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A NECESSARY AND SUFFICIENT CONDITION FOR EXISTENCE
OF A POSITIVE PERRON VECTOR*

SHENGLONG HU' AND LIQUN QIf

Abstract. In 1907, Perron showed that a positive square matrix has a unique largest positive
eigenvalue with a positive eigenvector. This result was extended to irreducible nonnegative matrices
by Frobenius in 1912, and to irreducible nonnegative tensors and weakly irreducible nonnegative
tensors recently. This result is a fundamental result in matrix theory and has found wide applications
in probability theory, internet search engines, spectral graph and hypergraph theory, etc. In this
paper, we give a necessary and sufficient condition for the existence of such a positive eigenvector,
i.e., a positive Perron vector, for a nonnegative tensor. We show that every nonnegative tensor has
a canonical nonnegative partition form, from which we introduce strongly nonnegative tensors. A
tensor is called strongly nonnegative if the spectral radius of each genuine weakly irreducible block
is equal to the spectral radius of the tensor, which is strictly larger than the spectral radius of any
other block. We prove that a nonnegative tensor has a positive Perron vector if and only if it is
strongly nonnegative. The proof is nontrivial. Numerical results for finding a positive Perron vector
are reported.
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1. Introduction. More than one century ago, in 1907, Perron showed that a
positive square matrix has a unique largest positive eigenvalue with a positive eigen-
vector (Perron vector) [19]. This result was extended to irreducible nonnegative matri-
ces by Frobenius [10] in 1912, and to irreducible nonnegative tensors by Chang, Pear-
son, and Zhang [3] in 2008, and weakly irreducible nonnegative tensors by Friedland,
Gaubert, and Han [9] in 2013. This result is a fundamental result in matrix the-
ory [2, 12] and has found wide applications in probability theory [2, 12], the Google
PageRank [17], spectral graph and hypergraph theory [5, 21], etc.

Perhaps the most important part of the Perron—Frobenius theorem, as well as a
key feature ensuring Google PageRank’s success, is the assertion that the nonnegative
Perron vector is unique for an irreducible nonnegative matriz and it is the positive
Perron vector. Thus, irreducibility is a sufficient condition to guarantee the existence
of a positive Perron vector. In this paper, we will study the necessary and sufficient
condition for the existence of a positive Perron vector. We will study this problem
in a general setting for all nonnegative tensors of orders higher than or equal to two,
which includes the nonnegative matrix case since matrices are second order tensors.
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In the matrix case, this result is known [22, pp. 10-11]. However, in the case of orders
higher than two, the proof is nontrivial.
The following theorem will be proved.

THEOREM 1. A nonnegative tensor has a positive Perron vector if and only if it
is strongly nonnegative.

Strongly nonnegative tensors will be defined in Definition 15, whereas the matrix
counterpart will be presented in section 1.1 for illustration. Actually, Theorem 1 can
be used as the definition for strongly nonnegative tensors.

1.1. Strongly nonnegative matrix. Given an n X n nonnegative matrix A, we
can always partition A (up to some permutations) into the following upper triangular
block form (known as the Frobenius normal form)

_Al A12 Alr
A2 Agg AQ,,.
As Agsr1 . ... Ag
(1) A= A1 0 ... 0
L AT -
such that
1. each diagonal block matrix A; is irreducible for ¢ € [r] := {1,...,r}. Here
we regard a scalar (zero or not) as a one dimensional irreducible matrix for
convenience;
2. for each ¢ € [s], at least one of the matrices A;; is not zero for j =i+1,...,7.

Then the matrix A is strongly nonnegative if
p(A;) < p(A) for all i € [s] and p(4;) = p(A) forall i =s+1,...,7
It can be shown that a nonnegative matrix A is strongly nonnegative if and only if
A=p(A)YDSD™,

where S is a stochastic matrix, and D is a positive definite diagonal matrix. This has
a tensorial analogue, which will be given in section 5.

1.2. Outline. In section 2, we will present some basic definitions and results
on nonnegative tensors. In section 3 we will first review the nonnegative tensor par-
tition result from [13], and then refine the partition by introducing genuine weakly
irreducible principal subtensors. In section 4, we will give the necessary and sufficient
condition for a nonnegative tensor possessing a positive spectral radius. This class
of nonnegative tensors is called nontrivially nonnegative. In section 5, we will first
introduce strongly nonnegative tensors, and then prove that a tensor being strongly
nonnegative is both necessary and sufficient for it to have a positive Perron vector.
The proofs in both sections 4 and 5 are based on the nonnegative tensor partition de-
veloped in section 3. In section 6, we will propose an algorithm to determine whether
a nonnegative tensor is strongly nonnegative or not, and find a positive Perron vector
when it is.
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2. Preliminaries. Eigenvalues of tensors, independently proposed by Qi [20]
and Lim [15] in 2005, have become active research topics in numerical multilinear
algebra and beyond. We refer to [3, 4, 5, 7, 8, 11, 14, 16, 21, 23, 24] and references
therein for some recent developments and applications. Among others, nonnegative
tensors have wide investigations; see [3, 9, 13, 23, 24] for the Perron—Frobenius-type
theorems, and [5, 6, 8, 11, 21, 26] for some applications; and the survey [4] for more
connections to other problems in hypergraphs, quantum entanglement, higher order
Markov chains, etc.

An mth order n-dimensional tensor A is a multiway array A = (a;,..;,, ) indexed
by m indices i; for j € [m]| with each i; being within the set [n]. Usually, the entries
@i, .., can be elements in any prefixed set S, not necessarily scalars; and the set of
tensors of order m and dimension n with entries in S is denoted by T, ,(S). The
space of tensors of order m and dimension n with entries in the field C of complex
numbers is denoted simply by T, . In this article, we will focus on the case when
S is the nonnegative orthant R;. The interior of Ry is denoted by Ry;. A tensor
A = (ai,. 4,,) with a;, ;. € Ry for all i; € [n] and j € [m] is called a nonnegative
tensor. Let Ny, , C T, be the set of all nonnegative tensors with order m and
dimension n. Therefore, Ny, represents the set of all nonnegative n X n matrices.

For any j € [n], let

(2) I(5) == {(i2,...,im) € [N 5 € {in,...,im}}.

Obviously, I(j) depends on m. For example, I(j) = {j} when m = 2. We omit this
dependence notationally for simplicity, since m is always clear from the content. For
each A € N, ,,, we associate it with a nonnegative matrix M4 = (m;;) € Na,, with

mij = E Qiiy.. iy -

(i27“'1iM)€I(j)
The matrix M4 is called the majorization matriz of A (cf. [13, 18]).

DEFINITION 2 (weakly irreducible nonnegative tensor [9, 13]). A nonnegative ten-
sor A € Ny, p, is called weakly irreducible if the majorization M 4 is irreducible. A is
weakly reducible if it is not weakly irreducible.

For convenience, tensors in Ny, 1 = R4 are always regarded as weakly irreducible.
Note that the weak irreducibility for tensors in Nj, (i.e., matrices) reduces to the
classical irreducibility for nonnegative matrices (cf. [2, 12]).

