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Abstract Finding the sparsest solutions to a tensor complementarity problem is
generally NP-hard due to the nonconvexity and noncontinuity of the involved �0 norm.
In this paper, a special type of tensor complementarity problems with Z -tensors has
been considered. Under some mild conditions, we show that to pursuit the sparsest
solutions is equivalent to solving polynomial programming with a linear objective
function. The involved conditions guarantee the desired exact relaxation and also allow
to achieve a global optimal solution to the relaxednonconvexpolynomial programming
problem. Particularly, in comparison to existing exact relaxation conditions, such as
RIP-type ones, our proposed conditions are easy to verify.
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1 Introduction

The classical compressed sensing theory (see the pioneeringwork in [4,5,15]) has been
gradually generalized and the nonlinear compressed sensing theory has attracted more
and more attentions inspired by significant real-life applications such as sparse phase
retrieval and sparse pulsation frequency detection in Asteroseimology (see [2] and ref-
erences therein). Among those nonlinear measurements, the polynomial structure has
been employed in many applications cases, such as quadratic measurements in sparse
signal recovery [27], and nonlinear compressed sensing with polynomial measure-
ments [26]. Besides the nonlinearity structure carried in many real-life applications,
some priori information such as the nonnegativity, can be extensively encountered in
communications, DNA microarrays, spectroscopy, tomography, network monitoring,
and hidden Markov models [16,20,23,28,33]. In this regard, the optimality condition
such as the KKT condition, which has been widely used in the optimization commu-
nity, might be a good surrogate for the involved feasible set. Under some constraint
qualifications, the original problem turns out to finding the sparsest solutions to a spe-
cial nonlinear complementarity problem with polynomial structures. Mathematically,
it can be formulated as

(PCP)
min ‖x‖0
s.t. F(x) ≥ 0, x ≥ 0, 〈x, F(x)〉 = 0,

where F = ( f1, . . . , fn) and all fi ’s are polynomial functions.
Apparently, when each fi in the aforementioned model (PCP) is reduced to be

affine (i.e., a linear function added by some constant), (PCP) is exactly to find the
sparsest solutions to a linear complementarity problem (LCP for short). The sparsest
solution to LCP has been studied in [10,32]. However, to our best knowledge, related
work on this topic are very limited, partially but essentially due to the complexity
caused by the involved non-convex discontinuous objective function, and partially
from the nonlinearity generated by the underlying complementarity constraint. For
the former difficulty, many relaxation strategies have been explored by using differ-
ent surrogates for the �0 norm, such as the convex �1 norm [4,5,15], the non-convex
�p norm [9,18,37], the reweighted �1 norm [6,8], and so on. A natural but essential
question arises: is it possible to get an exact solution of the original �0 norm mini-
mization problem by the relaxation counterpart? If so, what kind of properties should
the involved data possess? For the linear measurement case, the well-known restricted
isometry property (RIP for short) was introduced to guarantee the desired exactness,
which has given a great explanation of the popularity of all sorts of random com-
pressed sensing approaches [3,4]. There are some other exact relaxation conditions
on the coefficient matrix for linear constraints, such as the null space property [40], the
range space property [41], the s-goodness property [22] and so on. Most of these exact
relaxation properties are somehow not easy to verify. In [29], a generalized Z -matrix
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was introduced. Together with the nonnegativity of the right-hand side observation
vector, it serves as an easy-to-check condition for the desired exact relaxation for the
linear sparse optimization. For the nonlinear sparse optimization, such as the sparse
LCP, the Z -matrix has been employed to guarantee the exact relaxation [32]. Then
how about more general polynomial cases? Can we find some Z -type condition to
ensure an exact solution from the relaxation problem for the original sparse polyno-
mial complementarity problem? This is our primary goal in this paper.

