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Abstract In this paper, we study some extremal problems of three kinds of spectral
radii of k-uniform hypergraphs (the adjacency spectral radius, the signless Laplacian
spectral radius and the incidence Q-spectral radius). We call a connected and acyclic
k-uniform hypergraph a supertree. We introduce the operation of “moving edges” for
hypergraphs, together with the two special cases of this operation: the edge-releasing
operation and the total grafting operation. By studying the perturbation of these kinds
of spectral radii of hypergraphs under these operations, we prove that for all these
three kinds of spectral radii, the hyperstar Sn,k attains uniquely the maximum spectral
radius among all k-uniform supertrees on n vertices. We also determine the unique
k-uniform supertree on n vertices with the second largest spectral radius (for these
three kinds of spectral radii). We also prove that for all these three kinds of spectral
radii, the loose path Pn,k attains uniquely the minimum spectral radius among all k-th
power hypertrees of n vertices. Some bounds on the incidence Q-spectral radius are
given. The relation between the incidence Q-spectral radius and the spectral radius of
the matrix product of the incidence matrix and its transpose is discussed.
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1 Introduction

In 2005, Qi (2005) and Lim (2005) independently introduced the concept of tensor
eigenvalues and the spectra of tensors. In 2008, Lim (2008) proposed the study of the
spectra of hypergraphs via the spectra of tensors.

In 2012, Cooper and Dutle (2012) defined the eigenvalues (and the spectrum) of a
uniform hypergraph as the eigenvalues (and the spectrum) of the adjacency tensor of
that hypergraph, and obtained a number of interesting results on the spectra of hyper-
graphs. They also generalized some basic spectral results from graphs to hypergraphs.
The (adjacency) spectrum of a uniform hypergraph were further studied in Pearson
and Zhang (2014), Xie and Chang (2013b).

In 2013, Qi (2014) proposed a simple and natural definition for the Laplacian tensor
L and the signless Laplacian tensor Q as L = D − A and Q = D + A respectively,
where A is the adjacency tensor of the hypergraph (defined as in Cooper and Dutle
(2012)), and D is the degree diagonal tensor of the hypergraph. The properties of
these Laplacian and signless Laplacian tensors were further studied in Hu and Qi
(2014), Hu et al. (2013, 2015), Qi et al. (2014), Shao et al. (2015). (In Xie and Chang
(2013a, c), they proposed a different definition for the signless Laplacian tensor of an
even uniform hypergraph.)

Since then, the study of various kinds of spectra of hypergraphs has attracted exten-
sive attention and research interest.

In this paper, we study some extremal spectral problems for three kinds of spectral
radii of k-uniform hypergraphs: the adjacency spectral radius, the signless Laplacian
spectral radius and the incidence Q-spectral radius, and for two special classes of
uniform hypergraphs: the class of k-uniform supertrees on n vertices, and the class of
kth power hypertrees on n vertices.

The incidence Q-tensor of a k-uniform hypergraph G, denoted byQ∗(G) (or sim-
plyQ∗), is defined as the tensor product (in the sense of Shao (2013), Bu et al. (2014))
Q∗(G) = RIRT , where R is the incidence matrix of G, and I is the identity ten-
sor. The spectral radius of the incidence Q-tensor is called the incidence Q-spectral
radius, of that k-uniform hypergraph. The incidence Q-tensor Q∗ coincides with the
“signless Laplacian tensor” proposed by Xie and Chang (2013a, c), for even uniform
hypergraphs (which is different from the signless Laplacian tensorQ = D+A studied
in this paper).

It is easy to see that bothQ = D+A andQ∗(G) are generalizations of the signless
Laplacian matrix from ordinary graphs to uniform hypergraphs.

For the purpose of studying the extremal problems of that three kinds of spectral
radii, we introduce the operation of “moving edges” for hypergraphs, together with
the two special cases of this operation: the edge-releasing operation and the total
grafting operation. We study the perturbation of these three kinds of spectral radii of
hypergraphs under these operations, and show that all these three kinds of spectral
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radii of supertrees strictly increase under the edge-releasing operation and the inverse
of the total grafting operation.

Using these perturbation results, we prove that for all these three kinds of spectral
radii, the hyperstar Sn,k attains uniquely the maximum spectral radius among all k-
uniform supertrees on n vertices. We also determine the unique k-uniform supertree
on n vertices with the second largest spectral radius (for these three kinds of spectral
radii). Meanwhile, the corresponding minimization problems for these three kinds of
spectral radii of hypertrees are investigated, and we show that for all these three kinds
of spectral radii, the loose path Pn,k attains uniquely the minimum spectral radius
among all k-th power hypertrees of n vertices.

This paper is organized as follows. In Sect. 2, notation and some definitions about
tensors and hypergraphs are given. In Sect. 3, supertrees are defined and some proper-
ties of supertrees are discussed. In Sect. 4, the incidence Q-tensorQ∗(G) of a uniform
hypergraph G is defined, and we show in Sect. 4 thatQ∗(G) is irreducible if and only
if the hypergraph G is connected. In Sect. 5, we introduce the above-mentioned three
operations on hypergraphs, and investigate the perturbation of the three kinds of spec-
tral radii of the supertrees under these operations. As applications, we determine the
unique k-uniform supertrees on n vertices with the largest and second largest spectral
radii, and determine the unique k-uniform hypertree on n vertices with the smallest
spectral radius (for all these three kinds of spectral radii). In the last section, some
bounds on the incidence Q-spectral radius are presented, and the relation between
the incidence Q-spectral radius and the spectral radius of the matrix product RRT is
discussed.

2 Preliminaries

A kth-order n-dimensional real tensor T consists of nk entries in real numbers:

T = (Ti1i2...ik ), Ti1i2...ik ∈ R, 1 ≤ i1, i2, . . . , ik ≤ n.

T is called symmetric if the value of Ti1i2...ik is invariant under any permutation of
its indices i1, i2, . . . , ik . A real symmetric tensor T of order k dimension n uniquely
defines a kth degree homogeneous polynomial function f with real coefficient by
f (x) = T xk , which is a real scalar defined as

T xk =
n∑

i1,...,ik=1

Ti1...ik xi1 . . . xik .

T is called positive semi-definite if f (x) = T xk ≥ 0 for all x ∈ R
n . Clearly, for the

nontrivial case, k must be even.
Recall that T xk−1 is a vector in Rn with its i th component as

(T xk−1)i =
n∑

i2,...,ik=1

Ti i2...ik xi2 . . . xik . (1)
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Definition 1 (Qi 2005) Let T be a kth-order n-dimensional tensor andC be the set of
all complex numbers. Then λ is an eigenvalue of T and 0 �= x ∈ C

n is an eigenvector
corresponding to λ if (λ, x) satisfies

T xk−1 = λx [k−1],

where x [k−1] ∈ C
n with (x [k−1])i = (xi )k−1.

Several kinds of eigenvalues of tensors were defined in Qi (2005) and we focus on
the one above in this paper.