For any nonnegative matrix A € Ns,, we associate it with a directed graph
G=(V,E)asV ={1,...,n} and

(4,7) € E if and only if a;; > 0.
It is known that the irreducibility of the matrix A is equivalent to the strong connect-
edness of the corresponding directed graph defined as above [12].

DEFINITION 3 (eigenvalues and eigenvectors [15, 20]). Let tensor A = (ai,. 4,,)
€ T A number A € C is called an eigenvalue of A, if there exists a vector
x € C™\ {0} which is called an eigenvector such that

(3) Ax™1 = \xIm=1

where xIm=1 € C" is an n-dimensional vector with its ith component being Jc?%l,
and Ax™1 € C" with

K3

n
-1 .
(Axm ) = E Qiig..iy Tig - - Tqy, foralli=1,... n.

12,y tm =1
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The number of eigenvalues of a tensor is always finite (cf. [20]). The spectral radius
p(A) of a tensor A is defined as

p(A) := max{|\| : A is an eigenvalue of A}.

In general p(A) is not an eigenvalue of A; however, it is when A is nonnegative
[24]. There is extensive research on Perron-Frobenius-type-theorems for nonnegative
tensors; see [3, 4, 9, 13, 23, 24] and references therein.

In the following, we summarize the Perron-Frobenius theorem for nonnegative
tensors which will be used in this article.

THEOREM 4 (Perron-Frobenius theorem [9, 12, 24]). Suppose that A € Np, », \
{0}. Then, the following results hold.

(i) p(A) is an eigenvalue of A with an eigenvector in R'.

(ii) If A has a positive eigenvector’y € R} | associated with an eigenvalue X, then

A=p(A) and
Axm—l ) .AXm_l )
min max (7_1)2 = p(A) = max min 7_1)1
xE]R’j;Jr 1<i<n Jj;n xE]RiJr 1<i<n szn

(iii) If A is weakly irreducible, then A has a positive eigenpair (A = p(A),y), and
y s unique up to a multiplicative constant.

It follows from Theorem 4 that for any eigenpair (A, x) of A € Ny, (ie., Ax™™! =
MxIm=1) whenever x € R% . we have A = p(A).

We will call a nonnegative eigenvector of A € N, , corresponding to p(A) as
a nonnegative Perron vector, and a positive eigenvector of A € N,,,, as a positive
Perron vector. Thus, each nonnegative tensor has a nonnegative Perron vector, and
a weakly irreducible nonnegative tensor has a unique positive Perron vector.

The next theorem will help us to prove our main theorem.

THEOREM 5. Let integers m > 2 and n > 2. Let g; € Ri[x] be polynomials
in x with nonnegative coefficients for all i € [n]. If there are two positive vectors
y,z € R}, such that

y <2 gily) > " and gi(z) < 2 for alli € [n],
then there exists a vector w € [y, z] := {x:y; < x; < z; for all i € [n]} such that
gi(w) = w™ ! for alli € [n].
Moreover, for any initial point xo € [y, z], the iteration
(k1) = [9:(xx)] 7T for all i € [n]

satisfies
1. Xp41 > X, and
2. limy_y00 Xp = X, with X, € RT, such that g;(x.) = (x.)* " for alli € [n].

Proof. Define f; : R}, — Ry, as

Fi(%) = [g:(x)] 7T for all i € [n].

It follows from g;(y) > y/*~' > 0 that the mapping f := (f1,..., fa)T : R7, - R,
is well-defined. Since g;’s are polynomials with nonnegative coefficients, the mapping
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[ is clearly increasing in the interval [y, z], i.e., f(x1) > f(x2) whenever x; —x3 € R"}
and x1,X2 € [y,z], and compact on every subinterval of [y, z], i.e., f is continuous
and maps subintervals into compact sets. Note that f(y) > y and f(z) < z. It
follows from [1, Theorem 6.1] that there exists w € [y, z] such that f(w) = w, which
is exactly the first half of the desired result.

With the established results, the convergence of the iteration follows also from [1,
Theorem 6.1]. d

3. Nonnegative tensor partition. Given a tensor 4 € N,,, and an index
subset I = {j1,..., i1} € {1,...,n}, Ar € Ny, 1| is the mth order |I|-dimensional
principal subtensor of A defined as

(Ar)iy...in, = @y, ..j,, foralli; € [[I]] and j € [m].

In particular, x; € R is the subvector of x indexed by I.
Let &(n) be the group of permutations on n elements, also called the symmetric
group on the set [n]. We can define a group action on N,, ,, by &(n) as

(0 A)iy.iy = Uo(iy)...0(in) for 0 € &(n) and A € Ny, .

Let Ax™~ 1 = XxI™=1. For any 0 € &(n), define y € C" with y; = To(). We
have (o - A)y™' = Ay[™~1. Therefore, for any A € Np o, tensors in the orbit
{o-A:0 € &(n)} have the same set of eigenvalues. In particular,

(4) plo - A) = p(A) for all 0 € S(n).

The main result in [13] can be stated as follows.

PROPOSITION 6 (nonnegative tensor partition). For any A € N, ,,, there exists
a partition of the index set [n],

LU---UIL =[n],
such that for all j=1,...,r
(5) Ap; is weakly irreducible, as,.. i, =0 for all s € I},
and (ig, ..., im) € I(t)N (U{;:1 Ik>m_1 forallte L U---UIL;_q.

Note that each A;; is a weakly irreducible principal subtensor of .A. We can assume
that
I = [s;]\ [sj-1]
with so =0, sp < 81 < --- < 8 =n, and [0] := (. In general, it should be there exists
a o € 6(n) such that o - A has such a partition, while, in view of (4), we may assume
throughout this paper, without loss of generality, that ¢ = id, the multiplicative
identity of the group &(n).
The next result is proved in [13].

PROPOSITION 7. Let A € Ny, p, be partitioned as (5). Then
p(A) = max{p(Ar,) : j €[]}

DEFINITION 8 (genuine weakly irreducible). A weakly irreducible principal sub-
tensor Az, of A is genuine if

(6) Usiy. i, =0 for all s € I and (i, ..., iy) € I(t) for allt € [n] \ I;.
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In the matrix case, genuine weakly irreducible subtensors correspond to basic classes
of [22]. Note that for each tensor A € N, ,, it always has one genuine weakly
irreducible principal subtensor, namely, the principal subtensor A;, in (5).

With Definition 8, we can further rearrange I, ..., I, to get a partition as follows.

PROPOSITION 9 (canonical nonnegative tensor partition). Let A € Ny, . The
index set [n] can be partitioned into RU Is1q U---UI. with R =1 U---UI, such
that, in addition to (5),

1. A;; is a genuine weakly irreducible principal subtensor for all j €
{s+1,...,r}, and
2. for each t € [s] there exist p € Iy and gt € I;11 U--- U I, such that

Apyis...iy, > 0 for some (i2,...,0m) € I(q).