Recently, hypermatrices, or tensors,1 as a higher-order generalization of matrices,
have been extensively studied [11,12,30,38], which is closely related to polynomials
in terms of those coefficients. This allows us to write a polynomial equation system
in a condense form with tensors. In this regard, when the constraint function in the
aforementioned problem (PCP) takes the form F(x) = H(x) − b with some homo-
geneous polynomial function H(x) and some vector b ∈ R

n , then the feasible set can
be reformulated as

(TCP) x ≥ 0, Axm−1 − b ≥ 0, 〈x,Axm−1 − b〉 = 0,

wherem−1 is the degree of H(x), xm−1 is a rank one tensor of orderm−1 and dimen-
sion nwith its (i1, . . . , im−1)th entry xi1 · · · xim−1 , andA is anmth order n-dimensional
tensor consisting of all the coefficients of H(x) by means of H(x) = Axm−1. Here
the tensor product Axm−1 is defined as (Axm−1)i = ∑n

i2,...,im=1 aii2...im xi2 · · · xim ,
for all i = 1, . . . , n. Similarly, we can define Axm−k as

(Axm−k)i1...ik =
n∑

ik+1,...,im=1

ai1...ik ik+1...im xik+1 · · · xim , ∀i1, . . . , ik = 1, . . . , n.

(1.1)

The above (TCP) is the so-called tensor complementarity problem which has been
studied in [7,34,35]. In this paper, we will focus on finding the sparsest solutions to a
tensor complementarity problem which can be modeled as

(P0)
min ‖x‖0
s.t. Axm−1 − b ≥ 0, x ≥ 0, 〈x,Axm−1 − b〉 = 0.

Mathematically, problem (P0) is generallyNP-hard due to the objective function ‖x‖0.
Inspired by the scheme of themost popular convex relaxation, we could get the a linear
surrogate eT x resulting from the nonnegativity constraint of x . But the nonlinearity
from the tensor complementarity constraints cannot be easily handled and the existing

1 More precisely, here the tensor should be called the hypermatrix. In physics and mechanics, tensors are
geometric objects equipped with a transformation law that details how the components of the tensor respond
to a change of basis, while hypermatrices are simply multi-dimensional arrays. However, for most papers in
tensor decomposition (e.g., the survey paper [25] in SIAMReview, and the numerical optimization methods
in [24] in Math. Programming), and in tensor complementarity problems (e.g., [34]), the word “tensors” is
used for multi-dimensional arrays. We will then roughly use the word “tensors” throughout this paper.
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exact relaxation conditions are not that appropriate since most of them are customized
for linear systems.

In this paper, by employing Z -tensors (see e.g., [13]) and the least element theory
in nonlinear complementarity problems [36], we present that if the involved b is
nonnegative andA is a Z -tensor, then a sparsest solution of the tensor complementarity
problem can be achieved by solving the following polynomial programming problem:

(P1)
min eT x
s.t. Axm−1 − b = 0, x ≥ 0,

where e is the all one vector. In comparison to those existing exact relaxation con-
ditions for general nonlinear sparse optimization problems [2], our conditions on the
coefficients of the polynomial functions are easy to check. This is themain contribution
of this paper.

The rest of the paper is organized as follows. The concepts of Z -tensor and Z -
function are recalled and some useful properties are presented in Sect. 2. The Z -tensor
complementarity problem is introduced and discussed in Sect. 3. The exact relaxation
theorem is established in Sect. 4. Concluding remarks are drawn in Sect. 5.

For convenience of presentation, the following notations will be used throughout
the paper. We use R

n and R
n+ to denote the n-dimensional Euclidean space and its

nonnegative orthant respectively. Rn×n is used to denote the space of all real n × n
matrices. Tm,n is used to stand for the set of all real tensors with orderm and dimension
n. Vectors are denoted by lowercase letters such as x , matrices are written as capital
letters such as A, and tensors are written as calligraphic capital letters such as A.

2 Z-Tensors and Z-functions

As a nonlinear generalization of Z -matrices with non-positive off-diagonal elements,
the concept of off-diagonally antitone functions was first introduced by Rheinboldt
in [31], which further leads to the definition of Z -functions as stated in [36]. In [21],
Isac has redefined the Z -functions equivalently by means of an implication system,
which has been also widely used in the community of complementarity problems. In
this section, the definition of Z -functions and some useful properties will be recalled.
Particularly, to explore the Z -property of homogeneous polynomial functions, the
Z -tensor and the partially Z -tensor will be introduced and analyzed.