A hypergraph G is a pair (V, E), where E ⊆ P(V ) and P(V ) stands for the power
set of V . The elements of V = V (G), labeled as [n] = {1, . . . , n}, are referred to as
vertices and the elements of E = E(G) are called edges. A hypergraph G is said to
be k-uniform for an integer k ≥ 2 if, for all e ∈ E(G), |e| = k. For a subset S ⊂ V ,
we denote by ES the set of edges {e ∈ E | S∩ e �= ∅}. For a vertex i ∈ V , we simplify
E{i} as Ei . It is the set of edges containing the vertex i , i.e., Ei = {e ∈ E | i ∈ e}. The
cardinality |Ei | of the set Ei is defined as the degree of the vertex i , which is denoted
by di . A hypergraph is regular of degree r if d1 = · · · = dn = r .

A hypergraph G is called a linear hypergraph (Bretto 2013), if each pair of the
edges of G has at most one common vertex. We assume that G is simple throughout
the paper, i.e. ei �= e j if i �= j . In a hypergraph, two vertices are said to be adjacent if
there is an edge that contains both of these vertices. Two edges are said to be adjacent
if their intersection is not empty. A vertex v is said to be incident to an edge e if
v ∈ e. In a hypergraph G, a path of length q is defined to be an alternating sequence
of vertices and edges v1, e1, v2, e2, . . . , vq , eq , vq+1 such that

(1) v1, . . . , vq+1 are all distinct vertices of G,
(2) e1 . . . , eq are all distinct edges of G,
(3) vr , vr+1 ∈ er for r = 1, . . . , q.

If q > 1 and v1 = vq+1, then this path is called a cycle of length q. A hypergraph G
is connected if there exists a path starting at v and terminating at u for all v, u ∈ V ,
and is called acyclic if it contains no cycle. These definitions can be found in Berge
(1976) and Bretto (2013).

The following definitions on power hypergraphs and hypertrees can be found in Hu
et al. (2013).

Definition 2 (Hu et al. 2013) Let G = (V, E) be an ordinary graph. For every k ≥ 3,
the kth power of G, Gk := (V k, Ek) is defined as the k-uniform hypergraph with
the edge set Ek := {e ∪ {ie,1, . . . , ie,k−2, }|e ∈ E} and the vertex set V k := V ∪
(∪e∈E {ie,1, . . . , ie,k−2}).
Definition 3 (Hu et al. 2013) The kth power of an ordinary tree is called a hypertree.

3 Supertrees

In ordinary graph theory, a tree is defined to be a connected graph without cycles.
Analogously, we introduce the concept of supertree as follows.
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Definition 4 A supertree is a hypergraph which is both connected and acyclic.

From this definition and the definition of hypertrees we can see that all hypertrees
are supertrees.

A characterization of acyclic hypergraph has been given in Berge’s (1976) textbook
and particularly for the connected case is the following result.

Proposition 5 [Berge (1976), Proposition 4, p. 392] If G is a connected hypergraph
with n vertices and m edges, then it is acyclic if and only if

∑
i∈[m](|ei | − 1) = n − 1.

In particular, ifG is a connected k-uniform hypergraph with n vertices andm edges,
then it is acyclic if and only if m = n−1

k−1 .

Proposition 6 A supertree G is a linear hypergraph. If in addition, G is a k-uniform
supertree on n vertices, then it has n−1

k−1 edges.

Proof Suppose on the contrary that G is not a linear hypergraph, then there exist two
distinct edges ei and e j having at least two common vertices, say {v1, v2} ⊆ ei ∩ e j .
Then v1, ei , v2, e j , v1 would be a cycle of length 2, contradicting that G is acyclic. So
G is a linear hypergraph.

By Proposition 5, we know that a k-uniform supertree on n vertices has n−1
k−1 edges.

�
Proposition 7 Let n, k be positive integers with n ≥ k. Then there exists a k-uniform
supertree with n vertices if and only if n − 1 is a multiple of k − 1.

Proof The necessity follows from Proposition 6. Now if n − 1 is a multiple of k − 1.
Let n′ = n−1

k−1 + 1, and take G to be the k-th power of an ordinary tree T of order n′.
Then it is easy to verify that G is a k-uniform supertree with n vertices. �
Definition 8 (Hu et al. 2013) Let G = (V, E) be a k-uniform hypergraph with n
vertices and m edges.

• If there is a disjoint partition of the vertex set V as V = V0 ∪ V1 ∪ · · · ∪ Vm such
that |V0| = 1 and |V1| = · · · = |Vm | = k − 1, and E = {V0 ∪ Vi |i ∈ [m]}, then
G is called a hyperstar, denoted by Sn,k .

• If G is a path (v0, e1, v1, . . . , vm−1, em, vm) such that the vertices v1, . . . , vm−1
are of degree two, and all the other vertices ofG are of degree one, thenG is called
a loose path, denoted by Pn,k .

Note that both hyperstar and loose path are supertrees. Also, in the literature, hyper-
stars are more commonly called sunflowers. Here we choose to call it hyperstar since
it is a hypertree, and is actually the k-th power of an ordinary star.

4 The incidence Q-tensors of uniform hypergraphs

In Shao (2013), Shao introduced a definition for tensor product and then Bu et al.
(2014) generalized it as follows:
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Definition 9 Let A ∈ C
n1×n2×···×n2 and B ∈ C

n2×···×nk+1 be order m ≥ 2 and k ≥ 1
tensors, respectively. The product AB is the following tensor C of order (m − 1)(k −
1) + 1 with entries

ciα1...αm−1 =
∑

i2,...,im∈[n2]
aii2...im bi2α1 . . . bimαm−1 ,

where i ∈ [n1], α1, . . . , αm−1 ∈ [n3] × · · · × [nk+1].
Note that by Definition 9, now T xk−1 defined in (1) can be simply written as T x .

Let G = (V, E) be a k-uniform hypergraph with vertex set V = {v1, . . . , vn}, and
edge set E = {e1 . . . , em}. In Bretto (2013), the incidence matrix of G is defined to
be a matrix R whose rows and columns are indexed by the vertices and edges of G,
respectively. The (i, j)-entry of R is

ri j =
{
1, if vi ∈ e j ;
0, otherwise.

Let I denote the identity tensor of appropriate dimension, e.g., Ii1...ik = 1 if i1 = · · · =
ik ∈ [m], and zero otherwise when the dimension ism. Consider the tensor RIRT . By
Definition 9, it is a tensor of order k and dimension n, whose (i1, i2, . . . , ik)-entry is

(RIRT )i1,i2,...,ik =
m∑

j=1

ri1 j (IR
T ) j i2...ik

=
m∑

j=1

ri1 j

⎛

⎝
m∑

l2,...,lk=1

I jl2...lk ri2l2 . . . riklk

⎞

⎠

=
m∑

j=1

ri1 j ri2 j . . . rik j (2)

which is the number of edges e of G such that it ∈ e for all t = 1, . . . , k.
Note that then RIRT is a symmetric tensor of order k and dimension n. Consider

the homogeneous polynomial f (x) := xT (RIRT x), and let y = RT x , write

x(e) =
∑

i∈e
xi .

