient eigenvalue method for testing positive definiteness of a
quartic form of three variables.

VII. FINAL COMMENTS

In this paper we propose an eigenvalue method for testing
positive definiteness of a multivariate form. At first we give
a frame of method for computing the symmetric hyperdeter-
minant and the characteristic polynomial of a supersymmetric
tensor for the general case. Then we propose Algorithm 5.1
which can be carried out when and . A pos-
sible improvement of this method is to use the E-eigenvalues and
the E-characteristic polynomial of instead of the eigenvalues
and the characteristic polynomial of in the algorithm. The
E-eigenvalues and the E-characteristic polynomial of were
also introduced in [24], and studied further in [25], [26], [23].
They may also be used to test positive definiteness of a multi-
variate form. An advantage of the E-eigenvalues and the E-char-
acteristic polynomial is that the degree of the E-characteristic
polynomial is much lower than the degree of the characteristic
polynomial. When and , the degree of the charac-
teristic polynomial is 27 as indicated in Section V, while the de-
gree of the E-characteristic polynomial is at most 13 [23]. How-
ever, unlike the degree of the characteristic polynomial, which is
fixed when and are fixed, the degree of the E-characteristic
polynomial is not fixed. For example, when and ,
the degree of the E-characteristic polynomial may be 13 or may
be less than 13. This creates a difficulty to identify that degree
for a particular problem. This is why we study the eigenvalue
method first in this paper.
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