Moreover, the partition for the genuine principal subtensor blocks Aj
unique up to permutation on the index sets {Isy1,...,1.}.

"7“417- 8

s+10°

Proof. Suppose that we have the tensor A with a partition as in Proposition 6.
It then follows from Definition 8 that a weakly irreducible principal subtensor Aj; is
genuine if and only if

(Ma)1, = MAIj, ie., iy i, =0 whenever 41 € I; and {iz...,%m} N IJG # .

Therefore, the genuine weakly irreducible principal subtensors are uniquely deter-
mined, and we can group the genuine weakly irreducible principal subtensors together,
say Isy1, ..., I, without loss of generality. This sorting can be done without destroy-
ing the relative back and forth orders of the blocks which are not genuine.

For any j € [s], since Aj; is not a genuine weakly irreducible principal subtensor,
there exists a p; € I; and ¢; ¢ I; such that

p,iy...ir, > 0 for some (i, ..., d,,) € I(g;).

However, from (5) forallt € [ U---UI;_q,

. m—1
tsiy..i. =0 for all s € I;, and (ia, ..., im) € I(t) N (Uizl Ik> :

we must have that
{Zlmvl/m}m(jj—i-luu-[r) #07

since otherwise ¢; € I; U---U I;_ and (i}, ...,i,) € (U_,I;)™ ' Thus, g; can be

’'m
chosen in I 1 U---UI,.. The result then follows. 0
It is easy to see that 7 > 1 and s < r — 1, since there always is a genuine
weakly irreducible principal subtensor. A tensor A € N,,, in the form described
in Proposition 9 is in a canonical nonnegative partition form. It follows that each
nonnegative tensor (up to a group action by &(n)) can be written in a canonical
nonnegative partition form.

4. Nontrivially nonnegative tensors. Let e € R™ be the vector of all ones.
We will write x > 0 (> 0, respectively) whenever x € R} (R, respectively).

DEFINITION 10 (see [13]). A tensor A € N, , is strictly nonnegative, if Ae™~* >
0.
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It is easy to see that in Definition 10, A € N,, ,, being strictly nonnegative is equivalent
to Ax™~1 > 0 for any positive vector x.
The next observation follows from Definition 10 and Theorem 4.

PROPOSITION 11. If A € Ny, ,, is weakly irreducible and p(A) > 0, then A is
strictly nonnegative.

DEFINITION 12 (nontrivially nonnegative tensor). A tensor A € Ny, ,, is non-
trivially nonnegative, if there exists a nonempty subset I C {1,...,n} such that A is
strictly nonnegative.

THEOREM 13 (positive spectral radius). Given any A € Ny, ., p(A) > 0 if and
only if A is nontrivially nonnegative.

Proof. Necessity: Suppose that x > 0 is an eigenvector of A such that (cf. Theo-
rem 4)

Axm—l — p(.A)X[m_l]

and p(A) > 0. From section 3, [n] can be partitioned into {I1,..., I} such that each
Ay, is weakly irreducible. By Proposition 7, p(A;,) = p(A) > 0 for some j € [r].
Therefore, the principal subtensor Aj, is strictly nonnegative by Proposition 11. By
Definition 12, A is nontrivially nonnegative.

Sufficiency: Suppose that Ay is strictly nonnegative for some index subset I C
{1,...,n}. It follows from Definition 10 that

—1
Aem !> 0,

which implies that
(Ay™ N > Are"t >0,

where y;y = ey and y; = 0 for ¢ ¢ I. By [24, Theorem 5.5], we have

p(A) = max min A7), > min(Ay™1); > min(A;e”1); > 0
x>0 2;>0  gMTl T el = e r n ’

Therefore, we have p(A) > 0. O
5. Positive Perron vector.

PROPOSITION 14. Suppose that A = (a;,..4,) € Nm.n has a positive eigenvec-
tor. Then it is a positive Perron vector and A is either the zero tensor or a strictly
nonnegative tensor.

Proof. Suppose that A has a positive eigenvector x, corresponding to an eigen-
value A\. Then A = p(A) by Theorem 4 as A is nonnegative. If A = 0, then by the
eigenvalue equations, .4 must be the zero tensor. Suppose that A > 0. Then by the
fact that Ax™~! > 0 is a positive vector, the result follows from Definition 10. ]

DEFINITION 15 (strongly nonnegative tensor). Let A € N, ,, have a canonical
nonnegative partition as in Proposition 9. A is called strongly nonnegative, if

) p(Ar) = p(A) if Ag, is genuine,
p(Ar;) < p(A)  otherwise.

With Definition 15, we present our main theorem.

THEOREM 16 (positive perron vector). Let A € Ny, ,,. Then A has a positive
Perron vector if and only if A is strongly nonnegative.
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Theorem 16 will be proved in section 5.3, after the preparation sections 5.1 and 5.2.
By Theorems 4 and 16 and Proposition 14, we see that a weakly irreducible non-
negative tensor is a strongly nonnegative tensor, and a nonzero strongly nonnegative
tensor is a strictly nonnegative tensor.
Before traveling to the proof for Theorem 16, we give a connection between
strongly nonnegative tensors and stochastic tensors.

DEFINITION 17 (stochastic tensor). A nonnegative tensor A € Ny, ,, s a stochas-
tic tensor if Ae™ 1 =e.

If D = (d;j) € N2y, is a positive definite diagonal matrix, then we define D™~ -
A-Di-m ¢ N as

(D™t A-D'™) = d iy, diy, o di )

$199...im 1191 G292 * " Vimim

for all iy,...,4, € {1,...,n}.

A and D™ 1. A- D™ can be regarded as diagonally similar, as it is the diagonal
similarity of two matrices when m = 2.

PROPOSITION 18 (diagonal similarity). Let A € Ny, . Then A is strongly
nonnegative if and only if A is diagonally similar to p(A)S for a stochastic tensor
S € Ny, toe.,

(8) A=p(A)Dmt.§. D™

for a positive definite diagonal matriz D.
Proof. Suppose that A = p(A)D™~!.S- D™ holds as (8). Obviously,

(A(De)™ 1) = p(A)d; ™" for all i € {1,...,n}.
This is the same as Ax™ ! = p(A)x[™~1 with x = De > 0. Therefore, A is strongly
nonnegative by Theorem 16.

For the other implication, suppose that Ax™ 1 = p(A)x!"™~ with some positive
Perron vector x > 0. With diagonal matrix D € Ny, given by d;; := z; for i €

{1,...,n}, and § := ﬁ(D71)77L71 A - (Dfl)lim when p(A) > 0 and S = Z (the
identity tensor in Ny, ) when p(A) = 0, it is easy to check that S is a stochastic
tensor. If p(A) > 0, then (8) is obviously fulfilled. If p(A) = 0, then A is the zero

tensor, and (8) holds as well. |

5.1. Systems of eigenvalue equations. In the following, we will always as-
sume that a given tensor A € N,, ,, is in a canonical nonnegative partition form (cf.
Proposition 9). Recall that [n] = RU I, ---UIl. with R=1L U---U ;.