Then by y = RT x we have y j = ∑
i∈e j xi = x(e j ), and so

xT (RIRT x) = xT (RIy) = xT (Ry[k−1]) = yT y[k−1] =
∑

j∈[m]
ykj

=
∑

j∈[m]
x(e j )

k =
∑

e∈E
x(e)k . (3)
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Thus it can be seen that when k is even, f (x) ≥ 0 for any x ∈ R
n and so RIRT is

positive semi-definite.

Definition 10 The incidence Q-tensor of the uniformhypergraphG, denoted byQ∗ =
Q∗(G), is defined as Q∗ = RIRT .

From this definition of the incidence Q-tensor and the above formula (2) for the
entries of Q∗ we also have that

(Q∗x)i =
n∑

i2,...,ik=1

Q∗
i i2,...,ik xi2 . . . xik

=
n∑

i2,...,ik=1

⎛

⎝
m∑

j=1

ri j ri2 j . . . rik j

⎞

⎠ xi2 . . . xik

=
n∑

i2,...,ik=1

⎛

⎝
∑

e∈Ei ,i2∈e,...,ik∈e
xi2 . . . xik

⎞

⎠

=
∑

e∈Ei

⎛

⎝
∑

i2∈e
xi2

⎞

⎠ . . .

⎛

⎝
∑

ik∈e
xik

⎞

⎠

=
∑

e∈Ei

x(e)k−1 (4)

Xie and Chang (2013c) defined the signless Laplacian tensor TQ of an even uniform
hypergraph as the symmetric tensor associated with the polynomial

TQx
k :=

∑

ep∈E
Q(ep)x

k, ∀x ∈ R
n, (5)

where Q(ep)xk = (xi1 + xi2 + · · · + xik )
k , for ep = {i1, i2, . . . , ik} ⊆ V . Comparing

Eqs. (5) and (3), clearly f (x) = TQxk and so TQ = Q∗. That is, our incidence Q-
tensor coincides with the signless Laplacian tensor TQ introduced by Xie and Chang,
who defined it for even uniform hypergraph. Note that we do not put restriction on the
parity of k, namely, the incidence Q-tensor Q∗ applies to both even and odd uniform
hypergraphs.

We prefer not to call Q∗ the signless Laplacian tensor of G. In spectral graph
theory, the Laplacian matrix and the signless Laplacian matrix appear together. The
Laplacianmatrix is defined as L = D−A, and the signless Laplacianmatrix is defined
as Q = D + A, where D is the degree diagonal matrix and A is the adjacency matrix
of the graph. Such a definition was generalized to hypergraphs in Qi (2014) and further
studied in Hu andQi (2014), Hu et al. (2013, 2015), Qi et al. (2014), Shao et al. (2015).
On the other hand, the tensor Q∗ = RIRT is closely related to the incidence matrix
R of the hypergraph. Thus, it is also adequate to be called the incidence Q-tensor of
that hypergraph.
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A kth-order n-dimensional tensor T = (Ti1i2...ik ) is called reducible, if there exists
a nonempty proper index subset I ⊂ [n] such that

Ti1i2...ik = 0, ∀i1 ∈ I, ∀i2, . . . , ik /∈ I.

T is called weakly reducible (Friedland et al. 2013), if there exists a nonempty proper
index subset I ⊂ [n] such that

Ti1i2...ik = 0, ∀i1 ∈ I, and at least one of the i2, . . . , ik /∈ I.

If T is not reducible, then T is called irreducible. If T is not weakly reducible, then
T is called weakly irreducible.

It is easy to see from the definition that irreducibility implies weak irreducibility.
It is proved in Friedland et al. (2013) and Yang and Yang (2011) that a uniform

hypergraph G is connected if and only if its adjacency tensorA is weakly irreducible
(and also if and only if its signless Laplacian tensorQ is weakly irreducible). Now for
the incidence Q-tensor Q∗, we have the following result.

Lemma 11 Let G be a k-uniform hypergraph on n vertices. Then the incidence Q-
tensor Q∗ is irreducible if and only if G is connected.

Proof Sufficiency. Suppose that G is connected. For any nonempty proper subset
I ⊂ [n], choose arbitrarily two vertices i, j such that i ∈ I and j ∈ V \I . Because
G is connected, there exists a path i1(= i), e1, i2, e2, i3, . . . , eq , iq+1(= j) such that
il , il+1 ∈ el for l = 1, . . . , q. Since i1 = i ∈ I and iq+1 = j ∈ V \I , clearly
there exists some r(1 ≤ r ≤ q) such that ir ∈ I and ir+1 ∈ V \I . This implies that
Q∗

ir ir+1...ir+1
�= 0 as there exists at least one edge (e.g. eir ) contains both ir and ir+1.

Thus Q∗ is irreducible.
Necessity. Suppose that G is disconnected. Assume that G1 is a connected compo-

nent of G, with vertex set V1 = V (G1). Then for any i1 ∈ V1 and i2, . . . , ik ∈ V \V1,
there exists no edge containing all vertices i1, i2, . . . , ik . So Q∗

i1i2...ik
= 0, and thus

Q∗ is reducible. �
Consequently, if G is connected, thenQ∗ is irreducible. Since irreducible nonneg-

ative tensor with a nonzero diagonal is primitive, this incidence Q-tensorQ∗ is also a
primitive tensor.

Let T be a kth-order n-dimensional nonnegative tensor. The spectral radius of T
is defined as ρ(T ) = max{|λ| : λ is an eigenvalue of T }. Part of Perron-Frobenius
theorem for nonnegative tensors is stated in the following for reference, and for more
details one can refer to a survey (Chang et al. 2013).

Theorem 12 If T is a nonnegative tensor, then ρ(T ) is an eigenvalue with a nonneg-
ative eigenvector x corresponding to it.

If furthermore T is symmetric and weakly irreducible, then x is positive. Moreover,
the nonnegative eigenvector is unique up to a constant multiple.

Let Rn+ = {x ∈ R
n | x ≥ 0}.
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Lemma 13 (Hu and Qi 2015) Let T be a symmetric nonnegative tensor of order k
and dimension n. Then

ρ(T ) = max

{
xT (T x) | x ∈ R

n+,

n∑

i=1

xki = 1

}
. (6)

Furthermore, x ∈ R
n+ with

∑n
i=1 x

k
i = 1 is an eigenvector of T corresponding to

ρ(T ) if and only if it is an optimal solution of the maximization problem (6).

FromLemma 13, it follows immediately that ρ(T ) can also be expressed as follows

ρ(T ) = max

{
xT (T x)

xT (Ix)
| x ∈ R

n+, x �= 0

}
,

where T and I have the same order and dimension. Note that xT (Ix) = ∑
i∈[n] xki =

‖ x ‖kk . By Theorem 12, for a symmetric weakly irreducible nonnegative tensor T , it
has a unique positive eigenvector x with ‖ x ‖k= 1 corresponding to ρ(T ) and then
we call x the principal eigenvector of T .

