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Abstract. The completely positive (CP) tensor verification and decomposition are essential
in tensor analysis and computation due to the wide applications in statistics, computer vision, ex-
ploratory multiway data analysis, blind source separation, and polynomial optimization. However,
it is generally NP-hard as we know from its matrix case. To facilitate the CP tensor verification
and decomposition, more properties for the CP tensor are further studied, and a great variety of
its easily checkable subclasses such as the positive Cauchy tensors, the symmetric Pascal tensors,
the Lehmer tensors, the power mean tensors, and all of their nonnegative fractional Hadamard pow-
ers and Hadamard products are exploited in this paper. Particularly, a so-called CP-Vandermonde
decomposition for positive Cauchy–Hankel tensors is established and a numerical algorithm is pro-
posed to obtain such a special type of CP decomposition. The doubly nonnegative (DNN) matrix
is generalized to higher-order tensors as well. Based on the DNN tensors, a series of tractable outer
approximations are characterized to approximate the CP tensor cone, which serve as potential useful
surrogates in the corresponding CP tensor cone programming arising from polynomial programming
problems.
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1. Introduction. Completely positive (CP) matrices have attracted consider-
able attention due to their applications in optimization, especially in creating convex
formulations of NP-hard problems, such as the quadratic assignment problem in com-
binatorial optimization and the polynomial optimization problems (see [2, 21, 3, 7] and
references therein). In recent years, an emerging interest in the assets of multilinear
algebra has been concentrated on the higher-order tensors, which serve as a numerical
tool, complementary to the arsenal of existing matrix techniques. In this vein, the
concept of CP matrices has been extended to higher-order CP tensors, which are con-
nected with nonnegative tensor factorization and have wide applications in statistics,
computer vision, exploratory multiway data analysis, blind source separation, and
higher degree polynomial optimization [14, 19, 33, 35]. As an extension of the CP
matrix, a CP tensor admits its definition in a pretty natural way as initiated by Qi,
Xu, and Xu in [33] and recalled below.

Definition 1.1. A real tensor A of order m and dimension n is said to be a CP
tensor if there exist an integer r and some n-dimensional nonnegative real vector u(k),

k = 1, . . . , r, such that A =
∑r

k=1(u
(k))m, where (u(k))m = (u

(k)
i1

· · ·u(k)
im

) is rank-one
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1676 ZIYAN LUO AND LIQUN QI

tensor generated by u(k). If further all the involved vectors u(k)’s can span the entire
n-dimensional Euclidean space, then A is said to be a strongly completely positive
tensor (SCP tensor).

The new defined concept in the second part of Definition 1.1 can be regarded as a
counterpart tailored for all order tensors comparing to the positive definiteness solely
customized for even-order tensors.

Practical applications have triggered the research on CP tensors both on theoret-
ical analysis and numerical computations. From [28, 30, 33], it has been known that
all CP tensors contribute a closed pointed convex cone in symmetric tensor space,
associated with the copositive tensor cone as its dual. Due to the NP-hardness of
the CP matrix verification, it is apparent that to check the membership of the CP
tensor cone is a hard task. Spectral properties, dominance properties, the Hadamard
product preservation property, and even a special structured subclass were proposed
for CP tensors [30, 33], which can be served as necessary or sufficient conditions for
CP tensor verification. An optimization algorithm based on semidefinite relaxation
was even proposed by Fan and Zhou in their recent work [19], from which either a
certificate would be provided for non-CP tensors or a numerical CP decomposition
would be obtained. Additionally, numerical optimization for the best fit of CP ten-
sors with given length of decomposition was formulated as a nonnegative constrained
least-squares problem in Kolda’s more recent paper [22].

In this paper, more properties will be emphasized and exploited for CP tensors,
and a series of easily checkable structured CP tensors will be discussed as subclasses
of CP tensors. All these will to some extent facilitate the CP tensor verification
and decomposition. For example, as a noteworthy observation, the zero-entry dom-
inance property turns out to be a very powerful tool to exclude some higher-order
tensors, such as the well-known signless Laplacian tensors of nonempty m-uniform
hypergraphs with m ≥ 3, from the class of CP tensors. More importantly, besides
the subclass of strongly symmetric hierarchically dominated nonnegative tensors as
introduced in [33], more subclasses of CP tensors of any order (even or odd) are pro-
vided, which include positive Cauchy tensors, (generalized) symmetric Pascal tensors,
(generalized) Lehmer tensors, power mean tensors, and their nonnegative fractional
Hadamard powers and Hadamard products. These easily checkable subclasses will
certainly provide checkable sufficient conditions for the CP tensor verification and
hence serve as a rich variety of testing instances for CP decomposition methods. As
a more special type of structured CP tensor, the positive Cauchy–Hankel tensor is
proved to admit a CP decomposition in a nonnegative Vandermonde manner. An
algorithm is then proposed to pursue this special CP decomposition for low-order
low-dimensional cases.

It is known that optimization programming over CP tensor cones was employed
to reformulate polynomial optimization problems which are not necessarily quadratic
[28]. In spite of the better tightness of CP cone relaxation comparing to the well-
known positive semidefinite relaxation, the former one is still not efficiently tractable
especially for large scale cases. As a popular relaxation strategy, the doubly non-
negative (DNN) matrix cone is always treated as a surrogate to the CP matrix cone
[39], since testing the membership of the DNN matrix cone can be done in O(n3) for
n×n matrices. Inspired by this relaxation scheme, a tensor counterpart for the DNN
matrix is introduced based on sum-of-squares (SOS) tensors which can be verified
in polynomial time via semidefinite programming [23, 24], and a series of tractable
outer approximations for CP tensor cones are proposed by employing a similar idea
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CP TENSORS 1677

from [17], for potential useful surrogates of CP tensor cone programming arising from
polynomial programming problems.

The rest of the paper is organized as follows. In section 2, we briefly review some
related concepts and properties on symmetric tensors. Basic properties on general
CP tensors and SCP tensors will be presented in section 3. Several easily checkable
subclasses of CP tensors are provided and discussed in section 4. Section 5 is de-
voted to the CP decomposition with rank-one Vandermonde tensor terms for positive
Cauchy–Hankel tensors, supplied with a numerical algorithm for achieving such a spe-
cial CP decomposition. Tractable relaxations for the CP tensor cone are developed in
section 6 based on the DNN tensors, and concluding remarks are drawn in section 7.

Some notation that will be used throughout the paper is listed here. Denote
[n] := {1, 2, . . . , n}. The n-dimensional real Euclidean space is denoted by Rn, where
n is a given natural number. The nonnegative orthant in R

n is denoted by R
n
+, with

the interior Rn
++ consisting of all positive vectors. The n-by-l real matrix space is

denoted by Rn×l. Vectors are denoted by lowercase letters such as x, u, matrices are
denoted by capital letters such as A, P , and tensors are written as calligraphic capital
letters such as A, B. For any i ∈ [n], e(i) denotes the ith column vector of the identity
matrix. The space of all real mth order n-dimensional tensors is denoted by Tm,n, and
the space of all symmetric tensors in Tm,n is denoted by Sm,n. For a subset Γ ⊆ [n],
|Γ| stands for its cardinality. Adopting the notation in the literature (see, e.g., [33]),
CPm,n and COPm,n are used to denote the sets of all CP tensors and all copositive
tensors of orderm and dimension n, respectively. In addition, SCPm,n and SCOPm,n

are used to stand for the set of all strongly CP tensors and the strictly copositive
tensors, respectively. The set of all symmetric positive semidefinite (positive definite)
tensors is denoted by PSDm,n (PDm,n) for convenience. The sets of all DNN tensors
and SOS tensors of order m and dimension n are denoted by DNNm,n and SOSm,n.
m is restricted to be even in the cases of PSDm,n, PDm,n, and SOSm,n.

2. Preliminaries. Some basic concepts for symmetric tensors are recalled in this
section. Let A = (ai1...im) ∈ Tm,n be an mth order n-dimensional real tensor. A is
called a symmetric tensor if the entries ai1...im are invariant under any permutation of
their indices for all ij ∈ [n] and j ∈ [m]. A symmetric tensor A is said to be positive
semidefinite (definite) if Axm :=

∑
i1,...,im∈[n] ai1...imxi1 · · ·xim ≥ 0(> 0) for any

x ∈ Rn\{0}. Here, xm is a rank-one tensor in Sm,n defined as (xm)i1...im := xi1 · · ·xim

for all i1, . . . , im ∈ [n]. Evidently, when m is odd, A could not be positive definite
and A is positive semidefinite if and only if A = O, where O stands for the zero
tensor. A tensor A ∈ Tm,n is said to be (strictly) copositive if Axm ≥ 0 (> 0) for
all x ∈ Rn

+ \ {0}. The definitions on eigenvalues of symmetric tensors are recalled as
follows.

Definition 2.1 (see [29]). Let A ∈ Sm,n and C be the complex field. We say that
(λ, x) ∈ C × (Cn \ {0}) is an eigenvalue-eigenvector pair of A if Axm−1 = λx[m−1],
where Axm−1 and x[m−1] are all n-dimensional column vectors given by

(2.1)
(Axm−1

)
i
:=

∑
i2,...,im∈[n]

aii2...imxi2 · · ·xim ,
(
x[m−1]

)
i
= xm−1

i , ∀i ∈ [n].