For any j € [r], if we let K; := [n] \ I;, then

m—1
(9) (AX™ ) = Ax] T+ D Aj(xi )X
u=1
for some tensors Aj.(xk,) € Ty r,|(Ry[xk,]) for all w = 1,...,m — 1. Namely,

Aju(XK;) is a tensor of order u and dimension |I;| with the entries being polynomials
in the variables x, with coefficients in the set R . Moreover, it follows from (9) that
each entry of Aj; . (Xx;) is either zero or a homogeneous polynomial of degree m — u.
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We note that there can be many choices of tensors Aj; . (xx;) € Ty |1, (R+[xK;]) to
fulfill the system (9), similar to the rationale that there are many tensors 7 € Ty,
which can result in the same polynomial system 7x™~!. However, it is well-defined
in the sense that the polynomial systems A; ., (Xx; )x}‘;l ’s are all uniquely determined

by A. We note that when the system of polynomials Aj,u(ij)x?;l = 0, the tensor
Aju(xxk;) € Ty 1) (Ry[xK;]) is uniquely determined as the zero tensor.

LEMMA 19. Suppose the notation is adopted as above. Then a weakly irreducible
principal subtensor Az, of A is genuine if and only if

m—1
(10) Z’A]“ eK 1:(),
u=1

which is further equivalent to each tensor A;.(Xk;) is the zero tensor for all u €
[m —1].

Proof. Tt follows from (6) that a weakly irreducible principal subtensor A;, is
genuine if and only if the right polynomials of x in (9) involve variables {z; : t € I;}
only. This is equivalent to A; . (xx,) = 0 for all u = 1,...,m — 1 for any choice of
Aju(xic,) in (9),

From the facts

e the tensors Aj;,(xk,) all take polynomials with nonnegative coefficients as
entries, and
o A u(XK X7 s are uniquely determined,
we have that the above zero polynomials condition is equivalent to that each entry of
all the tensors A; ,(Xk;) is zero. This is further equivalent to

m—
2: —1
jueK =0.

For all j € [s — 1], let L; = R\ I;. From (5), we can further partition A; ., (xx,)
for all j € [s] into two parts,

(11) Aju(xk,) = Hju(xr,) + Bju(xk,) for all u € [m — 1],

|

where H; . (xz,) € Ty, r;)(Ry[xr;]) with each entry being either zero or a homoge-
neous polynomial of degree m — u in the variables xr , and

Bju(xk;) € T |1y (R [xix; ]IxL,])
with each entry being either zero or a polynomial of degree in the variables xp,; strictly
smaller than m — u.

PROPOSITION 20. Suppose the notation is adopted as above. Then

(a) for j € [s] it follows Z;nz_ll ’i‘-lju(ij)e’I‘j_1 =0 withy;, = ey, fort € [j—1]
and yj, = 0 for the othert € [s]\ {j};

(b) S0 Bsulex,)el ! #0; and

(c) forj € [s=1], either 317 Byu(ex,)ef " #0, or S0 Hyu(er, e #0.

Proof. Note that item (a) follows from (5), and from which H; ,(yz,) = 0 for all

u € [m —1]. Ttems (b) and (c) then follow from Proposition 9 that for each j € [s]
there exist p; € I; and q; € Ij 11 U--- U I, such that

Apjiy...i, > 0 for some (i, ... im) € I(q;),
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which, together with Lemma 19, implies that

m—1
Z A u( eK -1 # 0.
u=1

The results now follow. 0

5.2. Solvability of polynomial systems. The notation in the following is
independent of the previous one.

LEMMA 21. Let A € Np, . For arbitrary € > 0, there exists a positive vector
x € R}, such that

Ax™L < (p(A) 4 e)xm 1,

Proof. Suppose that A is weakly reducible, since otherwise the conclusion follows
from Theorem 4. Thus, we assume that I; U---UI, = [n] is a partition of A as shown
in Proposition 6 (cf. 5).

The proof is by induction on the block number r. The case when r = 1 follows
from Theorem 4 as we showed. Suppose that the conclusion is true when r = s — 1
for some s > 2. In the following, we assume that » = s. Let k = %e. Denote
by C = Apu..u1,_, € Nmn—1,| the principal subtensor of A. It is easy to see that
I U---UI,._; is a partition of C as shown in Proposition 6. Therefore, by the inductive

hypothesis, we can find a vector y € RlIIH =1l guch that
Cy™ ' < (p(C) + r)y™ 1 < (p(A) + )y,

where we have the last inequality following from p(C) = max{p(A;,) : j € [r — 1]} <
max{p(Az;) : j € [r]} = p(A) by Proposition 7. We also have that there exists

VAS RI_LF' such that
ALz < (p(AL) + r)zm

It follows from Proposition 6 that there are some tensors Cy(z) € T, ,—|1,|(R4 [2]) for
u € [m — 1] such that with w := (By",z")T € R"

m—1

(Awm_l)llumuI,.,l _ 5m—1cym—1 + Z Bu—lcu(z)yu—l

u=1
and (Aw™ 1) = A7 2™

Thus, when 8 > 0 is sufficiently large we have

(AW ) 0o,y < A7 (p(A) + 26)y!" Y

= (p(A) + 20)wi M,

= (p(A) + w1l

as well as
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(Awmfl)h = A]szil < (p(A5.)+ ﬂ)z[mfl]
< (p(Ar) + Owh™ ™ < (p(A) + wlm 1,

The result then follows. 0

LEMMA 22. Let A > 0, integers n,s > 0, and partition Iy U---UIs = [n]. Suppose
that for all j € [s], Ar; € Ny, 1;| is weakly irreducible with p(Ar;) < A, and A; . (x) €
T )Ry [Xpupg,]) foru=1,...,m —1 are such that

1. the degree of each entry of A; . (x) is not greater than m — u;

2. if we let Bj . (x) € Ty 1,)(Ry[X[u\1,]) by deleting polynomials of degree m —u
in each entry of Aj (%), and H; ., (x) = A (x) — Bju(x) for all w € [m —1]
and j € [s], then Hjm(w(j))e’};l = 0 with nglb-»-ulj,l = enu..ur,_, and
ng)uul =0 for all j € [s]; and

3. it holds

-1

(12) Bsyu(e)e}‘:l #0,
1

3

u

and, with 'y = ey, u...u1; +ter,_,u...ul,,

m—1 m—1
(13) Z:l Bju(e)ej* #0 or lim Z:l Aju(y)es | = oo

forall j € [s—1].
Then we have that there is a positive solution x € R’ for the following system,

m—1
(14) ApxP 7 4 3" Ay (0)xd ™t = dx" Y for all j € [5).
u=1

Proof. We divide the proof into three parts.
Part I. Let f:= (fr,,..., fr.) : R, — R}, with

1 m—1 =]
J1,() = [A (AIjX’Z}‘l +y Aj,u(x)x}f;l)] .

u=1

Since Aj; is weakly irreducible and A; ,(x)’s are tensors with entries being nonneg-
ative polynomials, f7, : R}, — Rlﬁl is well-defined when either |I;| > 1 or A7, >0
when [I;| = 1. The case when |[;| = 1 and A;;, = 0 is also well-defined, since (13)
implies the existence of a positive entry. Therefore, the map f : R}, — R%, is
well-defined.