5 The extremal spectral radii of k-uniform supertrees and kth power
hypertrees on n vertices

In this section, we prove our main results (see Theorems 19, 21, 26 and 30 below).
For this purpose, we first introduce the operation of “moving edges” for hypergraphs,
together with the two special cases of this operation: the edge-releasing operation and
the total grafting operation. We study the perturbation of the three kinds of spectral
radii of hypergraphs under these operations: the adjacency spectral radius, the signless
Laplacian spectral radius and the incidence Q-spectral radius. We show that all these
three kinds of spectral radii of supertrees strictly increase under the edge-releasing
operation and the inverse of the total grafting operation.

Using these perturbation results, we prove that for all these three kinds of spectral
radii, the hyperstar Sn,k attains uniquely the maximum spectral radius among all k-
uniform supertrees on n vertices, and we give the exact values of these three kinds
of spectral radii of Sn,k . We also determine (in Theorem 21) that for all these three
kinds of spectral radii, Sk(1, n′ −3) attains uniquely the second largest spectral radius
among all k-uniform supertrees on n vertices (where n′ = n−1

k−1 + 1). We also prove
that for all these three kinds of spectral radii, the loose path Pn,k attains uniquely the
minimum spectral radius among all k-th power hypertrees on n vertices.

By Proposition 7, we know that there exists a k-uniform supertree with n vertices
if and only if n − 1 is a multiple of k − 1. So in this section, we always assume that
n − 1 is a multiple of k − 1.

Recall the Laplacian tensor and signless Laplacian tensor proposed by Qi (2014).
Let G = (V, E) be a k-uniform hypergraph. The adjacency tensor of G was defined
in Cooper and Dutle (2012) as the k-th order n-dimensional tensorAwhose (i1 . . . ik)-
entry is:
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ai1...ik =
{ 1

(k−1)! if {i1, . . . , ik} ∈ E,

0 otherwise.

Let D be a k-th order n-dimensional diagonal tensor with its diagonal element di ...i
being di , the degree of vertex i in G, for all i ∈ [n]. Then L = D−A is the Laplacian
tensor of the hypergraph G, and Q = D + A is the signless Laplacian tensor of the
hypergraph G.

For a vector x of dimension n and a subset U ⊆ [n], we write

xU =
∏

i∈U
xi

By Cooper and Dutle (2012), we have

xT (A(G)x) =
∑

e∈E(G)

kxe

and

(A(G)x)i =
∑

e∈Ei (G)

xe\{i}

Also it is easy to calculate for the signless Laplacian tensor Q(G) that:

xT (Q(G)x) =
∑

{ j1,..., jk }∈E(G)

(xkj1 + · · · + xkjk + kx j1 . . . x jk ) =
∑

e∈E(G)

(x [k](e) + kxe)

where x [k](e) = xkj1 + · · · + xkjk for e = { j1, . . . , jk}, and

(Q(G)x)i = di (G)xk−1
i +

∑

e∈Ei (G)

xe\{i}

Now we introduce the operation of moving edges on hypergraphs.

Definition 14 Let r ≥ 1, G = (V, E) be a hypergraph with u ∈ V and e1, . . . , er ∈
E , such that u /∈ ei for i = 1, . . . , r . Suppose that vi ∈ ei and write e′

i = (ei\{vi }) ∪
{u} (i = 1, . . . , r). LetG ′ = (V, E ′) be the hypergraph with E ′ = (E\{e1, . . . , er })∪
{e′

1, . . . , e
′
r }. Then we say that G ′ is obtained from G by moving edges (e1, . . . , er )

from (v1, . . . , vr ) to u.

Remark (1) The vertices v1, . . . , vr need not be distinct. That is, the repetition of
some vertices in v1, . . . , vr is allowed.

(2) Generally speaking, the new hypergraph G ′ may contain multiple edges. But if
G is acyclic and there is an edge e ∈ E containing all the vertices u, v1, . . . , vr ,
then G ′ contains no multiple edges.
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Theorem 15 Let r ≥ 1, G be a connected hypergraph, G ′ be the hypergraph obtained
from G by moving edges (e1, . . . , er ) from (v1, . . . , vr ) to u, and G ′ contains no
multiple edges. Then we have:

(1) If x is the principal eigenvector ofA(G) corresponding to ρ(A(G)), and suppose
that xu ≥ max1≤i≤r {xvi }, then ρ(A(G ′)) > ρ(A(G)).

(2) If x is the principal eigenvector ofQ(G) corresponding to ρ(Q(G)), and suppose
that xu ≥ max1≤i≤r {xvi }, then ρ(Q(G ′)) > ρ(Q(G)).

(3) If x is the principal eigenvector of Q∗(G) corresponding to ρ(Q∗(G)), and sup-
pose that xu ≥ max1≤i≤r {xvi }, then ρ(Q∗(G ′)) > ρ(Q∗(G))

Proof Let e′
i = (ei\{vi }) ∪ {u} (i = 1, . . . , r) as in Definition 14.

(1) By the hypothesis we obviously have xe
′
i /xei = xu/xvi ≥ 1. Thus by using

Lemma 13 and the above expression for xT (A(G)x) we have

ρ(A(G ′)) − ρ(A(G)) ≥ xT (A(G ′)x) − ρ(A(G))

= xT (A(G ′)x) − xT (A(G)x)

=
∑

e∈E(G ′)
kxe −

∑

e∈E(G)

kxe

= k
r∑

i=1

(xe
′
i − xei ) ≥ 0.

If the equality holds, then ρ(A(G ′)) = xT (A(G ′)x) and so x is the eigenvector of
A(G ′) corresponding to ρ(A(G ′)) = ρ(A(G)) by Lemma 13. In this case, using the
above expression for (A(G)x)u and (A(G ′)x)u , we have

0 = (ρ(A(G ′)) − ρ(A(G)))xk−1
u

= (A(G ′)x)u − (A(G)x)u

=
∑

e∈Eu(G ′)
xe\{u} −

∑

e∈Eu(G)

xe\{u}

=
r∑

i=1

xe
′
i\{u} > 0

a contradiction.
(2) By the hypothesis we have x [k](e′

i ) − x [k](ei ) = xku − xkvi ≥ 0, and xe
′
i /xei =

xu/xvi ≥ 1. Thus by using Lemma 13 and the above expression for xT (Q(G)x) we
have

ρ(Q(G ′)) − ρ(Q(G)) ≥ xT (Q(G ′)x) − ρ(Q(G))

= xT (Q(G ′)x) − xT (Q(G)x)
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=
∑

e∈E(G ′)
(x [k](e) + kxe) −

∑

e∈E(G)

(x [k](e) + kxe)

=
r∑

i=1

(x [k](e′
i ) − x [k](ei )) + k

r∑

i=1

(xe
′
i − xei ) ≥ 0,

Also by using the above expression for (Q(G)x)u , the strict inequality can be obtained
similarly from the following relation:

(Q(G ′)x)u − (Q(G)x)u = (du(G
′) − du(G))xk−1

u +
r∑

i=1

xe
′
i\{u} > 0

where du(G ′) − du(G) = r .
(3) By the hypothesis we have:

x(e′
i ) − x(ei ) = xu − xvi ≥ 0 (i = 1, . . . , r).