If the eigenvalue λ and the eigenvector x are real, then λ is called an H-eigenvalue of
A and x an H-eigenvector of A associated with λ.

Definition 2.2 (see [29]). Let A ∈ Sm,n and C be the complex field. We say
that (λ, x) ∈ C× (Cn \ {0}) is an E eigenvalue-eigenvector pair of A if Axm−1 = λx
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1678 ZIYAN LUO AND LIQUN QI

and xTx = 1, where Axm−1 is defined as in (2.1). If the E-eigenvalue λ and the
E-eigenvector x are real, then λ is called a Z-eigenvalue of A and x a Z-eigenvector
of A associated with λ.

Some related algebraic operations for tensors are reviewed to close this section.
For any given A = (ai1...im), B = (bi1...im) ∈ Tm,n, the Hadamard product of A and
B is defined as (ai1...imbi1...im) ∈ Tm,n, termed as A ◦ B. For any given nonnegative
A = (ai1...im) ∈ Tm,n and any given nonnegative real scalar α, we can also define
the corresponding nonnegative fractional Hadamard power as A◦α := (aαi1...im) ∈
Tm,n. For any given nonnegative matrix P = (pij) ∈ Rl×n, we can define a linear
transformation as follows:

(2.2) Pm(A) :=

⎛⎝ ∑
j1,...,jm∈[n]

aj1···jmpi1j1 · · · pimjm

⎞⎠ ∈ Sm,l ∀A = (ai1...im) ∈ Sm,n.

3. Basic properties of completely positive tensors. CP tensors play an
important role in combinatorial optimization and polynomial optimization problems
[28]. It has been shown that the set of all CP tensors form a closed, pointed, convex,
full-dimensional cone CPm,n [28, Proposition 1] with its dual cone COPm,n consisting
of all copositive tensors [28, 33]. Obviously, these two cones are dual to each other
and are both actually closed, convex, pointed, and full-dimensional. To test the
membership of CPm,n, Fan and Zhou [19] provided an optimization algorithm based
on semidefinite relaxation. Besides the Fan–Zhou algorithmic verification, properties
for CP-tensors can sometimes help us to verify the complete positivity of tensors
more directly, such as to exclude the tensor in question from CPm,n, or to ensure the
membership under certain algebraic operations that preserve the complete positivity
for tensors. This section mainly focuses on this type of verification issues.

Definition 3.1. A tensor A ∈ Sm,n is said to have the zero-entry dominance
property if ai1...im = 0 implies that aj1...jm = 0 for any (j1, . . . , jm) satisfying {j1, . . . ,
jm} ⊇ {i1, . . . , im}.

Proposition 3.2 (see [33, Theorem 3]). If A is a CP tensor, then A has the
zero-entry dominance property.

Utilizing the zero-entry dominance property, we can exclude some special sym-
metric nonnegative tensors from the class of CP tensors very efficiently. A typical
example is the following signless Laplacian tensor of a uniform hypergraph.

Definition 3.3 (see [31]). Let G = (V,E) be an m-uniform hypergraph. The
adjacency tensor of G is defined as the mth order n-dimensional tensor A whose
(i1, . . . , im)th entry is

ai1...im =

{ 1
(m−1)! if {i1, . . . , im} ∈ E;

0 otherwise.

Let D be an mth order n-dimensional diagonal tensor with its diagonal element di...i
being di, the degree of vertex i, for any i ∈ [n]. Then Q := D+A is called the signless
Laplacian tensor of the hypergraph G.

Note that signless Laplacian tensors are symmetric nonnegative tensors.

Proposition 3.4. The signless Laplacian tensor of a nonempty uniform m-hyper-
graph for m ≥ 3 is not CP.
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CP TENSORS 1679

Proof. Suppose thatm ≥ 3 andG is a nonempty uniformm-hypergraph. Suppose
that (j1, . . . , jm) is an edge of G. Let Q = (qi1···im) ∈ Sm,n be the signless Laplacian
tensor of G. By definition, qj1...jm = 1

(m−1)! �= 0. Note that qj1j1...j1j2 = 0 by

Definition 3.3. Obviously, the zero-entry dominance property fails and hence Q is not
CP.

The zero-entry dominance works well for the CP verification of some Hankel
tensors, whose definition is recalled here.

Definition 3.5 (see [32]). Let A = (ai1...im) ∈ Tm,n. If there is a vector
v = (v0, . . . , v(n−1)m)T ∈ R(n−1)m+1 such that

ai1...im = vi1+···+im−m, ∀ij ∈ [n], j ∈ [m],

then we say that A is an mth order n-dimensional Hankel tensor. Let t := 	 (n−1)m+2
2 
+

1 and A = (aij) be a t× t Hankel matrix with aij := vi+j−2, where v2t is an additional
number when (n− 1)m is odd. If A is positive semidefinite, then A is called a strong
Hankel tensor. Suppose A is a Hankel tensor with its Vandermonde decomposition
A =

∑r
k=1 αk(u

(k))m, where u(k) := (1, ξk, . . . , ξ
n−1
k )T , ξk ∈ R, for all k ∈ [r]. If

αk > 0 for all k ∈ [r], then A is called a complete Hankel tensor.

Proposition 3.6. Let A ∈ Sm,n be a Hankel tensor, and v = (v0, . . . , v(n−1)m)T ∈
R(n−1)m+1 be its generating vector.

(i) If v0 = v(n−1)m = 0, then A ∈ CPm,n if and only if A = O.
(ii) If A ∈ CPm,n and v(i−1)m = 0 for some 2 ≤ i ≤ n − 1, then v0 ≥ 0,

v(n−1)m ≥ 0, and A = v0e
m
1 + v(n−1)memn .

(iii) If v0 = 0 and vj �= 0 for some j ∈ [m− 1], then A is not CP.

Proof. (i) It is trivial that O is a CP tensor. If A is CP and v0 = v(n−1)m = 0,
then a1i2...im = 0 for all i2, . . . , im ∈ [n]. Thus vj = 0 for any j ∈ [(m− 1)n+ 1−m].
When n = 2, then A = O. When n ≥ 3, n ≥ 2 + 1

m−1 , which implies that m ≤
(m − 1)n+ 1 −m. Thus a2...2 = 0. Using the zero-entry dominance property again,
we get vj = 0 for all j ∈ [(m− 1)n+ 2−m]. Keeping on doing this, we can find that
for any given k ∈ [n−1], vj = 0 for all j ∈ [(m−1)n+k−1−m]; then ak...k = 0 since
n ≥ k + 1

m−1 . The zero-entry dominance property and the fact v(n−1)m = 0 finally
give us A = O. Thus (i) is obtained. Using a similar proof as in (i), we can prove that
ak...k = 0 for all k = 2, . . . , n − 1. Thus, the zero-entry dominance property shows
A = v0e

m
1 + v(n−1)memn . By the nonnegativity of A, v0 and v(n−1)m are nonnegative.

This implies the assertion in (ii). By Definition 3.5, we know that a1...1 = 0. The
hypothesis vj �= 0 for some j ∈ [m− 1] tells us that ai1...im �= 0 for all i1, . . . , im ∈ [n]
satisfying that i1 + · · · + im = j +m ≤ 2m− 1. In all these cases, 1 ∈ {i1, . . . , im}.
Thus, the zero-entry dominance property fails and hence A is not a CP tensor from
Proposition 3.2. This leads to (iii).

In [13], the Toeplitz matrix has been generalized to high-order tensors, where a
tensor A = (ai1...im) ∈ Tm,n is called an mth order n-dimensional Toeplitz tensor if
for all ij ∈ [n− 1] and all j ∈ [m], ai1...im = ai1+1...im+1.

Proposition 3.7. Let A be a Toeplitz tensor with its diagonal entry 0. Then A
is CP if and only if A = O.

Proof. The sufficiency is trivial. If A is CP and a1...1 = 0, by the definition of
Toeplitz tensors, we have ai...i = 0 for all i ∈ [n]. Invoking the zero-entry dominance
property in Proposition 3.2, it follows that A = O.
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1680 ZIYAN LUO AND LIQUN QI

The Hadamard product preserves the complete positivity as shown in [33, Propo-
sition 1]. It also preserves the strong complete positivity as stated below. The
Hadamard product preservation property for CP tensors plays an important role in
identifying some easily checkable subclasses of CP tensors as we will see in section 4.
Additionally, it is worth pointing out that the Hadamard product does not preserve
positive semidefiniteness and the SOS property, as shown by examples in [31] and
[26]. Thus, it is an important feature of CP and SCP tensors.

Proposition 3.8. For any given two SCP tensors A, B ∈ Sm,n, A◦B is also an
SCP tensor.

Proof. We first claim that if U = (u(1) u(2) . . . u(n)), V = (v(1) v(2) . . . v(n)) are
any two nonsingular matrices in Rn×n, then
(3.1)
span{u(1) ◦ v(1), u(1) ◦ v(2), . . . , u(1) ◦ v(n), u(2) ◦ v(1), u(2) ◦ v(2), . . . , u(n) ◦ u(n)} = R

n.