Part II. Let A € Ny, , be the tensor with the principal subtensors Ay, for j € [s]
and such that it satisfies the polynomial systems

m—1
(AXm_l)Ij - Aljx}’;*l + Z ’Hj’u(x)x}‘jfl for all j € [s].
u=1

It follows from the second listed hypothesis and Proposition 6 that I; U--- U I = [n]
forms a partition for the tensor A. By Proposition 7, p(A) = max{p(Az,) : j €
[s]} < A
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Since A > p(A), it follows from Lemma 21 that there exists a vector y > 0 such
that

(15) Ay™ 1t < aylm=1l,
So, with 8 > 0, we have Sy > 0 and

B m—1 m—1]
f1,(By) =8 % (Al_j}’}?_l + Z ﬂ“mAj,u(ﬁy)y}fj_lﬂ

u=1

r m—1 m—1 [m—1]
1 — U—m UuU— U—m UuU—

by (Azj YR Y BT H W (By)y T+ Y BB u(BY)y Y 1)]
L u=1 u=1

- m—1 tm—1]
=5 % ((Aym‘l)z,- +> ﬁ“‘mBj,uwy)y?jl)]
L u=1
(16) < By,

for sufficiently large 8 > 0. Here, the inequality follows from (15) and the fact that
the maximal possible degree for the polynomials in the entries of each tensor B; ,(y)
is m—wu—1 for all w € [m — 1]. Since there are finite j’s, f(8y) < By for some
sufficiently large .

Part II1. Recall that Bj.(x) € T, 1,|(Ry[X[n)\1,]) is obtained by deleting poly-
nomials of degree m — u in each entry of Aj;,(x) for all u € [m — 1] and j € [s].

Let
m—1
P; := supp (Z Bjm(e)e?jl) CI
u=1

for all j € [s], and for j € [s — 1]

m—1
(17) Q;:= {Z cl;: tlggo Z ( Z Aj,u(xw)e?j_1> 0,

welji1U---Ulg u=1

with (x4)w =t and (xy), = 1 for the others}.

It follows from (12) that P, # (), and (13) that P;UQ; # 0 for j € [s—1]. Let Qs = 0.
Let W; :=Q, \ P, for j € [s].

For each j € [s], let the majorization matrix for A;, be M; € Rl_ijlxlljl. It follows
from the weak irreducibility that the directed graph G; = (V; = I, E;) associated
with M; is strongly connected for every j € [s]. Therefore, for any nonempty proper
subset K; C I; and t € I; \ Kj, there should be a directed path from ¢ to some
w € K, and the intermediate vertices in this path all come from the set I; \ K;. We
will generate a forest (a union of trees) T'= (I3 U--- U I, F') through the following
procedure: Algorithm 1.

We take a short break to show that the procedure is well-defined.

e Step 1 is well-defined, since W; C Q; and Q) is defined as (17).
e Note that P, UW; = P; UQ, # 0 for all j € [s].
e Step 3 is well-defined from the words before the procedure as well as Step 5.
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Algorithm 1. Forest Generating Algorithm.

The inputs are the directed graphs G; and the sets P; and W; for j € [s].
Step 0: Set F =0, j = s.
Step 1: If j = 0, stop; otherwise set J; = P; UW;. For each v € Wj, pick a
w € Ij11U--- Ul such that limtﬁoc(zzzll Aj,u(xw)e’[‘fl)v — 00, and add (v, w)
into F'. Go to Step 2. !
Step 2: Let K; = 1I1;\ J;, S; = 0. If K; =0, go to Step 4; otherwise, go to Step 3.
Step 3: Pick a vertex v € K\ 9, add a directed path in G; from v to some w € J;
with all intermediate vertices being distinct and in K; into 7', add all the vertices
in this path from Kj into S}, go to Step 4.
Step 4: If S; = K, go to Step 6; otherwise, go to Step 5.
Step 5: If there is v € K\ S; such that (v,w) € Ej; for some w € S}, put v into S;
and (v,w) into F, go to Step 4; otherwise go to Step 3.
Step 6: Set j =7 — 1, go to Step 1.

Since G; is strongly connected for all j € [s], the procedure should terminate in
finitely many steps. We note that the generated forest may not be unique. For every
edge (v,w) € F, the vertex v is a child of the vertex w, which is the parent of the
vertex v. A vertex with no child is a leaf, and a vertex with no parent is a root. An
isolated vertex is both a leaf and a root. It is easy to see from the above procedure
that every root is a vertex in Uj_, P;, and vice versa. It is also a fact that from every
vertex we can get a unique root along the directed edges. Therefore, we can define
the height of a vertex unambiguously as the length of the unique directed path from
it to the root. Thus, a root has height 1. The maximum height of the vertices in a
tree is the height of the tree, and the maximum height of the trees in a forest is the
height of the forest. We denote by h(T') the height of the forest T = (I; U---U I, F)
generated by Algorithm 1.

Let x be a positive vector, v > 0, and (v,w) € F. Obviously, v is not a root.
Suppose that v € I;. If w € I}, we have (v, w) € E; and

1

m—1 m—1
(fr; (7x))0 = [i ( Z Oig. iy Tig -+« Ty, +< Z 'ypmAM(vx)le) )]

12,..0,im €15 p=1
1 m—1
(18) > <)\am;...i;nl’z'2 Iz;,)
for some {ih,...,i,} € I}”fl such that
amé”_iin >0and w € {2/2, v 7i:n}7

since (v,w) € FN I]2 C Ej;. Therefore, when x,, is sufficiently large (f7,(7X))y > Y.
If wé I, then w € I 11 U---UI, is such that (cf. Algorithm 1)

t—o0

m—1
lim (Z Ajm(y)e‘;j_l) — 0o with y,, =t and y, = 1 for the other p € [n]\ {w}.
u=1 v

Moreover, we should have that v € W; (cf. Algorithm 1) and, therefore,

m—1
<Z Bj#(e)e?j_l) =0.
u=1

v
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Thus,
m—1 m—1
(St *) = (S wancom )
u=1 u=1

is a homogeneous polynomial of degree m — 1. Henceforth, if z,, is sufficiently large,
we have

v v

m—1
1 o _
(f1;(7%)e =7 |5 D uis i iy T, +< AP A ()] 1)
i p=1 v

> YLy

To get a desired vector x € R’ | such that f(x) > x, we can start with x = e
and leaves with height h(T). The case h(T) = 1 is trivial. Suppose that h(T) > 2
and L C (I U---UIs) \ (PLU---UPs) is the set of leaf vertices of height h(T'). Then,
we can set the parents of these leaves sufficiently large such that

(19) (f(vx))y > vz, for all v € L.