Definition 1 (Definition 3.2, [21]) Amapping F : Rn → R
n is said to be a Z -function

if for every x , y, z ∈ R
n+ such that 〈x, y − z〉 = 0, we have 〈x, F(y) − F(z)〉 ≤ 0.

Proposition 1 (Proposition 3.2, [21]) A Gâteaux continuous differentiable function
F : Rn → R

n is a Z-function if and only if for any x ∈ R
n+, ∇F(x) is a Z-matrix.

Lemma 1 ([21]) If F : Rn → R
n is a Z-function, then the following implication

holds:

x ∈ R
n+, y ∈ R

n+, 〈x, y〉 = 0 ⇒ 〈x, F(y) − F(0)〉 ≤ 0. (2.1)
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Moreover, if F(x) = Ax is a linear function, then A is a Z-matrix, which is equivalent
to the following implication:

x ∈ R
n+, y ∈ R

n+, 〈x, y〉 = 0 ⇒ 〈x, Ay〉 ≤ 0. (2.2)

It is known that for any matrix A, Ax is a Z -function if and only if A is a Z matrix,
i.e., all of its off-diagonal entries are non-positive. This concept has been extended to
the higher order tensors as stated below.

Definition 2 ([39]) Let A = (ai1...im ) ∈ Tm,n . A is called a Z -tensor if all its off-
diagonal entries are nonpositive, i.e., ai1...im ≤ 0 when δi1,...,im = 0.

Another concept called the partially Z -tensor is introduced here.

Definition 3 Let A = (ai1...im ) ∈ Tm,n . We call A a partially Z -tensor if for any
i1 ∈ [n], ai1i2...im ≤ 0 for all i2, . . . , im satisfying i1 /∈ {i2, . . . , im}.

Obviously, a Z -tensor is a partially Z -tensor, and both Z - and partially Z -tensors
of orderm = 2 are exactly Z -matrices. Thus, these two concepts both can be regarded
as extensions of the Z -matrix. Properties on these two types of tensors are discussed
as follows which will play an essential role in the sequel analysis.

Theorem 1 For any given A ∈ Tm,n, we have

(i) ifA is a partially Z-tensor, then the implication (2.1) holds with F(x) = Axm−1;
(ii) if A is a Z-tensor, then F(x) = Axm−1 is a Z-function.

Proof (i) Suppose x , y ∈ R
n+ with 〈x, y〉 = 0. Easily we can get

xi ≥ 0, yi ≥ 0, xi yi = 0, ∀i ∈ [n]. (2.3)

Thus,

〈x, F(y) − F(0)〉

= 〈x,Aym−1〉 =
n∑

i=1

xi (Aym−1)i

=
n∑

i=1

xi

n∑

i2,...,im=1

aii2...im yi2 · · · yim

=
n∑

i=1

⎛

⎜
⎜
⎝

n∑

i2,...,im=1
i /∈{i2,...,im }

aii2...im xi yi2 · · · yim +
n∑

i2,...,im=1
i∈{i2,...,im }

aii2...im xi yi2 · · · yim

⎞

⎟
⎟
⎠

=
n∑

i=1

n∑

i2,...,im=1
i /∈{i2,...,im }

aii2...im xi yi2 · · · yim

≤ 0,
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where the last equality follows from (2.3) and the last inequality follows from
Definition 3.

(ii) Invoking Proposition 1, it suffices to show that for any x ∈ R
n+, ∇x (Axm−1) is a

Z -matrix. Combining with Lemma 1, we only need to show the implication (2.2)
holds with A := Axm−1 for any given x ∈ R

n+. Let y, z be any two nonnegative
vectors, and 〈y, z〉 = 0. It yields that

〈y,∇x (Axm−2)z〉

=
n∑

i=1

yi

n∑

i2,...,im=1

(
aii2...im + ai2i ...im + . . . + ai2...imi

)
xi2 · · · xim−1 zim

=
n∑

i=1

⎛

⎜
⎜
⎝

n∑

i2,...,im=1
im �=i

(
aii2...im + ai2i ...im + . . . + ai2...imi

)
xi2 · · · xim−1 zim yi

⎞

⎟
⎟
⎠

≤ 0,

where the second equality is from the complementarity of y and z, and the last
inequality is from the fact that A is a Z -tensor. Thus FA is a Z -function. 
�

3 Z-Tensor complementarity problems

It is known that a tensor complementarity problem always takes the form

(TCP(A, b)) x ≥ 0, Axm−1 − b ≥ 0, 〈x, Axm−1 − b〉 = 0,

which is actually a special nonlinear complementarity problem. When the involved
tensor A is a Z -tensor, the corresponding (TCP(A, b)) is called a Z -tensor comple-
mentarity problem. In this section, we will concentrate on exploiting the properties of
such a special class of tensor complementarity problems.We start with recalling a nice
property possessed by general nonlinear complementarity problems with Z -functions.

Theorem 2 (Ex. 3.7.21, [17]) Let F : Rn → R
n be a continuous Z-function. Suppose

that the following nonlinear complementarity problem

(NCP(F)) x ≥ 0, F(x) ≥ 0, 〈x, F(x)〉 = 0

is feasible, i.e., F := {x ∈ R
n : x ≥ 0, F(x) ≥ 0} �= ∅. Then F has a unique least

element x∗ which is also a solution to (NCP(F)).

Inspired by the relation between Z -tensors and Z -functions, we can easily get the
following properties for Z -tensor complementarity problems.

Corollary 1 LetA be a Z-tensor and b ∈ R
n. Suppose that the tensor complementar-

ity problem (TCP(A, b)) is feasible, i.e.,F := {x ∈ R
n : x ≥ 0,Axm−1 −b ≥ 0} �=

∅. Then F has a unique least element x∗ which is also a solution to (TCP(A, b)).
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Proof Theorem 1 tells us that Axm−1 is a Z -function. Utilizing Proposition 1, it is
easy to verify that Axm−1 − b is also a Z -function for any b ∈ R

n . Thus, the desired
result follows directly from Theorem 2. 
�

With a nonnegative b and a partially Z -tensor A in (TCP(A, b)), the tensor com-
plementarity problem can be equivalent to a multi-linear equation with nonnegative
constraints.

Proposition 2 LetA be a partially Z-tensor and b ∈ R
n+. The following two systems

are equivalent:

(i) x ∈ R
n+, Axm−1 − b ∈ R

n+, 〈x,Axm−1 − b〉 = 0;
(ii) x ∈ R

n+, Axm−1 − b = 0.

Proof Trivially, any solution to system (ii) is a solution to system (i). Let y be any
solution to system (i). SinceA is a partially Z -tensor and b ∈ R

n+, invoking Theorem2,
it yields that

0 ≥ 〈Aym−1 − b,Aym−1〉
= 〈Aym−1 − b,Aym−1 − b〉 + 〈Aym−1 − b, b〉
≥ ‖Aym−1 − b‖22.

This indicates that Aym−1 − b = 0, which implies that y is a solution to (ii). 
�
Note that Z -tensors are partially Z -tensors. Thus the results in the above proposition

hold for Z -tensors.

Corollary 2 Let A be a Z-tensor and b ∈ R
n+. The following two systems are equiv-

alent:

(i) x ∈ R
n+, Axm−1 − b ∈ R

n+, 〈x,Axm−1 − b〉 = 0;
(ii) x ∈ R

n+, Axm−1 − b = 0.

Utilizing the aforementioned equivalence, we can characterize the feasibility of
TCP(A, b) in terms of the consistency of the corresponding nonnegative constrained
multi-linear equation. Before stating the feasibility, we recall the definition of M-
tensors, which form an important subclass of Z -tensors.

Definition 4 ([39]) Let A ∈ Tm,n be a Z -tensor with A = sI − B, where I is the
identity tensor whose diagonal entries are 1 and others 0, B is a nonnegative tensor
and s ∈ R

n+. If s ≥ ρ(B), then A is called an M-tensor. If s > ρ(B), then A is called
a strong M-tensor. Here ρ(B) stands for the spectral radius of B.
Proposition 3 If A is a strong M-tensor and b ∈ R

n+, then (TCP(A, b)) is feasible.