The nonsingularity of U indicates that u(1), u(2), . . . , u(n) can form a basis for Rn.
Thus, we can find aik, i, k ∈ [n], such that

(3.2) e(i) =

n∑
k=1

aiku
(k) ∀i ∈ [n],

where there exists at least one nonzero element among ai1, . . . , ain for any i ∈ [n].
The equalities in (3.2) derive that

(3.3) e(i) ◦ v(j) =
n∑

k=1

aik

(
u(k) ◦ v(j)

)
∀i, j ∈ [n].

By the nonsingularity of V , it follows that 0 �= det(V ) =
∑

σ∈Sn
sgn(σ)Πn

i=1v
(i)
σi ,

where σ = (σ1, . . . , σn) is a permutation of [n], sgn(σ) is the signature of σ, and Sn

is the set of all permutations of [n]. Thus, there always exists some permutation σ

such that Πn
i=1v

(i)
σi �= 0. Without loss of generality, we assume that σ = (1, 2, . . . , n),

that is, v
(i)
i �= 0 for all i ∈ [n]. This together with (3.3) yields that

v
(i)
i e(i) =

n∑
k=1

aik

(
u(k) ◦ v(i)

)
∀i ∈ [n],

which indicates that e(i) =
∑n

k=1
aik

v
(i)
i

(u(k) ◦ v(i)) for all i ∈ [n]. Thus, {e(1), . . . , e(n)}
can be linearly expressed by {u(i)◦v(j)}i,j=1,...,n, and our claim is proved. Now we con-
sider any two SCP tensors A and B with their corresponding nonnegative rank-one de-

compositions A =
∑r

i=1(u
(i))m, and B =

∑r
′

j=1(v
(j))m, where span{u(1), . . . , u(r)} =

span{v(1), . . . , v(r′)} = R
n. Easily we can verify that A◦B =

∑r
i=1

∑r
′

j=1(u
(i)◦v(j))m.

The involved u(i) ◦ v(j) is certainly nonnegative by the nonnegativity of u(i) and v(j)

for all i, j ∈ [n]. Note that r and r
′
should be no less than n. Therefore, we can

always pick up n vectors from {u(1), . . . , u(r)} to form a basis of Rn. Let’s simply say

they are u(1), . . . , u(n). Similarly, we can do this to v(1), . . . , v(r
′
) and get n linearly

independent vectors, namely, v(1), . . . , v(n). The aforementioned claim tells us that
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CP TENSORS 1681

all involved vectors u(i) ◦ v(j), i, j ∈ [n], can span the whole space Rn, which means
A ◦ B is strongly CP.

The spectral property on SCP tensors is proposed which reveals the phenomenon
that among CP tensors, the SCP tensors serve as the counterpart of PD tensors among
PSD tensors. This is the primary motivation to introduce this new concept. By
adopting the notation Ēm,n(H) := {A ∈ Sm,n : all H-eigenvalues of A are nonzero}
and Ēm,n(Z) := {A ∈ Sm,n : all Z-eigenvalues of A are nonzero}, we know that for
any even integer m ≥ 2, PDm,n = PSDm,n ∩ Ēm,n(H), and PDm,n = PSDm,n ∩
Ēm,n(Z). The relation between CPm,n and SCPm,n are exactly the same, which is
even valid for both even and odd-order cases.

Theorem 3.9. CPm,n ∩ Ēm,n(H) = SCPm,n, CPm,n ∩ Ēm,n(Z) = SCPm,n.

Proof. Suppose that A is an SCP tensor. Write A as A =
∑r

k=1(u
(k))m, where

u(k) ∈ Rn
+ and

(3.4) span{u(1), . . . , u(r)} = R
n.

Assume on the contrary that A has λ = 0 as one of its H-eigenvalues, and the
corresponding H-eigenvector is x. Certainly x �= 0. When m is even, we have

0 = λ

n∑
i=1

xm
i = Axm =

r∑
k=1

(
xTu(k)

)m
.

The nonnegativity of each term in the summation on the right-hand side immediately
leads to xTu(k) = 0 for all k ∈ [r]. Invoking the condition in (3.4), x has no choice but
0, which comes to a contradiction since x is an H-eigenvector. Thus, all H-eigenvalues
of A are nonzero when the order is even. When m is odd, we have

0 = λxm−1
i =

(Axm−1
)
i
=

r∑
k=1

(
xTu(k)

)m−1

u
(k)
i ∀i ∈ [n].

Together with the involved nonnegativity of each term in the summation on the right-
hand side, it yields that

(3.5)
(
xTu(k)

)m−1

u
(k)
i = 0 ∀i ∈ [n].

In addition, the condition (3.4) implies that we can pick n vectors from the set
{u(1), . . . , u(r)} to span the whole space Rn. Without loss of generality, let’s say
they are u(1), . . . , u(n). Trivially, for any k ∈ [n], u(k) �= 0. Therefore, there always

exists an index ik ∈ [n] such that u
(k)
ik

�= 0. Thus (3.5) implies that xTu(k) = 0
for all k ∈ [n]. This immediately leads to x = 0. The same contradiction arrives
and hence all H-eigenvalues of A should be nonzero when m is odd. On the other
hand, we take any tensor A ∈ CPm,n ∩ Ēm,n(H) with its nonnegative rank-one de-
composition as A =

∑r
k=1(u

(k))m with u(k) ∈ Rn
+ for all k ∈ [r]. Assume on the

contrary that A /∈ SCPm,n, which means span{u(1), . . . , u(r)} �= R
n. Thus, there

exists an x ∈ Rn \ {0} such that xTu(k) = 0 for all k ∈ [r]. This immediately gives us
Axm =

∑r
k=1(x

Tu(k))m = 0, which is actually a contradiction to A ∈ Ēm,n(H) since
0 is now an H-eigenvalue of A. Similarly, we can prove the Z-eigenvalue case. This
completes the proof.

An immediate observation from the nonzero property ofH-(Z-)eigenvalues of SCP
tensors in the above theorem is that for any CP decomposition of an SCP tensor, the
involved nonnegative vectors will always span the entire Euclidean space.
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1682 ZIYAN LUO AND LIQUN QI

4. Easily checkable CP tensor subclasses. Several structured tensors are
introduced and proved to be CP tensors in this section, which serve as easily checkable
subclasses of CP tensors.

4.1. Positive Cauchy tensors.

Definition 4.1 (see [12]). Let c = (c1, . . . , cn)
T ∈ Rn with ci �= 0 for all i ∈ [n].

Suppose that C = (ci1...im) ∈ Tm,n is defined as

ci1...im =
1

ci1 + · · ·+ cim
∀ij ∈ [n], j ∈ [m].

Then, we say that C is an mth order n-dimensional symmetric Cauchy tensor and
the vector c is called the generating vector of C.

Theorem 4.2. Let C ∈ Sm,n be a Cauchy tensor and c = (c1, . . . , cn)
T ∈ Rn be

its generating vector. The following statements are equivalent:
(i) C is CP.
(ii) C is strictly copositive.
(iii) c > 0.
(iv) The function fC(x) := Cxm is strictly monotonically increasing in Rn

+.

Proof. The implication “(ii) ⇒ (iii)” follows readily from 0 < Cemi = 1
mci

for any
i ∈ [n]. To get “(iii) ⇒ (i),” we can employ the proof in [10, Theorem 3.1] that for
any x ∈ Rn, it yields that

Cxm =
∑

i1,...,im∈[n]

ci1···imxi1 · · ·xim =
∑

i1,...,im∈[n]

xi1 · · ·xim

ci1 + · · ·+ cim

=
∑

i1,...,im∈[n]

∫ 1

0

tci1+···+cim−1xi1 · · ·ximdt

=

∫ 1

0

⎛⎝ ∑
i1,...,im∈[n]

tci1+···+cim−1xi1 · · ·xim

⎞⎠ dt =

∫ 1

0

(
n∑

i=1

tci−
1
mxi

)m

dt.

Note that∫ 1

0

(
n∑

i=1

tci−
1
mxi

)m

dt = lim
k→∞

∑
j∈[k]

(
n∑

i=1

(
j

k

)ci− 1
m

xi

)m

/k

= lim
k→∞

∑
j∈[k]

(
n∑

i=1

(
j

k

)ci− 1
m

xi/k
1
m

)m

=: lim
k→∞

∑
j∈[k]

(〈uj , x〉)m

with

uj :=

(
(j/k)

c1− 1
m

k
1
m

, . . . ,
(j/k)

cn− 1
m

k
1
m

)T

∈ R
n
+ ∀j ∈ [k].

By setting Ck :=
∑

j∈[k](u
j)m, it follows that C = limk→∞ Ck and Ck ∈ CPm,n. The

closedness of CPm,n leads to C ∈ CPm,n. This implies (i). Conversely, if (i) holds,
then C is certainly copositive, which deduces that 0 ≤ Cemi = 1

mci
for all i ∈ [n]. Thus

(iii) holds. Next we prove the equivalence between (iii) and (iv). Assume that (iii)
holds; for any distinct x, y ∈ Rn

+, satisfying x ≥ y, i.e., there exists an index i ∈ [n]
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CP TENSORS 1683

such that xi > yi, we have

fC(x)−fC(y) = Cxm−Cym =
∑

i1,...,im∈[n]
(i1,...,im) �=(i,...,i)

xi1 · · ·xim − yi1 · · · yim
ci1 + · · ·+ cim

+
xm
i − ymi
mci

> 0.