Second, let us consider the set L’ of vertices with height h(T) — 1 if A(T) > 2, which
includes the parents of L. Vertices in L’ are not roots. If we set the set P’ of the
parents of vertices in L’ sufficiently large, we can get

(f(yx))p > v, for all p € L.

It follows from the above analysis that we still withhold (19) when we increase z, for
p' € P’ if necessary. The next step is to consider the set L of vertices with height
h(T) — 2 if K(T') > 3, which includes the parents of L’. In this way, (f(7X))y > YZu
for all child vertices v € (I; U---UIs) \ (P1 U---U Ps) by increasing their parents
sufficiently large successively from vertices of height h(T) to vertices of height 2. Since
we have the constructed forest structure and any v € (I; U---UT)\ (P U---UPs) is
a child of some parent w € I; U--- U I, we can terminate the procedure in A(T) — 1
steps, and therefore get that

(f(9x))y > yay forallv e (L U---Ul) \ (PLU---UP)

for some positive x. Note that, we still have the freedom to choose v > 0.
Ifwe Py C PLU---UPsis aroot, then

m—1
(20) ( Z Bj,u(e)e§j1> >0

w

by definition. We have
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m—1

1 = _
Fromw=7 3 D i - .xz—m+< DA A )
12,y im €15 p=1 w
1
= ’7 [A < Z ami2<~-7;'rrzxi2 ttt 'ri'm
’ig,...,imEI]‘

1

m—1 m—1 m—1
’ ( S e+ Y vpmzsj,pwxil) )1
p=1 w

p=1

m—1 m—1
1 _
(21) > 7()\( > P B ()X 1) ) :

p=1

Note that the highest degree of entries in B; ,(x) is smaller than m — p — 1 for all
p € [m — 1]. This, together with (20), implies that the leading term of

m—1
(S5m0
p=1 w
1

is a term of = with positive coefficient for some integer v > 0. Therefore, if v > 0 is
sufficiently small, we definitely have

(f[j (%) w > V-
Since there are only finitely many roots, we have
(f(7%X))w > YTy for all w e Py U--- U P.

Therefore, we can find a x with v > 0 such that f(yx) > vyx and yx < By (cf. By
from Part IL.).
In summary,

f(yx) = yx and f(By) < By.
It then follows from Theorem 5 that there is a positive w € [yx, By] such that
f(w) =w.
It is nothing but a positive solution w to (14). |

LEMMA 23. Suppose that A € N, , is weakly irreducible, and A; € N, for
i=1,...,m —1 are such that

m—1

Z Aiei_l 75 0.
i=1
If for some XA > 0, there is a positive solution x € R, for the following system,
m—1
Ax™ b 4 Z Ax = axIm
i=1

then p(A) < A.
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Proof. Suppose, without loss of generality, that

m—1
I:={1,...,r} :=supp <Z Aieil)
i=1

for some r < n. It follows from the hypothesis that
(22) (Ax™ Y, < Az foralli =1,..., 7

If » = n, then the result follows from Theorem 4 directly.
In the following, we assume that r < n. Note that r > 0 by the assumption on
A;’s. We have
(Ax™ 1), = )\m;'lfl forall j=r+1,...,n.
By the weak irreducibility, there should be a j € J:={1,...,n}\ [ and an i € I such
that
Qjiy..i,, > 0 for some multiset {i,...,%y,} 3 1.

Therefore, there is a nonzero term in ZZ iy =1 Wiz iy Tig - - Ty involving the vari-
able x;. We can define a new positive vector, denoted also by x, through decreasing
x; a little bit. It follows from the nonnegativity of A that

(23) (Ax™ 1), < /\x;-”_l.

By the continuity, we can still withhold (22) for a sufficiently small decrease of z;, as
well as getting (23), while, as we can see, we get at least r + 1 strict inequalities now.
Inductively in this way, we can find a positive vector x such that

Ax™ 1 < axm1

The result then follows from Theorem 4. 0
5.3. Proof of Theorem 16.

Proof. In the proof, we assume all the notation in section 5.1. We prove the
sufficiency first.
For any j =s+1,...,r, we see that

(24) (Ax™ 1), = .Ajjx?;_l for all x € C™.

It follows from Theorem 4 that there exists a positive vector y; € Rtfﬁrl such that

Aryr =t = p(Ar)y" T = p(A)y Y forall j=s+ 1,1

Let x be an n-dimensional vector with x;, =y; for j = s+1,...,r and xp,u...u1,
indeterminant to be determined. It is sufficient to show that the following system of
. . s T
polynomials has a positive solution in R} :
m—1
—1 —1 —1 .
(25) AxP ™ 4 3 A, x5 = p(A)x" Y for all j € 8],
u=1

where A; ,(xx;) has the partition (11).

Note that x;,’s are given positive vectors for j = s+ 1,...,7. The indeterminant
variables are x;; for j € [s]. Therefore, the tensor formed by the polynomials of degree
m—uin Aj,(Xk,) is Hj(xr;) for any v € [m—1] and j € [s]. If for some j € [m—1],
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we have S7 l3]-7u(eKj)e1;j_1 = 0, then 37} Hjm(eLj)eq}j_l # 0 by item (c) in
Proposition 20. It follows from (a) in Proposition 20 that ZZL:_II Hj,u(th)e}‘j_l =0
with hy, = ey, for t € [j — 1] and hy, = 0 for the others. Therefore, a nonzero term
involving variables from ;1 U ---U I, occurs in some entry of one tensor H; ,(Xz,)
for some u € [m — 1J.

In summary, it follows from Proposition 20 that (12) and (13), as well as the
second hypothesis in Lemma 22, are fulfilled for the system (25). Therefore, by
Lemma 22, we can find a solution z € R‘_ﬂﬁh”ﬂ]s' for (25). Therefore, x with x;, =
zy, for j € [s] and x;; = y; for j =s+1,...,7 is a positive Perron vector of A.

For necessity, suppose that Ax™~! = Ax[™~! with x € R”, being a positive
eigenvector for some A > 0. By Theorem 4, A = p(A). The case for p(A) = 0 is
trivial. In the following, we assume p(.A) > 0. We have that for each I},

(Ax™ ) = p(A)xy Y.

If A;, is a genuine weakly irreducible principal subtensor of A, it follows from Propo-
sition 9 that
_ -1
Apxpt = p(A)x[;j ]

and Theorem 4 that p(A;z,) = p(A).
If Ay, is not a genuine weakly irreducible principal subtensor of A, it follows from
Proposition 9 that

m—1
AxP 4 > A (i, )X = p(A)x)
u=1
and ZZ:ll ./éljm(eKj)e‘I‘j_1 # 0, and from Lemma 23 that p(A;,) < p(A). The proof
is thus complete. ]

6. Algorithmic aspects. In order to get a canonical nonnegative partition for a
nonnegative tensor as in Proposition 9, we have to recursively partition the majoriza-
tion matrix of the nonnegative tensor and marjorization matrices of some induced
principal sub-tensors (cf. [13]).