Proof Let A = sI − B be a strong M-tensor with B ≥ 0 and s > ρ(B). Invoking
the equivalence as established in Corollary 2, it suffices to show that that there exists
some nonnegative x such that Axm−1 = b. Let Ts,B,b : Rn+ → R

n+ be the mapping
defined as follows:

Ts,B,b(x) := (s−1Bxm−1 + s−1b)

[
1

m−1

]

, ∀x ∈ R
n,
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where x

[
1

m−1

]

is the vector with its i th component x

[
1

m−1

]

i , for all i = 1, . . . , n. Easily,
we can find that the required nonnegative solution x is exactly a fixed point of this
mapping Ts,B,b. Besides, since A is a strong M-tensor, applying Theorem 3 in [13],
there always exists a positive z such that Azm−1 > 0. Denote

α := min
i∈[n]

bi
(Azm−1)i

, and β := max
i∈[n]

bi
(Azm−1)i

.

Obviously,

0 ≤ αAzm−1 ≤ b ≤ βAzm−1.

Set v := A
(
α

1
m−1 z

)m−1
and w := A

(
β

1
m−1 z

)m−1
. Therefore,

α
1

m−1 z = Ts,B,v

(
α

1
m−1 z

)
≤ Ts,B,b

(
α

1
m−1 z

)
,

β
1

m−1 z = Ts,B,w

(
α

1
m−1 z

)
≥ Ts,B,b

(
β

1
m−1 z

)

Note that Ts,B,b is an increasing continuous mapping on Rn+. By employing the fixed
point theorem in [1] (also see Theorem 3.1 in [14]), there exists at least one fixed point

x of Ts,B,b such that 0 ≤ α
1

m−1 z ≤ x ≤ β
1

m−1 z. This completes the proof. 
�

4 Exact relaxation

Now we are in a position to establish the exact relaxation theorem for the �0 norm
minimization problem (P0).

Theorem 3 Let A be a Z-tensor and b ∈ R
n+. If the problem (P0) is feasible, then

(P0) has a solution x∗ which is also the unique solution to the problem (P1).

Proof Invoking Theorem 2, we know that Axm−1 is a Z -function. Together with
Proposition 1, it is easy to verify thatAxm−1 − b is also a Z -function. Thus, Theorem
2 tells us that there exists a unique least element x∗ in F as defined in Corollary 1,
which is also a solution of the tensor complementarity problem. The nonnegativity
constraint directly yields that x∗ is one of the sparsest solutions of (P0). Utilizing the
equivalence as shown in Corollary 2, x∗ is definitely the unique solution of (P1) by
the fact that it should be the least element in {x ∈ R

n : x ≥ 0,Axm−1 = b}. This
completes the proof. 
�
Corollary 3 LetA be a strong M-tensor and b ∈ R

n+. Then problem (P1) is uniquely
solvable and the unique solution is also an optimal solution to problem (P0).

Proof This follows directly from Proposition 3 and Theorem 3. 
�
Some simple examples are introduced to illustrate the exact relaxation theorem for

pursuing the sparsest solution to strong M-tensor complementarity problems.
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Example 1 (i) Let A = (
ai1i2i3i4

) ∈ T4,2 with a1111 = a2222 = 1, a1112 = −2, and
other entries 0, and b = (0, 1)�. It is known from [19] that A is a strong M-
tensor and the solution set of the corresponding tensor complementarity problem
(TCP(A, b)) is {(0, 1)�, (2, 1)�}. By direct calculation, (0, 1)� is the unique
common solution to both problems (P0) and (P1).

(ii) Let A = (
ai jk

) ∈ T3,n be some strictly diagonally dominated Z -tensor (and
hence strong M-tensor as shown in [39]) with ai j j = 0 for any i �= j , i , j ∈
{1, . . . , n}, and b ∈ R

n+ with ‖b‖0 = 1. In this case, it is not hard to verify that

x∗ = (0, . . . , 0,
√

bi
aiii

, 0, . . . , 0)� is the unique solution to problem (P0), where
i is the index such that bi �= 0. This optimal solution is also the unique solution
to problem (P1) by direct verification or by applying the Guass–Seidel iteration
method in [14] for the system Ax2 = b with the zero vector as the initial point.