Thus (iv) is obtained. Conversely, if fC(x) is strictly monotonically increasing in Rn
+,

then for any i ∈ [n], 0 < fC(ei) − fC(0) = 1
mci

, which implies that c > 0. Besides, by
setting x ∈ Rn

+\{0} and y = 0, the strict monotonically increasing property of fC also
implies that Cxm > 0. Thus (iii) and (ii) hold.

Proposition 4.3. For any given Cauchy tensor C ∈ Tm,n with its generating
vector c = (c1, . . . , cn)

T ∈ Rn, if c > 0, then the following statements are equivalent:
(i) c1, . . . , cn are mutually distinct.
(ii) C is strongly CP.

Proof. When m is even, the desired equivalence can be derived from [12, Theo-
rem 2.3] and Theorem 3.9. Now we consider the case that m is odd. To show the
implication “(i)⇒ (ii),” we assume on the contrary that 0 is an H-eigenvalue of C
with its associated H-eigenvector x. Then for any i ∈ [n], we have

0 =
(Cxm−1

)
i
=

∑
i2,...,im∈[n]

xi2 · · ·xim

ci + ci2 + · · ·+ cim

=
∑

i2,...,im∈[n]

∫ 1

0

tci+ci2+···+cim−1xi2 · · ·ximdt

=

∫ 1

0

tci

⎛⎝∑
j∈[n]

tcj−
1

m−1xj

⎞⎠m−1

dt,

which implies that
∑

j∈[n] t
cj− 1

m−1xj ≡ 0 for all t ∈ [0, 1]. Thus,

x1 + tc2−c1x2 + · · ·+ tcn−c1xn = 0 ∀t ∈ [0, 1].

By the continuity and the condition that all components of c are mutually distinct,
it follows readily that x1 = 0. Then we have x2 + tc3−c2x2 + · · · + tcn−c2xn = 0 for
all t ∈ [0, 1], which implies x2 = 0. By repeating this process, we can gradually get
x = 0, which contradicts to the assumption that x is an H-eigenvalue. Thus (ii) is
obtained. Conversely, to show “(ii)⇒ (i),” we still assume by contrary that c1, . . . , cn
are not mutually distinct. Without loss of generality, we assume that c1 = c2. By
setting x ∈ Rn with x1 = −x2 = 1 and other components 0, we find that for any
i ∈ [n],

(Cxm−1
)
i
=

∫ 1

0

tci

⎛⎝∑
j∈[2]

tcj−
1

m−1xj

⎞⎠m−1

dt

=

∫ 1

0

tci
(
tc1−

1
m−1 − tc2−

1
m−1

)m−1

dt = 0,

which indicates that 0 is an H-eigenvalue of C. A contradiction to C ∈ E++
m,n arrives.

This completes the proof.

4.2. Symmetric Pascal tensors. It is well-known that Pascal matrices have
served as a convenient way to represent the famous Pascal’s triangle and have found
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1684 ZIYAN LUO AND LIQUN QI

many applications in numerical analysis, filter design, image and signal processing,
probability, combinatorics, numerical analysis, and electrical engineering [1, 8]. The
symmetric Pascal matrix can also be extended to higher-order symmetric tensors as
follows.

Definition 4.4. The tensor P = (pi1···im) ∈ Sm,n is called the symmetric Pascal
tensor if

pi1···im =
(i1 + · · ·+ im −m)!

(i1 − 1)! · · · (im − 1)!
∀i1, . . . , im ∈ [n].

Furthermore, let c = (ci) ∈ Rn be a nonnegative vector. The tensor P(c) = (p
(c)
i1···im) ∈

Sm,n is called a generalized symmetric Pascal tensor generated by c if

p
(c)
i1···im =

Γ(ci1 + · · ·+ cim + 1)

Γ(ci1 + 1) · · ·Γ(cim + 1)
∀i1, . . . , im ∈ [n],

where Γ(·) is the gamma function.

Obviously, by setting ci = i − 1 for all i ∈ [n], P(c) reduces to the symmetric
Pascal tensor. This is the reason why a “generalized symmetric Pascal tensor” is used
for P(c).

Proposition 4.5. Let c = (ci) ∈ R
n be any given nonnegative vector and P(c) =

(p
(c)
i1···im) ∈ Sm,n be the corresponding generalized symmetric Pascal tensor. Then P(c)

is a CP tensor.

Proof. By employing the following infinite product definition of the gamma func-
tion

Γ(t) = lim
k→∞

k!kt

t(t+ 1) · · · (t+ k)
∀t ≥ 0,

we can rewrite the entries of P(c) as

p
(c)
i1···im = lim

k→∞
1

(k · k!)m−1
Πk+1

l=1

(ci1 + l) · · · (cim + l)

(ci1 + · · ·+ cim + l)
∀i1, . . . , im ∈ [n].

For any given positive integer k and any integer l ∈ [k + 1], denote

Pl := Diag(c1 + l, . . . , cn + l) ∈ S2,n, Cl :=
(

1

ci1 + · · ·+ cim + l

)
∈ Sm,n,

Pl :=

(
(ci1 + l) · · · (cim + l)

(ci1 + · · ·+ cim + l)

)
∈ Sm,n, P(k) :=

1

(k · k!)m−1
Πk+1

l=1

(ci1 + l) · · · (cim + l)

(ci1 + · · ·+ cim + l)
.

It is easy to verify that

(4.1) Pl = Pm(Cl), P(k) =
1

(k · k!)m−1
P1 ◦ · · · ◦ Pk+1, P(c) = lim

k→∞
P(k),

where Pm(·) is defined as in (2.2). In view of Theorem 4.2, [26, Theorem 2.2], [33,
Proposition 1], and the closedness of the CP tensor cone, we can get the complete
positivity of P(c) as desired.

4.3. Lehmer tensors. The Lehmer matrix, named after D. H. Lehmer, is well-
known as an important type of test matrices used to evaluate the accuracy for matrix
inversion programs due to fact that their exact matrix inverses are known [20, 27]. It
can be naturally extended to higher-order tensors as defined in the following.
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CP TENSORS 1685

Definition 4.6. The tensor A = (ai1···im) ∈ Sm,n with ai1···im = min{i1,...,im}
max{i1,...,im}

for all i1, . . . , im ∈ [n] is called the Lehmer tensor. Let c = (ci) ∈ R
n be a positive

vector and A = (ai1···im) ∈ Sm,n with ai1···im =
min{ci1 ,...,cim}
max{ci1 ,...,cim} for all i1, . . . , im ∈ [n].

Then A is called a generalized Lehmer tensor generated by c.

Proposition 4.7. Let c = (ci) ∈ Rn be a positive vector and A ∈ Sm,n be the
corresponding generalized Lehmer tensor generated by c. Then A is a CP tensor. If
additionally all components of c are mutually distinct, then A is an SCP tensor.

Proof. Without loss of generality, we assume that all components in c are in a
nondecreasing order, i.e., 0 < c1 ≤ c2 ≤ · · · ≤ cn. Denote

B = (bi1···im) ∈ Sm,n with bi1···im =
1

max{ci1 , . . . , cim} ∀i1, . . . , im ∈ [n],

and

D = (ci1···im) ∈ Sm,n with ci1···im = min{ci1 , . . . , cim} ∀i1, . . . , im ∈ [n].

Apparently, A = B ◦ D. Observations

B =
1

cn

(
n∑

i=1

ei

)m

+

(
1

cn−1
− 1

cn

)(n−1∑
i=1

ei

)m

+ · · ·+
(

1

c1
− 1

c2

)
(e1)

m

and

D = c1

(
n∑

i=1

ei

)m

+ (c2 − c1)

(
n∑

i=2

ei

)m

+ · · ·+ (cn − cn−1) (en)
m

yield the desired complete positivity of C since the Hadamard product preserves the
complete positivity as shown in [33, Proposition 1]. Here ei ∈ R

n is the ith standard

basis vector. Furthermore, note that both {∑k
i=1 ei}nk=1 and {∑n

i=k ei}nk=1 can span
the entire space Rn. The property that the Hadamard product can also preserve the
strongly complete positivity as established in Proposition 3.8 leads to the remaining
part of the desired assertion.

Corollary 4.8. The Lehmer tensor is an SCP tensor.

Proof. The desired result follows directly from Proposition 4.7 by setting ci = i
for each i ∈ [n].

4.4. The fractional Hadamard powers and power mean tensors. In the
literature of matrix analysis, the fractional Hadamard powers have been introduced
to characterize the so-called infinite divisibility for nonnegative symmetric positive
semidefinite matrices, in which the positive semidefiniteness maintains for all of their
fractional Hadamard powers with all nonnegative real exponents [5]. It is known that
the Hadamard product preserves the CP of tensors, which immediately implies that
the positive integer Hadamard powers of CP tensors are still CP. A natural question
is, Does this property holds for any nonnegative fractional Hadamard powers of CP
tensors? The answer is negative since counterexamples can be found in the matrix
case: A = [1 1 0; 1 2 1; 0 1 1] = (1 1 0)T (1 1 0) + (0 1 1)T (0 1 1) is a CP matrix,

but its 1/2 Hadamard power A◦ 1
2 has an eigenvalue 1+

√
2−

√
11−2

√
2

2 < 0 and hence
is not a CP matrix anymore. Inspired by the infinite divisibility of the positive
Cauchy matrix, the Lehmer matrix, and the Pascal matrix [5], we will show that
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1686 ZIYAN LUO AND LIQUN QI

all nonnegative fractional Hadamard powers preserve the complete positivity of the
corresponding structured CP tensors. This property comes trivially for (generalized)
Lehmer tensors by definition. And for positive Cauchy tensors, we have the following.