6.1. Majorization matrix partition.

LEMMA 24. Let M4 = (my;) be the majorization matriz of A € Ny . If mi; =0
foralliel and j € It for some nonempty proper subset I C [n], then
(26) MAI = (MA)I'

Proof. Without loss of generality, we can assume that [ C— [p] for some positive
p < n. It follows from m;; =0 for all ¢ > p and j € [p] that

Giiy..i,, =0 for all i > p and (i2,...,0,) € I(1)U---UI(p).
Note that for any 7/ € T
My = Z ity iy = Z Q.. i s

(2, esim )EI(3) (32yeveyim )EL(3)
{iz,...,im }N[p]=0

where the rightmost summation only involves indices {iz,...,%n} C I. With the
definition for the majorization matrices for nonnegative tensors, we immediately get
(26). O
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In general, we do not simultaneously have both M., = (M), and M. A =
(MA)IG'
Ezample 1. Let A € N33 with entries

@123 = a213 = aszz = 1 and a;j, = 0 for the others.

Letting I = {3} = {1,2}°, we have

. 0 11 1 100 |01
Ma= (1) 8 } 7MA{S}_[]‘]_(MA){3}’M-A{l,2}_ 0 0 #(M-A){LZ}_ 1 0]

A partition Iy, ..., I of [n] is a refined partition of a partition Ji,...,Js of [n] if
Jj =1;, U---UIj for some ji,...,j; € [r] for all j € [s].

COROLLARY 25. Let M4 = (m;j) be the majorization matric of A € Ny, . If
A has a canonical nonnegative partition {I1,...,I.}, then M4 has an upper triangu-
lar block structure with diagonal blocks being {J1, ..., s} for which {I,...,I.} is a
refined partition.

With Corollary 25, we can get a canonical nonnegative partition for A € Ny, ,,
by first partitioning its majorization matrix M4 into (up to permutation) an upper
triangular block form with each diagonal block being irreducible, and then recursively
perform the partition to each principal subtensor induced by these irreducible diagonal
blocks. This improves the partition method proposed in [13].

6.2. Algorithms. Given a nonnegative tensor 4 € N,,,, one way to find a
canonical nonnegative partition as in Proposition 9 is by recursively partitioning the
majorization matrices of the induced principal subtensors (cf. Corollary 25). We will
denote by Algorithm P an algorithm which is able to find a canonical nonnegative
partition for any given nonnegative tensor. There is such an algorithm (cf. [13, sec-
tion 6]), which can be improved using section 6.1. Therefore, in the following, we will
assume that we have already computed a partition I) U--- U I,. = [n] with properties
described in Proposition 9. Let I541, ..., I be the genuine weakly irreducible blocks,
and R=1L U---Ul,.

If A is weakly irreducible, we can use the following algorithm to find the spectral
radius, together with the positive Perron vector in the 1-norm being one.

Note that when A € Ny, ,, is weakly irreducible, then A + 7 is weakly primitive
(cf. [13, 25]), where Z € N, , is the identity tensor. It follows that p(A)+1 = p(A+T).

PROPOSITION 26 (see [13, Theorem 4.1(iv)]). If B € Ny, ,, is weakly irreducible,
then the sequence {x(k)} generated by Algorithm 2 with A := B + I converges glob-
ally R-linearly to the positive Perron vector x* of B corresponding to p(B) satisfying
e'x* =1.

Next, we present an algorithm for determining whether a nonnegative tensor
A € N, ,, is strongly nonnegative or not, and finding a positive Perron vector when
it is.

It is easy to see that A = p(A) by Proposition 7.

PROPOSITION 27. For any given A € Np, n, if v is sufficiently small, then Algo-
rithm 3
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Algorithm 2. A Higher Order Power Method [13].
The input is a strictly nonnegative tensor A € Ny, ,,.

Step 0: Initialization: choose x(?) € R%, . Let k:=0.
Step 1: Compute

(i<k+1))[ﬁl
eT (x(kﬂ))[ﬁ]}’
(AC™)™ ),

(xm)m=t
(A®)™=1).

oy

gD = A(xR)ym=1 x(+1) .

« (X(k—i_l)) = INaxi<i<n

ﬁ (X(k+1)) = minlgign

Step 2: If a (x**V) = g (x*+) or a tolerance for a (x**+1) — g (x*+1) is
satisfied, stop. Otherwise, let k := k + 1, go to Step 1.

1. either terminates in Step 2 or Step 3, which concludes that A is not strongly
nonnegative and there does not exist a positive Perron vector for A,
2. or generates a sequence {zy} such that zx11 > zx and limg_, o 2, = 2, with

z. being a positive Perron vector of A (i.e., Az~ ! = p(A)sz_l]).

Algorithm 3. Positive Perron Vector Algorithm.

The input is a nonnegative tensor A € Ny, .
Step 0: Let v be a given small positive scalar. Find a canonical nonnegative
partition of A by Algorithm P with genuine weakly irreducible blocks 11, ..., I,
and R:=1L U---UlIj.
Step 1: For each j = 1,...,r, find the positive eigenvector x; € R'ji such that
Aljx;,"—l = p(AIj)x[m_” by Algorithm 2. If |I;] = 1 and Aj; = 0, then simply set

p(Ar;) =0 and x; 1.

Step 2: If max{p(A;,) : 5 = s+ 1,...,r} # min{p(Ar,) : j = s+ 1,...,7}, we
claim that A is not strongly nonnegative and no positive Perron vector exists; stop.
Otherwise, let A := max{p(Ay,):j=s+1,...,7}.

Step 3: If max{p(Ayz,) : j € [s]} > A, we claim that A is not strongly nonnegative
and no positive Perron vector exists; stop. Otherwise, let y € R} | with

yr, =x; forallj=s+1,...,7

Step 4: Let wg 1= y(x{,...,x1)T

Step 5: Compute
1
Wi = (AZZL—_ll)R e
k: N
and zj := (WL}’LG

Step 6: If wy, = wy_1 or a tolerance for |wy — wy_1]|2 is satisfied, stop. Otherwise,
let k:=k+ 1, go to Step 5.

) Zg = (Wa—,y;G)T, and k = 1.

)T
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Proof. The conclusion for termination in either Step 2 or Step 3 follows from
Theorem 16.