Thus we have x(e′
i )
k ≥ x(ei )k , since x is a positive vector. Now by Lemma 13 and

the Eq. (3) we have

ρ(Q∗(G ′)) − ρ(Q∗(G)) ≥ xT (Q∗(G ′)x) − ρ(Q∗(G))

= xT (Q∗(G ′)x) − xT (Q∗(G)x)

=
∑

e∈E(G ′)
x(e)k −

∑

e∈E(G)

x(e)k

=
r∑

i=1

(x(e′
i )
k − x(ei )

k) ≥ 0,

If the equality holds, then ρ(Q∗(G ′)) = xT (Q∗(G ′)x) and so x is the eigenvector
of Q∗(G ′) corresponding to ρ(Q∗(G ′)) = ρ(Q∗(G)) by Lemma 13. In this case,
applying eigenvalue equations and Eq. (4) to the vertex u in G ′ and G, we find

0 = (ρ(Q∗(G ′)) − ρ(Q∗(G)))xk−1
u

= (Q∗(G ′)x)u − (Q∗(G)x)u

=
∑

e∈Eu(G ′)
x(e)k−1 −

∑

e∈Eu(G)

x(e)k−1

=
r∑

i=1

x(e′
i )
k−1 > 0,

a contradiction. �
Recall that a linear hypergraph is a hypergraph each pair of whose edges has at

most one common vertex. We have proved in Proposition 6 that all supertrees are
linear hypergraphs.
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In a k-uniform linear hypergraph G, an edge e is called a pendent edge if e contains
exactly k − 1 vertices of degree one. If e is not a pendent edge, then it is also called a
non-pendent edge.

The following edge-releasing operation on linear hypergraphs is a special case of
the above defined edge moving operation.

Definition 16 Let G be a k-uniform linear hypergraph, e be a non-pendent edge of G
and u ∈ e. Let {e1, e2, . . . , er } be all the edges of G adjacent to e but not containing
u, and suppose that ei ∩ e = {vi } for i = 1, . . . , r . Let G ′ be the hypergraph obtained
from G by moving edges (e1, . . . , er ) from (v1, . . . , vr ) to u. Then G ′ is said to be
obtained from G by an edge-releasing operation on e at u.

In other words, edge-releasing a non-pendent edge e of G at u means moving all
the edges adjacent to e but not containing u from their commom vertices with e to u.

Since e is a non-pendent edge of G, e contains at least one non-pendent vertex
different from u. So by the definition of linear hypergraph, there exists at least one
edge “adjacent to e but not containing u”. This means that edge-releasing operation is
a special case of the edge-moving operation in Definition 14.

From the above definitionwe can see that, ifG ′ andG ′′ are the hypergraphs obtained
from a k-uniform linear hypergraph G by an edge-releasing operation on some edge
e at u and at v, respectively. Then G ′ and G ′′ are isomorphic. Also, if G is acyclic,
then G ′ contains no multiple edges.

Proposition 17 Let G ′ be a hypergraph obtained from a k-uniform supertree G by
edge-releasing a non-pendent edge e of G. Then G ′ is also a supertree.

Proof Since G is connected, it is easy to see that G ′ is also connected. Also by the
definition of the edge-releasing operation we can see that, G and G ′ have the same
number of edges. Thus we have |E(G ′)| = |E(G)| = n−1

k−1 . So by Proposition 5 we
conclude that G ′ is also a supertree. �
Theorem 18 Let G ′ be a supertree obtained from a k-uniform supertree G by edge-
releasing a non-pendent edge e of G at u. Then we have ρ(A(G ′)) > ρ(A(G)),
ρ(Q(G ′)) > ρ(Q(G)), and ρ(Q∗(G ′)) > ρ(Q∗(G)).

Proof To prove ρ(A(G ′)) > ρ(A(G)), take x to be the principal eigenvector ofA(G)

corresponding to ρ(A(G)), and take v ∈ e such that xv = maxi∈e{xi }. Let G ′′ be the
supertree obtained from G by edge-releasing the edge e of G at v, then G ′ and G ′′
are isomorphic. But by Definition 16, G ′′ is obtained from G by moving some edges
from some vertices of e to v. So by Theorem 15 we have ρ(A(G ′)) = ρ(A(G ′′)) >

ρ(A(G)).
Similarly we can prove ρ(Q(G ′)) > ρ(Q(G)) and ρ(Q∗(G ′)) > ρ(Q∗(G)). �

Theorem 19 Let T be a k-uniform supertree on n vertices with m edges (here m =
n−1
k−1 ). Then

ρ(A(T)) ≤ ρ(A(Sn,k))

and
ρ(Q(T)) ≤ ρ(Q(Sn,k))
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and
ρ(Q∗(T)) ≤ ρ(Q∗(Sn,k))

with either one of the equalities holding if and only if T is the hyperstar Sn,k .

Proof We use induction on the number of non-pendent vertices (vertices with degrees
at least two) N2(T). If N2(T) = 1, then T is the hyperstar Sn,k . Now we assume
that N2(T) ≥ 2, namely T is not a hyperstar. Suppose x and y be two non-pendent
vertices. Then there must be some non-pendent edge e in the path from x to y. Let
T′ be the supertree obtained from T by edge-releasing the non-pendent edge e of T.
Then by Theorem 18 we have ρ(A(T)) < ρ(A(T′)). On the other hand, we have
N2(T

′) < N2(T). So by the inductive hypothesis we have ρ(A(T′)) ≤ ρ(A(Sn,k)).
Combining the above two relations we obtain ρ(A(T)) < ρ(A(Sn,k)).

Using the same arguments we can prove the second and the third inequalities. �
Next we determine the supertree with the second largest spectral radius (also for

the three kinds of spectral radii).
Let S(a, b) be the ordinary tree with a + b + 2 vertices obtained from an edge e

by attaching a pendent edges to one end vertex of e, and attaching b pendent edges
to the other end vertex of e. Let Sk(a, b) be the kth power of S(a, b). We have the
following lemma for the comparison of the spectral radii of Sk(a, b) and Sk(c, d)

when a + b = c + d.

Lemma 20 Let a, b, c, d be nonnegative integers with a + b = c + d. Suppose that
a ≤ b, c ≤ d and a < c, then we have:

ρ(A(Sk(a, b))) > ρ(A(Sk(c, d))),

and

ρ(Q(Sk(a, b))) > ρ(Q(Sk(c, d))),

and

ρ(Q∗(Sk(a, b))) > ρ(Q∗(Sk(c, d))).

Proof Let x, y be the (only) two non-pendent vertices of Sk(c, d) with the degrees
d(x) = c + 1 and d(y) = d + 1. Let G ′ be obtained from Sk(c, d) by moving c − a
pendent edges from x to y, andG ′′ be obtained from Sk(c, d) bymoving d−a pendent
edges from y to x . Then both G ′ and G ′′ are isomorphic to Sk(a, b).

On the other hand, it can be verified that at least one of G ′ and G ′′ will satisfy the
condition (1) of Theorem 15. So by Theorem 15 we have

max(ρ(A(G ′)), ρ(A(G ′′))) > ρ(A(Sk(c, d))).