Theorem 4.9. Let c = (c1, . . . , cn)
T ∈ Rn be a positive vector and C =

( 1
ci1+···+cim

) ∈ Sm,n be its generated positive Cauchy tensor. For any nonnegative

scalar α ∈ R, the fractional Hadamard power of C, termed as C◦α := ( 1
(ci1+···+cim )α ) ∈

Sm,n is still a CP tensor.

Proof. It is trivial for the case when α = 0. For any α > 0, using the formula of
gamma function

Γ(ν) =

∫ ∞

0

e−ttν−1dt ∀ν ∈ (0,∞),

we can get

1

(ci1 + · · ·+ cim)
α =

∫ ∞

0

e−t(ci1+···+cim ) t
α−1

Γ(α)
dt

=

∫ ∞

0

e−(ci1+···+cim )(t̃Γ(α)α)
1/α

dt̃

=

∫ 1

0

e−(ci1+···+cim )( 1−μ
μ Γ(α)α)1/α dμ

μ2
.

Thus, for any x = (x1, . . . , xn)
T ∈ Rn,

C◦αxm =
∑

i1,...,im∈[n]

∫ 1

0

e−(ci1+···+cim )( 1−μ
μ Γ(α)α)

1/α

xi1 · · ·xim

dμ

μ2

=

∫ 1

0

∑
i1,...,im∈[n]

e−(ci1+···+cim )( 1−μ
μ Γ(α)α)

1/α

xi1 · · ·xim

dμ

μ2

=

∫ 1

0

⎛⎝∑
i∈[n]

e−ci( 1−μ
μ Γ(α)α)

1/α

xi

⎞⎠m

dμ

μ2

= lim
ε→0

⎛⎝∫ ε

0

⎛⎝∑
i∈[n]

e−ci( 1−μ
μ Γ(α)α)1/αxi

⎞⎠m

dμ

μ2

+

∫ 1

ε

⎛⎝∑
i∈[n]

e−ci( 1−μ
μ Γ(α)α)

1/α

xi

⎞⎠m

dμ

μ2

⎞⎠
= lim

ε→0

∫ 1

ε

⎛⎝∑
i∈[n]

e−ci( 1−μ
μ Γ(α)α)

1/α

xi

⎞⎠m

dμ

μ2

= lim
ε→0

lim
k→∞

∑
j∈[k]

⎛⎝∑
i∈[n]

e−ci( k−j(1−ε)
j(1−ε)

Γ(α)α)
1/α

xi

⎞⎠m

k

j2(1− ε)2

=: lim
ε→0

lim
k→∞

∑
j∈[k]

(〈uj,ε, x〉)m ,D
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CP TENSORS 1687

where uj,ε := ( k
j2(1−ε)2 )

1
m (e−c1(

k−j(1−ε)
j(1−ε)

Γ(α)α)1/α , . . . , e−cn(
k−j(1−ε)
j(1−ε)

Γ(α)α)1/α)T ∈ Rn
+.

By the closedness of CPm,n, we conclude that C◦α is a CP tensor for any α ≥ 0.

Corollary 4.10. Let c = (ci) ∈ Rn be any given nonnegative vector and P(c) =

(p
(c)
i1···im) ∈ Sm,n be the corresponding generalized symmetric Pascal tensor. Then

(P(c))◦α is a CP tensor for any α ∈ R+.

Proof. This follows directly from the continuity of function f(t) = tα on [0,∞)
for any nonnegative α, Theorem 4.9, and (4.1) in the proof of Proposition 4.5.

Several much-studied classes of mean matrices are shown to be infinite divisible
(see, e.g., [6]). Inspired by this, we will generalize the power mean matries among
them to higher-order tensors and further discuss the complete positivity of these power
mean tensors and their fractional Hadamard powers as well.

Definition 4.11. Let c = (c1, . . . , cn)
T ∈ Rn

+. For any extended real value t ∈
[−∞,+∞], define M(t) = (mi1...im) ∈ Sm,n as

mi1...im =

(
1

m

m∑
k=1

ctik

)1/t

∀ij ∈ [n], j ∈ [m],

i.e., each element mi1...im is the t-power mean of ci1 , . . . , cim . Then, we say that M(t)

is an mth order n-dimensional t-power mean tensor and the vector c = (c1, . . . , cn)
T ∈

Rn is called the generating vector of M(t).

Proposition 4.12. Let c = (c1, . . . , cn)
T ∈ Rn be positive, M(t) = (mi1...im) ∈

Sm,n be the t-power mean tensor generated by c, and its entrywise reciprocal tensor
W(t) := ( 1

mi1...im
) ∈ Sm,n. We have

(i) for any t ∈ [−∞, 0], and any α ∈ R+, the fractional Hadamard power
(M(t))◦α is a CP tensor;

(ii) for any t ∈ [0,+∞], and any α ∈ R+, the fractional Hadamard power
(W(t))◦α is a CP tensor.

Proof. Things are trivial for t = 0 since the all-one tensor is a CP tensor. (i) By
Definition 4.11, for any t ∈ [−∞, 0) and any α ∈ R+,

mα
i1...im =

(
1

cti1/m+ · · ·+ ctim/m

)−α/t

∀ij ∈ [n], j ∈ [m],

which indicates that (M(t))◦α is actually a nonnegative fractional Hadamard power
of the positive Cauchy tensor A := ( 1

cti1
/m+···+ctim/m

) ∈ Sm,n. Thus, the desired result

follows directly from Theorem 4.9. (ii) is a direct consequence of Theorem 4.9.

Remark 4.13. Specific examples of power mean tensors are listed as follows.
(i) “Min” tensor: t = −∞, M(−∞) = (min{ci1 , . . . , cim}) ∈ Sm,n. Without loss

of generality, we may assume that all components in c are in a decreasing
order. Then the CP decomposition of its fractional Hadamard power is

(
M(−∞)

)(◦α)
= cαn

(
n∑

i=1

ei

)m

+ (cαn−1 − cαn)

(
n−1∑
i=1

ei

)m

+ · · ·+ (cα1 − cα2 ) (e1)
m ∀α ≥ 0.
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1688 ZIYAN LUO AND LIQUN QI

(ii) Harmonic mean tensor: t = −1, M(−1) = ( m
ci1+···+cim

) ∈ Sm,n, which is a

positive Cauchy tensor generated by c
m .

(iii) Geometric mean tensor: t = 0, M(0) = ( m
√
ci1 · · · cim) ∈ Sm,n. Appar-

ently, the CP decompositions of (M(0))◦α and its entrywise reciprocal tensors
(W(0))◦α are (

M(0)
)◦α

=
(
c◦

α
m

)m
,
(
W(0)

)◦α
=
(
c◦(−

α
m)
)m

.

(iv) Arithmetic mean tensor: t = 1, M(1) = ( 1
m (ci1 + · · · + cim)) ∈ Sm,n. Ob-

viously, the corresponding entrywise reciprocal tensor W(1) is exactly the
positive Cauchy tensor M(−1).

(v) Root-mean-square tensor: t = 2, M(2) = (
√

1
m (c2i1 + · · ·+ c2im)) ∈ Sm,n. It is

easy to see that the corresponding entrywise reciprocal tensor W(2) is exactly
the fractional Hadamard power of the positive Cauchy tensor generated by
c◦2
m with the fractional exponent 1

2 .

(vi) “Max” tensor: t = +∞, M(+∞) = (max{ci1 , . . . , cim}) ∈ Sm,n. Without loss
of generality, we assume that the positive generating vector c = (c1, . . . , cn)
of C is in an increasing order, i.e., 0 < c1 ≤ c2 ≤ · · · ≤ cn. Then the CP
decomposition of the fractional Hadamard power of its entrywise reciprocal
tensor W(+∞) is

(
W(+∞)

)◦α
=

1

cαn

(
n∑

i=1

ei

)m

+

(
1

cαn−1

− 1

cαn

)(n−1∑
i=1

ei

)m

+ · · ·+
(

1

cα1
− 1

cα2

)
(e1)

m ∀α ≥ 0.

5. CP-Vandermonde decomposition for positive Cauchy–Hankel ten-
sors. It has been known from Remark 4.13 that several types of power mean tensors
including the “Min” tensor, the geometric mean tensor, and its entrywise recipro-
cal tensor, the entry-wise reciprocal of “Max” tensor, together with their Hadamard
products and fractional Hadamard powers, can be decomposed in the CP way easily.
But for other general positive Cauchy tensors, their CP decompositions are not that
direct to be obtained. Recall that a tensor A = (ai1...im) ∈ Sm,n is called the Hilbert
tensor if ai1...im = 1

i1+···+im−m+1 [36]. Obviously, the Hilbert tensor is a positive
Cauchy tensor with mutually distinct components of its generating vector, and hence
strongly CP from Proposition 4.3. And it is also a Hankel tensor [12]. Thus, a natural
question is, Do we have some special property for the class of tensors which are both
positive Cauchy tensors and Hankel tensors in terms of the CP decomposition? A
positive answer is given in the following theorem in which a CP decomposition in a
Vandermonde manner (CP-Vandermonde decomposition) for positive Cauchy–Hankel
tensors is established.