Suppose p(Az,) < p(A) for all j € [s] and p(Az,) = p(A) for j = s+ 1,...,7.
Then Algorithm 3 will execute Steps 4-6. It follows from the proof of Lemma 22 that
we can find positive vectors x and z, and sufficiently small x and sufficiently large g

such that
1 1
m—1 [m—1] m—1 [m—1]
((Au)\ )R> > kx and ((Av ) )R> < faz,
where u := (kx",y¢)", v = (B2',y}¢)", and y is defined as in Step 3. It also

follows from the proof of Lemma 22 that if x fulfills the above inequality, then each
positive 7 < k does also. Thus, for every sufficiently small v > 0, we can choose & to
make sure that wg € [kx, fz]. The convergent result then follows from Theorem 5. O

6.3. Numerical computation. All the experiments were conducted by MatLab
on a laptop with 2.5 GH Intel processor with 4 GB memory. We only tested third
order strongly nonnegative tensors for Algorithm 3. Details of the problems we tested
are given in Examples 2, 3, and 4. Algorithm 3 is terminated whenever

(27) | Az2 — Azl||5 < 1075 and ||wy — wy_1]|2 < 1076

Algorithm 3 successfully computed out a positive vector to satisfy the criteria (27)
for every tested case. Algorithm 2 was terminated when a(x®)) — B(x(*)) < 1076,

Ezample 2. The tensor A € Ng o with a partition
I = {1’2}, I := {374}7 I3 := {5’6}, Iy = {778}

and a unique genuine block Aj4. Note that we will simplify A;; as A; for j € [4]. The
weakly irreducible principal subtensors are as follows:

[0.4423  0.3309)] [0.2703  0.8217]
AGs D =1o 0106 04243 AEED = 107971 0.4200)

[0.3185  0.0900] [0.1363  0.4952]
A2 D = g sza1 17| MAG52 = {o6rsr 01807

[0.6664 0.6260] [0.7298  0.9823]
AsCn L) = g 0s35 0.6600] 4436520 = 8008 0.7600] °
Apeo1) = [0:3042 LO3IT) oy [L1045 10251

10.6636  0.5388| 10.5921  1.0561|

The other nonzero components of the tensor A are expressed by the following equa-
tions:
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0.8085x1x

_ 2 147

(Ax)r, = Aix], + <0.7551x2x6>

" 0.5880x¢x7 + 0.1548x32x8 + 0.1999x4 8 + 0.40703:%
0.7487x3x4 + 0.8256x326 + T4T8 ’

0.5606x3z5 + 0.9296x4
(AX)122A2X§2+< 3 50 4 7>

+ 09009502:175
0.5747x5xs + 0.8452x 26 + 0.7386x627 + 0.586022 4 0.246722 |

o, 0 0.14652525 + 0.18912,427
(AX)1, = AsxT, + <0.5801x6x8 0.28192,27 :

The spectral radii of Ay, As, Az, and Ay are, respectively (via Algorithm 2),
p(Ay) = 1.3183, p(As) = 1.2581, p(As) = 2.6317, and p(As) = 3.1253.

Therefore, p(A) = p(A4) = 3.1253 by Proposition 7. By Algorithm 2, we first com-
puted out the positive Perron vectors of A; with the 1-norm being one as x;, then we
use wo = 0.5(x],xJ,x0)T (i.e., v = 0.5 in Algorithm 3) as the initial point for our
fixed point iteration (i.e., Steps 5 and 6 in Algorithm 3). It took 0.65 seconds with

52 iterations to compute out a positive Perron vector of A:
x = (0.4462,0.4143,0.3808, 0.4446, 0.2943, 0.3055, 0.5257, O.4743)T

with the corresponding eigenvalue being p(.A) = 3.1253. The final residue of the eigen-
value equations is ||Ax? — 3.1253x[?||; = 9.2323 x 10~7. Figure 1 gives information
on the residue of the eigenvalue equations and the distance between two successive
iterations wy and wy_; in the iteration process. The magnitude is of logarithmic
order. It shows that the convergence is sublinear, as expected for the fixed point
iteration.

logarithmic residue vs iteration logarithmic successive error vs iteration

Iogw(resmue)
Ioglo(successive error)

EEEEEEEEEEEEEE 5 10 15 20 25
iteration iteration

F1a. 1. The logarithmic residue of the eigenvalue equations || Ax? — p(A)xLQ]HQ (left), and the
logarithmic successive error ||Wy — Wi_1l||2 (right) along with the iteration.



1768 SHENGLONG HU AND LIQUN QI

Ezample 3. In this example, we tested randomly generated nonnegative tensors.
Each tested tensor has the following canonical nonnegative partition with

LU, UlsUly

and a unique genuine weakly irreducible block Iy. The cardinality of |I4] is 10. We
tested two sets of Iy, Is, and I3.
Case I: |I1]| = 8,|I2] = 9,|I3] = 10, and
Case II: |I;| = 30,|I2| = 30,|I3] = 30.
The tensors were generated as follows:
1. Randomly generate A; € Nj 1, for i € [4]. The generated tensors all have
positive components, and, hence, are weakly irreducible.
2. Using Algorithm 2 to compute out the spectral radii of the above generated
tensors, denote the maximum of them by Ag.
3. Let Rt > 1 be a parameter and define A := A\gRt.
4. Generate the remaining components, satisfying conditions in Proposition 9,
of each system of polynomials (Ax?) 1; for j € [3] randomly with sparsity
den = 10%.
Then, we implemented Algorithm 3 to compute a positive Perron vector of the gen-
erated tensor A with the new Aj, being ﬁfu. Thus, A is strongly nonnegative,
and the hypothesis in Theorem 16 is satisfied. We tested various Rt according to the
following rule:
Case I: Rt(3) := 1.1 4 0.2¢ for all 4 € [50], and
Case II: Rt(3) := 2 + 0.2¢ for all i € [50].
We will refer to Rt as a measure of the ratio of the spectral radii. For both the cases,
the parameter v in Algorithm 3 was chosen as

v :=10"(1/Rt(3)) for i € [50].

For each case and each i € [50], we made ten simulations, and recorded the means
and standard variances of the numbers of iterations and the CPU time. Figure 2
contains the information for Case I, and Figure 3 for Case II. In each figure, we have
a subwindow for an enlarged part of the whole curve. We see from the figures that it

iteration number vs ratio of spectral radii cpu time vs ratio of spectral radii

03]

07,
2 06
05
04
03

15 s 35 4 45 5 85 6

iteration
cpu time

Fic. 2. The number of iterations (left), and the CPU time (right) along with the ratios of the
spectral radii (Case 1).
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iteration number vs ratio of spectral radii cpu time vs ratio of spectral radii

iteration
cpu time

Fic. 3. The number of iterations (left), and the CPU time (right) along with the ratios of the
spectral radii (Case I1).

iteration number vs block number cpu time vs block number

iteration
cpu time

i s s 7 s 6 7
block number block number

F1G. 4. The number of iterations (left), and the CPU time (right) along with the number of blocks.

is more efficient to compute a positive Perron vector x for a larger ratio of the spectral
radii. This is reasonable, for with larger Rt, max{|z;| : ¢ € Iy U I U I3} is smaller.
Thus, x is closer to the initial point.

Ezxample 4. This example tested tensors generated similarly to Example 3, with
the only difference being that the partitions are

Ii| == |L| =2 and |I;41] = 10 for i € [10]

with again a unique genuine weakly irreducible block I;,;;. The parameters were
chosen as follows:

Rt =2 and v = 0.5 x 1074 for all i € [10)].

The information was recorded in Figure 4. The magnitude is of logarithmic order.
We see that the computational effort increases exponentially along with the increase
of the number of blocks.
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conclusion, we see that Algorithm 3 works very well. The choice for the initial

point for the fixed iteration in Algorithm 3 should affect the performance dramatically.
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