Remark 1 The above two cases are easy to handle. For general strong M-tensor com-
plementarity problems with b ∈ R

n+, the exact relaxation theorem in Corollary 3
always holds, which allows us to get the sparsest solution by solving the corre-
sponding minimization problem with a linear objective function and homogeneous
polynomial equality constraints together with a nonnegative constraint. We now apply
the aforementioned Guass–Seidel iteration method in [14] for the multi-linear equa-
tionAxm−1 = bwith the zero vector as the initial point to get theminimal nonnegative
solution x∗, which is exactly the solution to problem (P1) and hence to problem (P0).
Here we will randomly generate 1000 instances of the strong M-tensor A ∈ T3,100
by A = ηI − B with B = (

bi jk
) = rand(100, 100, 100), bi j j = 0 for any i ,

j ∈ {1, . . . , 100}, η = 1.1×max(sum(sum(B, 3), 2)), and b = 10 × rand(100, 1).
Both B and b will be treated with certain sparsity. The sparsity of the solution is listed
in Table 1.

Here p(A) stands for the percentage of nonzero entries of A, which indicates
the sparsity of A, x̄ is the truncated vector of the optimal solution to problem (P1)
with components larger than 1e-4, and s(x̄) is the average sparsity of x̄ for all tested
instances. Observe that the sparsity of the solution greatly relies on the sparsity of the
input data A and b. For example, if bi �= 0, then xi �= 0 by the structure of A. That
is, ‖x∗‖0 ≥ ‖b‖0. And the sparsity of A will also greatly effect the sparsity of the
solution as Table 1 shows.

Some extended result on exact relaxation theory is discussed as follows. For any
matrix P = (pi j ) ∈ R

n×n , we define a linear operator PA : Tm,n → Tm,n as follows:

(PA)i1i2...im =
n∑

i=1

pi1i aii2...im , ∀A = (
ai1i2...im

) ∈ Tm,n .

Table 1 The Gauss–Seidel
Iteration Method in [14] for
Problem (P1)

p(A) 90 % 20 % 90 % 90 % 90 % 20 % 10 %

‖b‖0 100 100 10 2 1 10 10

s(x̄) 100 100 95.2 95.1 1 45.9 28.1
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This is also treated as a special tensor-matrix product in the tensor community (see
e.g., [25]). Evidently, if P is an invertible matrix, then PTm,n = Tm,n . However, this
operator cannot preserve the Z -property for Z -tensors. Note that the right-hand side
of the multi-linear system Axm−1 = b is actually a condense form of n homoge-
neous polynomials of degree m with any row tensor Ai formed by the corresponding
coefficients of the i th polynomial. If we change the order of these equations in the
multi-linear system, the solution set will not be affected. This observation allows us
to generalize the result in Theorem 3. For convenience, we use PZ

m,n to denote the set
of all tensors of order m and dimension n which can be transformed to Z -tensors with
some permutation matrices, i.e.,

P
Z
m,n := {A ∈ Tm,n : PA is a Z -tensor, P is a permutation matrix}

Corollary 4 Suppose A ∈ P
Z
m,n and b ∈ R

n+. If the problem (P0) is feasible, then
(P0) has a unique solution x∗ which is also the unique solution to the problem (P).

5 Conclusions

To pursuit the sparsest solutions to a tensor complementarity problem can be for-
mulated as an �0 norm minimization with tensor complementarity constraints, which
is always NP-hard. Based on the properties of Z -tensors, we show that one of the
sparsest solutions of the Z -tensor complementarity problem can be achieved in poly-
nomial time by solving a polynomial programming problem with a linear objective
function, such as the Gauss-Seidel iteration method proposed in [14]. The involved
condition on the input of data is indeed an exact relaxation condition for the original �0
norm minimization. It is worth mentioning that in comparison to other existing exact
relaxation conditions in the community of sparse optimization or compressed sensing,
our proposed condition is easy to verify. Including the sparse tensor complementarity
problem as a special case, the topic of sparse optimization with general nonlinear
complementarity constraints deserves further study.
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