Theorem 5.1. Let A ∈ Sm,n be a positive Cauchy–Hankel tensor. Then there
exist real numbers α1, . . . , αr and mutually distinct nonnegative numbers ξ1, . . . , ξr
with an integer r satisfying �m(n−1)+1

2 � ≤ r ≤ n(m− 1) + 1 such that

(5.1) A =

r∑
k=1

αk

(
u(k)
)m

, αk > 0, u(k) := (1, ξk, . . . , ξ
n−1
k )T ≥ 0 ∀k ∈ [r].
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CP TENSORS 1689

Proof. Denote N = (n−1)m+1. By the definition of Cauchy–Hankel tensors, we
can find some nonzero a and b ∈ R such that A = ( 1

a+b(i1+···+im) ). Let c ∈ Rn with

ck = a
m + kb for all k ∈ [n] and denote h := ( 1

a+bm , 1
a+b(m+1) , . . . ,

1
a+bmn )

T ∈ RN . It

is easy to verify that the corresponding Cauchy tensor generated by c and the Hankel
tensor generated by h are both exactly A. By setting y ∈ RN with yi =

1
2hi

for all

i ∈ [N ], it is easy to verify that the Cauchy matrix Ã := ( 1
yi+yj

) ∈ S2,2m(n−1)+1 is

also a Hankel matrix whose generating vector is(
h1,

2h1h2

h1 + h2
, h2,

2h2h3

h2 + h3
, h3, . . . ,

2hN−1hN

hN−1 + hN
, hN

)T

.

The vector y = (yi) ∈ RN is a positive vector and has all components mutually distinct

due to the properties of h. Thus, Ã is a positive definite Hankel matrix. Invoking [37,

Lemma 0.2.1], Ã admits a Vandermonde decomposition with nonnegative coefficients,
that is, there exist scalars τ1, . . . , τN ∈ R and positive scalars β1, . . . , βN such that

(5.2) Ã =

N∑
k=1

βkv
(k)(v(k))T , where v(k) =

(
1, τk, τ

2
k , . . . , τ

N−1
k

)T ∀k ∈ [N ].

The positive definiteness of Ã indicates that all βk’s are positive and τ1, . . . , τN are
mutually distinct. By taking ζk = τ2k for all k ∈ [N ], it follows readily that these ζk’s

have at least �m(n−1)+1
2 � distinct values and for any j ∈ [N ],

hj =

N∑
k=1

βkζ
j−1
k .

Let r be the number of distinct values of ζk’s and denote all those distinct values to
be ξ1, . . . , ξr. Then ξ1, . . . , ξr are nonnegative as ζk = τ2k for all k ∈ [N ]. Immediately,
we can get those αk’s from βk’s in (5.2) to decompose the Hankel tensor A generated
by h as required in (5.1).

For positive Cauchy–Hankel tensors, the aforementioned CP-Vandermonde de-
composition may not be unique. Such a decomposition with fewer rank-one terms
will absolutely be more attractive and important for saving the storage cost. A pos-
sible way to get a numerically CP-Vandermode decomposition for a given positive

Cauchy–Hankel tensor with the least terms (r = �m(n−1)+1
2 �) of rank-one terms in

(5.1) will then be proposed. Before establishing the numerical algorithm, the following
proposition is stated for theoretical preparation.

Proposition 5.2. Let N be any given positive integer and h = ( 1
a+bi) ∈ RN be

any given positive vector with some nonzero a and b ∈ R. Then the Hankel matrix
generated by ĥ = (h1, 0, h2, 0, . . . , 0, hN)T is positive definite.

Proof. Take ci = hi

2 for all i ∈ [N ] to generate a positive Cauchy matrix A =
( 1
ci+cj

) ∈ RN×N . Since c has all its components mutually distinct, A is then pos-

itive semidefinite. By direct calculation, A is also a Hankel matrix generated by
h̃ = (h1,

h1h2

h1+h2
, h2, . . . ,

2hN−1hN

hN−1+hN
, hN )T ∈ R2N−1 and hence admits a Vandermonde

decomposition

A =

N∑
k=1

αkv
(k)(v(k))T , αk > 0, v(k) := (1, ζk, . . . , ζ

N−1
k )T ≥ 0
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1690 ZIYAN LUO AND LIQUN QI

with all mutually distinct ζk’s. Apparently, hj =
∑N

k=1 αkζ
2(j−1)
k for all j ∈ [N ],

which immediately allows us to write the Hankel matrix generated by ĥ, say Â, as

Â =

N∑
k=1

αk

(
(v(k)(v(k))T + (x(k)(x(k))T

)
= A+

N∑
k=1

αk(x
(k)(x(k))T

with x(k) := (1,−ζk, . . . , (−ζk)
N−1)T . Since all αk’s are positive and A is positive

definite, the desired positive definiteness of Â comes directly.

The above proposition provides us a simple way to compute the CP-Vandermonde
decomposition for a positive Cauchy–Hankel tensor corresponding to h by factoriz-
ing the corresponding positive definite Hankel matrix generated by ĥ as defined in
the proposition. Thus, based on [16, Algorithm 2], we can pursue the desired CP-
Vandermonde decomposition for any given positive Cauchy–Hankel tensor as follows.

Algorithm 1. CP-Vandermonde decomposition for positive Cauchy–Hankel tensors.

Input: Parameters a, b ∈ R, the order m, and the dimension n to generate a positive

Cauchy–Hankel tensor A =
(

1
a+b(i1+···+im)

)
∈ Sm,n;

Output: The coefficients αk’s and the poles ξk’s to generate a CP-Vandermonde
decomposition of A as described in (5.1);

Step 0 Set N = m(n − 1) + 1, ĥ = (h1, 0, h2, 0, h3, . . . , 0, hN)T ∈ R2N−1 with hi =
1

a+b(m−1+i) . Let H ∈ S2,N be the corresponding Hankel matrix generated

by h̄.
Step 1 Compute w = H−1d(h̄), where d(h̄) ∈ RN with (d(h̄))i = h̄i+N for all

i ∈ [N − 1] and (l(h̄))N = γ, γ ∈ R is arbitrary;
Step 2 Compute the roots κ1, . . . , κN of the polynomial p(κ) = κN − wNκN−1 −

· · · − w2κ− w1.
Step 3 Solve the Vandermonde linear system Aᾱ = u(h̄), where A = (aij) ∈ S2,N

with aij = ξi−1
j , and u(h̄) ∈ RN is the subvector of h̄ formed by its first N

components.
Step 4 Set ξk = κ2

ik
, and αk = ᾱk for all k ∈ [N ].

Return: αk, ξk for k ∈ [r].

To get a computationally least number of rank-one items in the CP-Vandermonde
decomposition from Algorithm 1, we simply choose γ = 0 to get an approximate CP-

Vandermonde decomposition of only �m(n−1)+1
2 � terms with a very promising high

accuracy. In this case, Step 1 in Algorithm 1 indicates that

(5.3)

⎛⎜⎜⎜⎝
h2 h3 · · · hr hr+1

h3 h4 · · · hr+1 hr+2

...
...

...
...

...
hr hr+1 · · · hN−2 hN−1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

w2

w4

...
wN−2

wN

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎠
when N is even, and

(5.4)

⎛⎜⎜⎜⎝
h1 h2 · · · hr−1 hr

h2 h3 · · · hr hr+1

...
...

...
...

...
hr−1 hr · · · hN−1 hN−2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

w1

w3

...
wN−2

wN

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎠D
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Table 1

CP-Vandermonde decomposition of the Hilbert tensor in S4,6.

k 1 2 3 4 5 6 7 8 9 10 11
αk 0.0083 0.0304 0.0685 0.1010 0.1254 0.1396 0.1426 0.1340 0.1145 0.0857 0.0500
ξk 0 0.9881 0.9383 0.8530 0.7390 0.6056 0.4635 0.3243 0.1992 0.0984 0.0301

Table 2

CP-Vandermonde decomposition with inputs (m, n, a, b) = (3, 8, 0.1, 0.25).

k 1 2 3 4 5 6 7 8 9 10 11
αk 0.0749 0.1636 0.2213 0.2327 0.2007 0.1437 0.0843 0.0390 0.0132 0.0028 0.0002
ξk 0.9926 0.9606 0.9026 0.8200 0.7170 0.5992 0.4739 0.3488 0.2321 0.1314 0.0538

Table 3

CP-Vandermonde decomposition with inputs (m, n, a, b) = (5, 5,−20.4, 5).

k 1 2 3 4 5 6 7 8 9 10 11
αk 0.0025 0.0061 0.0139 0.0206 0.0258 0.0292 0.0304 0.0294 0.0260 0.0205 0.0130
ξk 0 0.9880 0.9379 0.8519 0.7372 0.6031 0.4605 0.3210 0.1961 0.0959 0.0286

when N is odd. In both cases, it is easy to verify that the coefficient matrices are
positive definite Cauchy matrices and hence contribute the unique zero solution for
the involved wi’s. This further derives that if κ is solution to the polynomial p(κ) in
Step 3, and then −κ is also a solution. If we modify Step 4 in Algorithm 1 to be

Step 4′: Reorder the sequence {(κ1, ᾱ1), . . . , (κN , ᾱN )} in the nondecreasing
order with respect to the first component of each pair to get {(κi1 , ᾱi1),
. . . , (κiN , ᾱiN )}, and set ξk = κ2

ik
, αk = ᾱik + ᾱiN−k+1

, for all k ∈ [r] with

r = �m(n−1)+1
2 �,

then the positive Cauchy–Hankel tensor A can be approximately decomposed as in

(5.1) with only r = �m(n−1)+1
2 � terms. Numerical examples are listed to show the

performance of the algorithm with Step 4′.