Thus we have

ρ(A(Sk(a, b))) = max(ρ(A(G ′)), ρ(A(G ′′))) > ρ(A(Sk(c, d))).
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The other two inequalities can be proved in exactly the same way. �
The following theorem shows that for all these three kinds of spectral radii,

Sk(1, n′ − 3) attains uniquely the second largest spectral radius among all k-uniform
supertrees on n vertices (where n′ = n−1

k−1 + 1).

Theorem 21 Let T be a k-uniform supertree on n vertices (with m = n′ − 1 edges
where n′ = n−1

k−1 + 1). Suppose that T �= Sn,k , then we have

ρ(A(T)) ≤ ρ(A(Sk(1, n′ − 3))),

and
ρ(Q(T)) ≤ ρ(Q(Sk(1, n′ − 3))),

and
ρ(Q∗(T)) ≤ ρ(Q∗(Sk(1, n′ − 3))),

with either one of the equalities holding if and only if T ∼= Sk(1, n′ − 3).

Proof We use induction on the number of non-pendent vertices N2(T). Since T �=
Sn,k , we have N2(T) ≥ 2. Now we assume that T �= Sk(1, n′ − 3).

If N2(T) = 2, then the two non-pendent vertices (say, x and y) ofTmust be adjacent
(otherwise, all the internal vertices of the path between x and y would be non-pendent
vertices other than x and y, contradicting N2(T) = 2), and so it can be easily verified
that T = Sk(c, d) for some positive integers 2 ≤ c ≤ d with c + d = n′ − 2 (2 ≤ c
since T �= Sk(1, n′ − 3)). So by Lemma 20 we get the desired results.

If N2(T) ≥ 3, let x, y be two non-pendent vertices of T. Let x, e1, x1, . . . , er , y
be a path from x to y. Let T1 be obtained from T by moving all the edges incident
with x (except e1) to y, and T2 be obtained from T by moving all the edges incident
with y (except er ) to x . Then both T1 and T2 are still supertrees (since they are still
connected, and have the same number of edges as T), and we have

2 ≤ N2(Ti ) = N2(T) − 1 < N2(T) (i = 1, 2).

So by induction and Theorem 15 (since at least one of T1 and T2 will satisfy the
condition (1) of Theorem 15) we have

ρ(A(T)) < max(ρ(A(T1)), ρ(A(T2))) ≤ ρ(A(Sk(1, n′ − 3)))

Using the same arguments we can prove the second and the third inequalities. �
Next we consider the minimal problems for these three kinds of spectral radii.

By introducing the operation of total gra f ting and studying the perturbation of the
spectral radii under this operation, we are able to determine that the loose path Pn,k

attains uniquely the minimum spectral radius among all k-th power hypertrees on n
vertices.

A path P = (v0, e1, v1, . . . , vp−1, ep, vp) in a k-uniform hypergraph H is called
a pendent path (starting from v0), if all the vertices v1, . . . , vp−1 are of degree two,
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the vertex vp is of degree one, and all the k − 2 vertices in the set ei\{vi−1, vi } are of
degree one in H (i = 1, . . . , p).

Definition 22 Let G be a connected k-uniform linear hypergraph and v be a
vertex of G. Let G(v; p, q) be a k-uniform linear hypergraph obtained from
G by adding two pendent paths P = (v, e1, v1, . . . , vp−1, ep, vp) and Q =
(v, e′

1, u1, . . . , uq−1, e′
q , uq) at v, where V (P) ∩ V (Q) = {v}. Then we say that

G(v; p + q, 0) is obtained from G(v; p, q) by a total gra f ting operation at v.

Proposition 23 Let G(v; p+q, 0) be the k-uniform linear hypergraph obtained from
G by adding a pendent path P = (v, e1, v1, . . . , vp−1, ep, vp, ep+1, . . . , ep+q , vp+q)

at v. Let G1 be the hypergraph obtained from G(v; p+q, 0) by moving the edge ep+1
from vp to v, and let G2 be the hypergraph obtained from G(v; p + q, 0) by moving
all edges incident to v (except e1) from v to vp. Then both G1 and G2 are isomorphic
to G(v; p, q).

Proof The proof of this result is obvious. �
Theorem 24 Let G(v; p, q) and G(v; p + q, 0) be defined as above (where G is
connected). If both p and q are not zero, then

ρ(A(G(v; p, q))) > ρ(A(G(v; p + q, 0))).

and
ρ(Q(G(v; p, q))) > ρ(Q(G(v; p + q, 0))).

and
ρ(Q∗(G(v; p, q))) > ρ(Q∗(G(v; p + q, 0))).

Proof Let G1 be the hypergraph obtained from G(v; p + q, 0) by moving the edge
ep+1 from vp to v, and let G2 be the hypergraph obtained from G(v; p + q, 0) by
moving all edges incident to v (except e1) from v to vp. Then both G1 and G2 are
isomorphic to G(v; p, q) by Proposition 23. Since G is connected, G(v; p + q, 0) is
also connected and so we can assume that x is the principal eigenvector ofA(G(v; p+
q, 0)) corresponding to ρ(A(G(v; p + q, 0))). Consider the components xv, xvp of
x corresponding to v and vp. Obviously, either xv ≥ xvp or xv ≤ xvp . Thus by
Theorem 15, we have

ρ(A(G(v; p, q))) = max{ρ(A(G1)), ρ(A(G2))} > ρ(A(G(v; p + q, 0))),

Similarly we can show that

ρ(Q(G(v; p, q))) = max{ρ(Q(G1)), ρ(Q(G2))} > ρ(Q(G(v; p + q, 0))).

and

ρ(Q∗(G(v; p, q))) = max{ρ(Q∗(G1)), ρ(Q∗(G2))} > ρ(Q∗(G(v; p + q, 0))).

�
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The following lemma is about the total grafting operation on ordinary trees.

Lemma 25 Let T be an ordinary tree of order n which is not a path. Then the path
Pn can be obtained from T by several times of total grafting operations.

Proof Let N3(T ) be the number of vertices in T with degree at least 3. Then T �=
Pn ⇐⇒ N3(T ) ≥ 1. We then use induction on N3(T ).

Let v be a vertex of T , let u be a vertex with degree at least 3 which is furthest to
v (since N3(T ) ≥ 1). Then there are at least (d(u) − 1) many pendant paths starting
from u. By using (d(u)−2)many total grafting operations at u on these pendant paths,
we finally obtain a tree T

′
of order n with N3(T

′
) = N3(T )−1 (since the vertex u has

degree 2 in the new tree T
′
). By using induction on the tree T

′
, we arrive our desired

result. �
Theorem 26 Let T k be the kth power of an ordinary tree T , defined as in Hu et al.
(2013). Suppose that T k has n vertices. Then we have

ρ(A(Pn,k)) ≤ ρ(A(T k)) ≤ ρ(A(Sn,k))

and
ρ(Q(Pn,k)) ≤ ρ(Q(T k)) ≤ ρ(Q(Sn,k))

and
ρ(Q∗(Pn,k)) ≤ ρ(Q∗(T k)) ≤ ρ(Q∗(Sn,k))

where either one of the left equalities holds if and only if T k ∼= Pn,k , and either one
of the right equalities holds if and only if T k ∼= Sn,k .