Example 5.3. (1) For the Hilbert tensor (i.e., a = 1−m, b = 1) with m = 4 and
n = 6, we can get a CP-Vandermonde decomposition as in (5.1) with αk’s and ξk’s
as in Table 1. The Frobenius norm of the residual is 6.217e-13. (2) Randomly choose
real numbers a and b and positive integers m and n such that the generated Cauchy–
Hankel tensor A ∈ Sm,n has all entries positive. For low-order low-dimensional cases,
for example, N = (n − 1)m+ 1 ≤ 23, applying Algorithm 1 with Step 4′ can always
give us a CP-Vandermonde decomposition as in (5.1). Two instances are listed as
follows with the accuracies 2.179e-11 and 6.074e-13, respectively.

However, for high-dimensional or high-order cases, polynomials in Step 2 may fail
to admit all roots in the real field and hence the algorithm will not work anymore;
probably efforts should be made on an appropriate choice of γ in Step 1. More efficient
and effective algorithms are then needed in such a case.

6. Tractable relaxations of CP tensors. Analogous to the matrix case, the
concept of DNN tensors is introduced to serve as a tractable relaxation for CP tensors.

Definition 6.1. An even-order symmetric tensor A = (ai1...im) is said to be a
DNN tensor if all of its entries are nonnegative and the corresponding polynomial

Axm :=

n∑
i1,...,im=1

ai1...imxi1 · · ·xim
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is an SOS. An odd-order symmetric tensor A = (ai1...im) is said to be a DNN tensor
if all its entries are nonnegative and for every i ∈ {1, . . . , n},

Aix
m−1 :=

∑
j1,...,jm−1

aij1···jm−1xj1 · · ·xjm−1

is an SOS.

The following observation follows trivially from Definitions 6.1 and 1.1.

Proposition 6.2. Any CP-tensor is a DNN tensor.

Many even-order structured tensors have been shown to be SOS in [11]. Together
with the augmented Vandermonde decomposition for strong Hankel tensors that was
proposed by Ding, Qi, and Wei in [16], it is easy to verify that in the setting of
even-order symmetric and nonnegative tensors, the (generalized) diagonally dominant
tensor, the H-tensor with nonnegative diagonal entries, the MB0-tensor, and the
strong Hankel tensor are all DNN tensors. However, the aforementioned structured
tensors of odd order may not be DNN tensors anymore. A weak version of DNN
tensors is then introduced due to the following spectral property of DNN tensors.

Lemma 6.3. A DNN tensor has all H-eigenvalues nonnegative.

Proof. The desired nonnegativity follows directly from Definitions 6.1 and 2.1,
and the equivalence between the positive semidefiniteness and the nonnegativity of
all H-eigenvalues for real symmetric tensors as stated in [29, Theorem 5].

Definition 6.4. A nonnegative symmetric tensor is said to be a weak DNN ten-
sor if all its H-eigenvalues are nonnegative.

Noting that nonnegative tensors always have H-eigenvalues [38], the above con-
cept is well-defined for tensors of any order (even or odd). Even though the weak DNN
property of a tensor is hard to verify due to the complexity of checking nonnegativity
of the minimal H-eigenvalue, this property coincides with the DNN property in the
matrix case. Moreover, we can also show that several structured tensors are weak
DNN tensors in the setting of nonnegative symmetric tensors of any order. Related
concepts are recalled as follows.

Definition 6.5. Let A = (ai1···im) ∈ Tm,n.
(1) [40, Definition 3.14] A is called a diagonally dominant tensor if

(6.1) |aii...i| ≥
∑

(i2,...,im) �=(i,...,i)

|aii2...im | ∀i ∈ [n].

A is said to be strictly diagonally dominant if the strict inequality holds in
(6.1) for all i ∈ [n].

(2) [15, 34] A is called a (strictly) generalized diagonally dominant if there exists
some positive diagonal matrix D such that the tensor AD1−m D · · ·D︸ ︷︷ ︸

m−1

defined

as ⎛⎝AD1−m D · · ·D︸ ︷︷ ︸
m−1

⎞⎠
i1...im

= ai1...imd1−m
i1

di2 · · · dim , ∀ij ∈ [n], j ∈ [m],

is (strictly) diagonally dominant.

D
ow

nl
oa

de
d 

11
/2

7/
16

 to
 1

28
.1

78
.1

31
.1

13
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CP TENSORS 1693

(3) [15, 34] A is called a Z-tensor if there exists a nonnegative tensor B and
a real number s such that A = sI − B. A Z-tensor A = sI − B is said
to be an M -tensor if s ≥ ρ(B), where ρ(B) is the spectral radius of B. If
s > ρ(B), then A is called a strong M -tensor. The comparison tensor of a
tensor A = (ai1...im) ∈ Tm,n, denoted by M(A), is defined as

(M(A))i1...im :=

{ |ai1...im | if i1 = · · · = im;
−|ai1...im | otherwise.

A is called an H-tensor (strong H-tensor) if its comparison tensor M(A) is
an M -tensor (strong M -tensor).

(4) [25, Definition 4] Let A = (ai1···im) ∈ Tm,n and B = (bi1···im) ∈ Tm,n with
bi1i2···im = βi1(A), where βi(A) := max j2,...,jm∈[n]

(i,j2,...,jm) �=(i,i,...,i)

{0, aij2...jm}. A is

called an MB0- (MB-)tensor if A− B is an M -(a strong M -)tensor.

Proposition 6.6. Let A be any given nonnegative symmetric tensor. If one of
the following conditions holds

(i) A is a generalized diagonally dominant tensor,
(ii) A is an H-tensor,
(iii) A is an MB0-tensor,
(iv) A is a strong Hankel tensor,

then A is a weak DNN tensor.

Proof. It suffices to show the nonnegativity of all H-eigenvalues of the corre-
sponding involved tensor. This desired nonnegativities for cases (i) and (ii) have been
indicated in [15, 34].

To get (iii), it is known from [25, Theorem 7] that for any nonnegative sym-
metric MB0-tensor A, either A is a symmetric M -tensor itself or we have A =
M+

∑s
k=1 hkEJk , where M is a symmetric M -tensor, s is a positive integer, hk > 0,

Jk ⊂ [n], and EJk ∈ Sm,n with (EJk)i1···im = 1 for all {i1, . . . , im} ⊆ Jk and oth-
erwise 0 for k = 1, . . . , s. When m is even, the desired nonnegativity is trivial
from the positive semidefiniteness of A. When m is odd, the assertion is obvious
when A is an M -tensor itself. To show for the latter case, we first claim that for
any symmetric M -tensor M and any vector x ∈ R

n \ {0}, there always exists some
i ∈ supp(x) := {i ∈ [n] : xi �= 0} such that (Mxm−1)i ≥ 0. Assume on the contrary
that there exists some nonzero x such that for any i ∈ supp(x), (Mxm−1)i < 0. Let
αi = −(Mxm−1)i/x

m−1
i for all i ∈ supp(x). Obviously, αi > 0 for all i ∈ supp(x).

Thus, (M̄ +
∑

i∈supp(x) αi(e
(i))m)x̄m−1 = 0, where M̄ is the principal subtensor of

M and x̄ the subvector of x generated by the index set supp(x). This contradicts
the fact that M̄ +

∑
i∈supp(x) αi(e

(i))m is a strong M -tensor by the property of M -
tensors. Our claim then succeeds. Now for anyH-eigenvalue λ ofA with its associated
H-eigenvector x, we have

λxm−1
i =

(Axm−1
)
i
=
(Mxm−1

)
i
+

s∑
k=1

hk

(EJkxm−1
)
i
∀i ∈ [n].

From our claim, we can find some i ∈ supp(x) such that (Mxm−1)i ≥ 0 and hence

λ = (Axm−1)i
xm−1
i

≥ 0.
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For (iv), it is known from [16] that a strong Hankel tensor A always possesses an
augmented Vandermonde decomposition

A =

r−1∑
k=1

αk

(
u(k)
)m

+ αr

(
e(n)
)m

,

where αk > 0, u(k) = (1, ξk, . . . , ξ
n−1
k )T ∈ Rn, ξk ∈ R, for all k ∈ [r−1], αr ≥ 0. When

m is even, the desired nonnegativity is obvious from the positive semidefiniteness of A.
Now we consider the odd-order case. For any H-eigenvalue λ of A with its associated
eigenvector x ∈ Rn \ {0}, we have

λxm−1
i =

(Axm−1
)
i
=

{ ∑
k∈[r−1]

(
xTu(k)

)m−1
u
(k)
i + xm−1

n if i = n;∑
k∈[r−1]

(
xTu(k)

)m−1
u
(k)
i otherwise.

If xTu(k) = 0 for all k ∈ [r − 1], it is easy to see that for any i ∈ [n] with xi �= 0,

λ = (Axm−1)i
xm−1
i

≥ 0. If there exists some k̄ ∈ [r − 1] such that xTu(k̄) = 0, then

λxm−1
1 =

∑
k∈[r−1](x

Tu(k))m−1 ≥ (xTu(k̄))m−1 > 0, which indicates that λ > 0. This
completes the proof.

The gap existing between DNN matrices and CP matrices has been extensively
studied [9, 4, 18]. The remaining part of this section will be devoted to the equivalence
and the gap between the tensor cones DNNm,n and CPm,n. It is known from the
literature of matrices that any rank-one matrix is CP if and only if it is nonnegative.
This also holds for higher-order tensors as the following proposition demonstrates.

Proposition 6.7. A rank-one symmetric tensor is CP if and only if it is non-
negative.

Proof. The necessity is trivial by definition. To show the sufficiency, note that for
any rank-one symmetric tensor A = λxm to be nonnegative, we have x �= 0, λ �= 0,
and λxi1 · · ·xim ≥ 0 for all i1, . . . , im ∈ [n]. If x has only one nonzero element, the
desired statement holds immediately. If there exists at least two nonzero elements, we
claim that all nonzero elements should be of the same sign. Otherwise, if xi > 0 and
xj < 0, then λxm−1

i xj and λxm−2
i x2

j will not be nonnegative simultaneously. Thus all
elements in x are either nonnegative or nonpositive. When m is even, we can easily
get λ > 0. Thus A is CP. If m is odd, we can get that λ1/mx ≥ 0. Thus A is CP.

The above proposition provides a special case that CPm,n coincides withDNNm,n.
Generally, there exists a gap between DNNm,n and CPm,n. For example, any sign-
less Laplacian tensor (always nonnegative and diagonally dominant) of a nonempty
m-uniform hypergraph with any even m ≥ 4 lies in the gap Q ∈ DNNm,n \ CPm,n

by Proposition 3.4. Recall from [4] that for any matrix A ∈ S2,n, if A is of rank 2 or
n ≤ 4 , A ∈ DNN2,n if and only if A ∈ CP2,m. In other words, DNN2,n = CP2,n

for these two cases. How about higher-order tensors? We answer this question in a
negative way as follows.

Proposition 6.8. Let m ≥ 4 be even and n ≥ 2. Then{
α
(
e(i) − e(j)

)m
+ αem : i, j ∈ [n], i �= j, α ∈ R++

}
⊆ DNNm,n \ CPm,n.

Proof. For simplicity, denote GAP := {α(e(i) − e(j))m + αem : i, j ∈ [n], i �=
j, α ∈ R++}. Then for any A = (ai1...im) ∈ GAP , it follows by definition that
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A ∈ DNNm,n. Additionally, it is easy to verify that A is rank-two. However, as
we can see, ai...ij = 0 and ai...ijj = 2. This indicates that A breaks the zero-entry
dominance property. Thus A ∈ DNNm,n \ CPm,n.

The aforementioned gap between DNNm,n and CPm,n drives us to consider
tighter relaxations for CPm,n. By employing the idea from [17] for the matrix
case, an approximation hierarchy for the CP tensor cone can be proposed based
on the higher-order DNN tensors. For the sake of convenience, we introduce a lin-
ear operator Gr : Sm+r,n → Sm,n for any nonnegative integer r as follows: for any
Z = (zi1···irj1···jm) ∈ Sm+r,n,
(6.2)

Gr(Z) := (gj1···jm) ∈ Sm,n with gj1···jm =
∑

i1,...,ir∈[n]

zi1···irj1···jm , ∀j1, . . . , jm ∈ [n].

Apparently, Gr(Z) =
∑

A∈Lr(Z)A, where

Lr(Z) := {A = (aj1···jm) ∈ Sm,n : ∃i1, . . . , ir ∈ [n], aj1···jm
= zi1···irj1···jm ∀j1, . . . , jm ∈ [n]} .

Lemma 6.9. For any nonnegative integer r, we have

(6.3) CPm,n = {A ∈ Sm,n : ∃Z ∈ Sm+r,n, Lr(Z) ⊆ CPm,n,A = Gr(Z)}.

Proof. For simplicity, denote

M := {A ∈ Sm,n : ∃Z ∈ Sm+r,n, Lr(Z) ⊆ CPm,n,A = Gr(Z)}.

For any A ∈ M , there exists some Z ∈ Sm+r,n such that Lr(Z) ⊆ CPm,n and

A = Gr(Z) =
∑

C∈Lr(Z)

C ∈ CPm,n

due to the fact that CPm,n is a convex cone. This indicates that M ⊆ CPm,n. On the
other hand, for any A ∈ CPm,n, we can always find some finite nonnegative integer
l and nonnegative nonzero vectors u(1), . . . , u(l) ∈ Rn such that A =

∑
k∈[l](u

(k))m.

Set Z =
∑

k∈[l]
(u(k))m+r

(eTu(k))r
. Direct calculation leads to

Lr(Z) =

⎧⎨⎩∑
k∈[l]

(
u(k)
)
i1
· · ·
(
u(k)
)
ir

(
u(k)
)m

: i1, . . . , im ∈ [n]

⎫⎬⎭
⊆ CPm,n, Gr(Z) = A.

Thus, A ∈ M and then CPm,n ⊆ M . This completes the proof.

Inspired by a characterization in (6.3), two types of approximation hierarchies for
CPm,n based on the higher-order tensors are then proposed as follows:

N r
m,n := {A ∈ Sm,n : ∃Z ∈ Nm+r,n,A = Gr(Z)}, r = 0, 1, 2, . . . ,(6.4)

DNN r
m,n := {A ∈ Sm,n : ∃Z ∈ Sm+r,n, Lr(Z) ⊆ DNNm,n,A = Gr(Z)},(6.5)

r = 0, 1, 2, . . . .
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Proposition 6.10. For any nonnegative integer r, N r
m,n and DNN r

m,n are closed
convex pointed cones in Sm,n. Moreover,

CPm,n ⊆ · · · ⊆ N r+1
m,n ⊆ N r

m,n ⊆ · · ·N1
m,n ⊆ N0

m,n = Nm,n,

(6.6)

CPm,n ⊆ · · · ⊆ DNN r+1
m,n ⊆ DNN r

m,n ⊆ · · ·DNN1
m,n ⊆ DNN0

m,n = DNNm,n.

(6.7)

Proof. The first part comes immediately from the fact that Nm,n is a closed
convex pointed cone, and SOSm,n is a closed, convex cone when m ≥ 2 is an even
integer. For the remaining part, by applying Lemma 6.9, together with the fact
CPm,n ⊆ DNNm,n ⊆ Nm,n, we immediately conclude that for any nonnegative in-
teger r, CPm,n ⊆ DNN r

m,n ⊆ N r
m,n. For any A ∈ DNN r+1

m,n , there exists some
Z = (zki1···irj1···jm) ∈ Sm+r+1,n such that Lr+1(Z) ⊆ DNNm,n and A = Gr+1(Z).

Denote Ẑ = (ẑi1···irj1···jm) ∈ Sm+r,n with ẑi1···irj1···jm =
∑

k∈[n] zki1···irj1···jm for

any i1, . . . , ir, j1 . . . , jm ∈ [n]. By definition, each Â ∈ Lr(Ẑ) is a summation of
n tensors in Lr+1(Z) and hence Lr(Ẑ) ⊆ DNNm,n since Lr+1(Z) ⊆ DNNm,n

and DNNm,n is a convex cone. Meanwhile, by direct calculation, it is easy to get

Gr(Ẑ) = Gr+1(Z) = A. Henceforth, A ∈ DNN r
m,n, which tells us the inclusion

DNN r+1
m,n ⊆ DNN r

m,n for any nonnegative integer r. Similarly, we can prove the case
of (6.6).

7. Conclusions. In this paper, the CP tensor has been further studied with four-
fold main contributions. First, the dominance properties have been emphasized and
applied to exclude a number of symmetric nonnegative tensors, such as the signless
Laplacian tensors of nonempty m-uniform hypergraphs with m ≥ 3, from the class of
CP tensors. Second, a rich variety of subclasses of CP tensors have been investigated
which contains the positive Cauchy tensors, the (generalized) symmetric Pascal ten-
sors, the (generalized) Lehmer tensors, the power mean tensors, and their fractional
Hadamard powers and Hadamard products. All these serve as new sufficient condi-
tions and provide easily verifiable structures in the study of CP tensor verification and
decomposition. Third, all positive Cauchy–Hankel tensors have been shown to admit
the CP-Vandermonde decomposition, and a numerical algorithm has been proposed
to achieve such a special type of CP decomposition. Last, the DNN matrices have
been generalized to high-order tensors, based on which a series of tractable approxi-
mations have been proposed to approximate the CP tensor cone. All of these results
can serve as a supplement to enrich tensor analysis, computation, and applications.
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