Proof If T k �= Pn,k , then T is a tree of order n′ = n−1
k−1 + 1 which is not a path. By

Lemma 25, Pn′ can be obtained from T by several times of total grafting operations.
Accordingly,Pn,k canbeobtained fromT k by several times of total graftingoperations.
So by Theorem 24, we have ρ(A(Pn,k)) < ρ(A(T k)), and ρ(Q(Pn,k)) < ρ(Q(T k)),
and ρ(Q∗(Pn,k)) < ρ(Q∗(T k)).

Since T k is a supertree, the right inequalities follow immediately as a special case
of Theorem 19. �

It is proved in Theorem 4.1 of Hu et al. (2015) that

ρ(Q(Sn,k)) = 1 + α∗,

where α∗ ∈ (m − 1,m] is the largest real root of xk − (m − 1)xk−1 − m = 0, and
m = n−1

k−1 is the number of edges of Sn,k .
Now we compute the value of ρ(Q∗(Sn,k)).
Recall that an automorphism of a k-uniform hypergraph G is a permutation σ of

V (G) such that {i1, i2, . . . , ik} ∈ E(G) if and only if {σ(i1), σ (i2), . . . , σ (ik)} ∈
E(G), for any i j ∈ V (G), j = 1, . . . , k. The group of all automorphisms of G is
denoted by Aut (G).

In Shao (2013), Shao introduced the concept of permutational similarity for ten-
sors as follows: for two order k and dimension n tensors A and B, if there exists

123

Author's personal copy



758 J Comb Optim (2016) 32:741–764

a permutation matrix P = Pσ (corresponding to a permutation σ ∈ Sn) such that
B = PAPT , thenA and B are called permutational similar. Note that if B = PAPT ,
then bi1,...,ik = aσ(i1),σ (i2),...,σ (ik ). Shao (2013) showed that similar tensors have the
same characteristic polynomials and thus have the same spectra.

Proposition 27 Apermutation σ ∈ Sn is an automorphism of a k-uniform hypergraph
G on n vertices if and only if PσQ∗ = Q∗Pσ .

Proof Let P = Pσ be the permutation matrix corresponding to σ , andQ′ = PQ∗PT .
Then we have

Q′
i1,...,ik = Q∗

σ(i1),σ (i2),...,σ (ik ).

So by the definition of automorphism and the associative law of the tensor product we
have

σ ∈ Aut (G) ⇐⇒ Q∗
i1,...,ik = Q∗

σ(i1),σ (i2),...,σ (ik ) = Q′
i1,...,ik (∀i1, . . . , ik ∈ [n])

⇐⇒ Q∗ = Q′ = PQ∗PT

⇐⇒ PQ∗ = Q∗P

�
If x is an eigenvector of Q∗ corresponding to the eigenvalue λ, then for each

automorphism σ of G we have

Q∗Pσ x = PσQ∗x = λPσ x
[k−1] = λ(Pσ x)

[k−1].

Thus Pσ x is also an eigenvector ofQ∗ corresponding to the eigenvalue λ. This simple
observation leads to what follows.

Lemma 28 Let G be a connected k-uniform hypergraph, Q∗ = Q∗(G) be its (irre-
ducible) incidence Q-tensor. If x is the principal eigenvector of Q∗ corresponding to
λ = ρ(Q∗), then we have:

(1) Pσ x = x for each automorphism σ of G.
(2) For any orbit � of Aut (G) and each pair of vertices i, j ∈ �, the corresponding

components xi , x j of x are equal.

Proof (1) By hypothesis we haveQ∗x = λx [k−1]. For each automorphism σ of G we
have

Q∗Pσ x = PσQ∗x = λPσ x
[k−1] = λ(Pσ x)

[k−1].

Thus Pσ x is also an eigenvector of Q∗ corresponding to the eigenvalue λ. Since
Q∗ is nonnegative irreducible, by Theorem 12 the nonnegative eigenvector of Q∗
corresponding to λ = ρ(Q∗) is unique up to a constant multiple. So Pσ x = cx for
some c ∈ R. Thus c2xT x = (xT PT

σ )Pσ x = xT x , and so c = 1 since both Pσ x and x
are nonnegative.

The result (2) follows directly from result (1). �
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Now we can obtain the value of the incidence Q-spectral radius of the hyperstar as
in the following theorem.

Theorem 29 Let Sn,k be a k-uniform hyperstar on n vertices. Then

ρ(Q∗(Sn,k)) = (m1/(k−1) + k − 1)k−1,

where m = n−1
k−1 is the number of edges of Sn,k .

Proof Let V0 ∪ V1 ∪ · · · ∪ Vm be the disjoint partition of V (Sn,k) such that |V0| = 1,
|V1| = · · · |Vm | = k − 1 and E = {V0 ∪ Vi |i = 1, . . . ,m}. Note that V0 and
V1 ∪ · · ·∪Vm are two orbits of automorphism group Aut (Sn,k). Let x be the principal
eigenvector of Q∗(Sn,k). Since Sn,k is connected, by Lemma 28 we have that the
components of x corresponding to vertices in V0 and V \V0 are constant respectively,
and let a and b be these common values respectively. By the eigenvalue equation
Q∗(Sn,k)x = ρx [k−1] and the Eq. (4), where ρ denotes ρ(Q∗(Sn,k)) for convenience,
we have

ρak−1 = m(a + (k − 1)b)k−1,

ρbk−1 = (a + (k − 1)b)k−1.

Dividing the first equation by the second equation, we obtain ( ab )k−1 = m. Thus
a
b = m1/(k−1). So by the second equation we have

ρ =
(a
b

+ k − 1
)k−1 =

(
m1/(k−1) + k − 1

)k−1
.

�
Next we show that ρ(A(Sn,k)) = m1/k . Similarly as in the proof of Theorem 29, let

x be the principal eigenvector ofA(Sn,k). Let u be the center of Sn,k (the unique non-
pendent vertex). Let a = xu and b be the common value of all the other components
of x . Then by the eigenvalue equation A(Sn,k)x = ρx [k−1], we have

ρak−1 = mbk−1,

ρbk−1 = abk−2.

where ρ = ρ(A(Sn,k)). From this we solve that ρ = a/b = m1/k .

Theorem 30 Let T be a k-uniform supertree on n vertices with m = n−1
k−1 edges. Then

ρ(A(T)) ≤ m1/k,

and
ρ(Q(T)) ≤ 1 + α∗,
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where α∗ ∈ (m − 1,m] is the largest real root of xk − (m − 1)xk−1 − m = 0, and

ρ(Q∗(T)) ≤ (m1/(k−1) + k − 1)k−1

where either one of the equalities holds if and only if T is the hyperstar Sn,k .

Proof The results followdirectly fromTheorems 19 and 29, and the factρ(A(Sn,k)) =
m1/k , and the proof of Theorem 4.1 in Hu et al. (2015). �

6 Some other properties and bounds on incidence Q-spectral radius

In this section, we first give a characterization of regular hypergraphs in terms of their
incidence Q-tensors, and then using it to give some upper and lower bounds of the
incidence Q-spectral radii of uniform hypergraphs.

Proposition 31 A k-uniform hypergraph G is regular (of degree r) if and only if its
incidence Q-tensor has an all-1 eigenvector (with corresponding eigenvalue kk−1r).

Proof LetQ∗ = (Q∗
i1i2...ik

) be the incidence Q-tensor of G, and x = 1 = (1, . . . , 1)T

be the all-1 vector. From the Eq. (4), we have

(Q∗1)i =
∑

e∈Ei

x(e)k−1 = kk−1di , (∀ i = 1, . . . , n).

Thus
G is regular of degree r ⇐⇒ d1 = · · · = dn = r ⇐⇒ Q∗1 = (kk−1r)1 =

(kk−1r)1[k−1] ⇐⇒ 1 is an eigenvector of Q∗ with corresponding eigenvalue
kk−1r . �

A natural way to bound the spectral radius of a symmetric nonnegative tensor
is to use the expression of spectral radius presented in the form of maximization
problem (6).

Theorem 32 Let G be a k-uniform hypergraph with maximum degree � and average
degree d. Then

d ≤ 1

kk−1 ρ(Q∗) ≤ �. (7)

with equality holding in either of these inequalities if and only if G is regular.

Proof Since Q∗ is a symmetric nonnegative tensor, we have

ρ(Q∗) = max
{
xT (Q∗x) | x ∈ R

n+, ‖ x ‖k= 1
}

.

Let x = (1/ k
√
n)1 = (1/ k

√
n)(1, . . . , 1)T . Then by Eq. (3) and the fact that

d =
∑

i∈[n] di
n = km

n we have

ρ(Q∗) ≥ xT (Q∗x) =
∑

{ j1,..., jk }∈E
(x j1 + · · · + x jk )

k = m
kk

n
= kk−1d,
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If equality holds, then we have ρ(Q∗) = xT (Q∗x) and so x is a eigenvector of Q∗
by Lemma 13. Thus all-1 vector 1 is an eigenvector of Q∗ and so G is regular by
Proposition 31.

Now for the right inequality. Let x be a nonnegative eigenvector ofQ∗ correspond-
ing to ρ(Q∗) with ‖ x ‖k= 1. Then we have

ρ(Q∗) = xT (Q∗x) =
∑

{ j1,..., jk }∈E
(x j1 + · · · + x jk )

k

≤ kk−1
∑

{ j1,..., jk }∈E
(xkj1 + · · · + xkjk )

= kk−1
∑

i∈[n]
di x

k
i

≤ kk−1�
∑

i∈[n]
xki

= kk−1�,

where the first inequality follows from Jensen’s inequality (
x j1+···+x jk

k )k ≤ xkj1
+···+xkjk
k .

If ρ(Q∗) = kk−1�, then all inequalities above must be all equalities. Thus d1 = · · · =
dn = �.

Conversely, if G is regular, then d = �. By the inequalities (7), both sides become
equalities. �

Because Q∗ = RIRT , so it naturally attracts us to find the relation between the
spectral radiiρ(Q∗) andρ(RRT ). For this purpose,we need the following inequalities.

Lemma 33 (Hardy et al. 1988) If 0 < r < s and a1, . . . , ak ≥ 0, then we have

(as1 + as2 + · · · + ask)
1/s < (ar1 + ar2 + · · · + ark )

1/r (8)

unless all a1, . . . , ak but one are zero, and

(
as1 + as2 + · · · + ask

k

)1/s

>

(
ar1 + ar2 + · · · + ark

k

)1/r

(a1, . . . , ak > 0) (9)

Theorem 34 Let G be a k-uniform (k ≥ 3) connected hypergraph on n vertices, and
Q∗ = RIRT be its incidence Q-tensor, where R is the incidence matrix of G. Then

ρ(RRT ) < ρ(Q∗) < kk−2ρ(RRT ).

Proof Let x be a nonnegative eigenvector of RRT with unit length corresponding to
its spectral radius ρ(RRT ), and let y = x [2/k]. Then

∑
i∈[n] yki = ∑

i∈[n] x2i = 1, and
by inequality (8) we have

123

Author's personal copy



762 J Comb Optim (2016) 32:741–764

ρ(RRT ) = xT (RRT )x =
∑

{ j1,..., jk }∈E
(x j1 + · · · + x jk )

2

=
∑

{ j1,..., jk }∈E
((yk/2j1

+ · · · + yk/2jk
)2/k)k

≤
∑

{ j1,..., jk }∈E
(y j1 + · · · + y jk )

k

= yT (Q∗y)
≤ ρ(Q∗),

if equality holds in the last inequality, then y is a positive vector since the connectedness
ofG implies thatQ∗ is nonnegative irreducible. Then the first inequality must be strict
by inequality (8). So we always have ρ(RRT ) < ρ(Q∗).

For the second inequality, let y be the principle eigenvector ofQ∗ corresponding to
its spectral radius ρ(Q∗), and let x = y[k/2]. Then

∑
i∈[n] x2i = ∑

i∈[n] yki = 1, and
by inequality (9) we have

(y j1 + · · · + y jk )
k = (x2/kj1

+ · · · + x2/kjk
)k =

⎛

⎜⎝

⎛

⎝ x2/kj1
+ · · · + x2/kjk

k

⎞

⎠
k/2

⎞

⎟⎠

2

· kk

<

(
x j1 + · · · + x jk

k

)2

· kk = (x j1 + · · · + x jk )
2 · kk−2

From this inequality we have

ρ(Q∗) = yT (Q∗y) =
∑

{ j1,..., jk }∈E
(y j1 + · · · + y jk )

k

<
∑

{ j1,..., jk }∈E
(x j1 + · · · + x jk )

2 · kk−2 = xT (RRT )x · kk−2 ≤ ρ(RRT ) · kk−2

�

For the purpose of comparing these bounds in Theorem 34, take G1 and G2 be the
k-uniform s-path and s-cycle on n vertices respectively, where 1 ≤ s ≤ k

2 (Qi et al.
2014). Let R1 and R2 denote the incidence matrices of G1 and G2 respectively, and
let mi denotes the number of edges of Gi for i = 1, 2. Then we have

RT
1 R1 = k I + s A(Pm1), RT

2 R2 = k I + s A(Cm2)),

where A(Pm1) and A(Cm2) are the adjacency matrices of ordinary path and cycle on
m1 and m2 vertices, respectively. Note that ρ(RT

1 R1) = k + sρ(A(Pm1)) = k +
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2s cos π
m1+1 and ρ(RT

2 R2) = k + sρ(A(Cm2)) = k + 2s. Thus we have

k + 2s cos
π

m1 + 1
< ρ(Q∗(G1)) < kk−2

(
k + 2s cos

π

m1 + 1

)
,

k + 2s < ρ(Q∗(G2)) < kk−2(k + 2s).

Generally, these lower bounds are not better than the lower bound kk−1d in The-
orem 32. However, these upper bounds are better than the upper bound 2kk−1 in
Theorem 32, because 2s ≤ k and so 1+ 2s

k and 1+ 2s
k cos π

m1+1 are not more than 2.
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