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Abstract Strong H-tensors play an important role in identifying positive semidef-
initeness of even-order real symmetric tensors. We provide several simple practical
criteria for identifying strong H-tensors. These criteria only depend on the elements
of the tensors; therefore, they are easy to be verified. Meanwhile, a sufficient and nec-
essary condition of strong H-tensors is obtained. We also propose an algorithm for
identifying the strong H-tensors based on these criterions. Some numerical results
show the feasibility and effectiveness of the algorithm.

Keywords StrongH-tensors · Positive semidefiniteness · Irreducible

1 Introduction

We start with some preliminaries. First, denote [n] := {1, 2, · · · , n}. A complex
(real) order m dimension n tensor A = (ai1i2···im) consists of nm complex (real)
entries:

ai1i2···im ∈ C (R),

where ij ∈ [n] for j ∈ [m] [5, 10, 12, 16, 25]. It is obvious that a matrix is an order
2 tensor. Moreover, a tensor A = (ai1i2···im) is called symmetric [9, 18] if

ai1···im = aπ(i1···im), ∀π ∈ �m,
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where �m is the permutation group of m indices. And a real tensor A = (ai1···im)

is called nonnegative if each entry is nonnegative. An order m dimension n tensor
I = (δi1i2···im) is called the unit tensor [22], where

δi1i2···im =
{
1, if i1 = i2 = · · · = im,

0, otherwise.

Given an order m dimension n complex tensor A = (ai1i2···im), if there are a
complex number λ and a nonzero complex vector x = (x1, x2, . . . , xn)

T ∈ C
n that

are solutions of the following homogeneous polynomial equations:

Axm−1 = λx[m−1],

then λ is called the eigenvalue of A and x the eigenvector of A associated with λ [6,
8, 11, 13, 17–20, 23], whereAxm−1 and x[m−1] are vectors, whose ith component are

(Axm−1)i =
∑

i2,...,im∈[n]
aii2···imxi2 · · · xim,

and

(x[m−1])i = xm−1
i ,

respectively.
In addition, the spectral radius of a tensor A is defined as

ρ(A) = max{|λ| : λ is an eigenvalue of A}.
Analogous with that of M-matrices, comparison matrices and H -matrices, the
definitions of M-tensors, comparison tensors and strongH-tensors are given by:

Definition 1 [26] Let A = (ai1i2···im) be a real tensor of order m dimension n. A is
called an M-tensor if there exists a nonnegative tensor B and a positive real number
η ≥ ρ(B) such that A=ηI-B. If η > ρ(B), then A is called a strongM-tensor.

Definition 2 [7] Let A = (ai1i2···im) be a complex tensor of order m dimension n.
We call another tensorM(A) = (mi1i2···im) as the comparison tensor of A if

mi1i2···im =
{ +|ai1i2···im |, if (i2, i3, · · · , im) = (i1, i1, · · · , i1),

−|ai1i2···im |, if (i2, i3, · · · , im) �= (i1, i1, · · · , i1).

Definition 3 [14] Let A = (ai1i2···im) be a complex tensor of order m dimen-
sion n. A is called a strong H-tensor if there is an entrywise positive vector x =
(x1, x2, . . . , xn)

T ∈ R
n such that for all i ∈ [n],

|ai···i |xm−1
i >

∑
i2,i3,...,im∈[n],

δii2 ...im
=0

|aii2···im |xi2 · · · xim. (1)

Moreover, Ding, Qi, and Wei [7] also provided the following definition of strong
H-tensor, which is equivalent to the Definition 3.
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Definition 4 [7] We call a tensor an H-tensor, if its comparison tensor is an M-
tensor, we call it as a strongH-tensor, if its comparison tensor is a strongM-tensor.

For an mth degree homogeneous polynomial of n variables f (x) denoted as

f (x) =
∑

i1,...,im∈[n]
ai1i2···imxi1 · · · xim, (2)

where x = (x1, x2, . . . , xn)
T ∈ R

n. When m is even, f (x) is called positive definite
if

f (x) > 0, f or any x ∈ R
n, x �= 0.

The homogeneous polynomial f (x) in (2) is equivalent to the tensor product of an
order m dimensional n symmetric tensor A and xm defined by

f (x) = Axm =
∑

i1,...,im∈[n]
ai1···imxi1 · · · xim, (3)

where x = (x1, x2, . . . , xn)
T ∈ R

n. The positive definiteness of multivariate poly-
nomial f (x) plays an important role in the stability study of nonlinear autonomous
systems via Lyapunov’s direct method in automatic control, such as the multivariate
network realizability theory [2], a test for Lyapunov stability in multivariate filters
[3], a test of existence of periodic oscillations using Bendixson’s theorem [21], and
the output feedback stabilization problems [1]. For n ≤ 3, the positive definiteness of
the homogeneous polynomial form can be checked by a method based on the Sturm
theorem [4]. For n > 3 and m ≥ 4, it is difficult to determine a given even-order
multivariate polynomial f (x) is positive semi-definite or not because the problem is
NP-hard. In [19], Qi pointed out that a multivariate polynomial f (x) is positive def-
inite if and only if the real symmetric tensor A in (3) is positive definite. However, it
is also difficult to determine a given even-order symmetric tensor is positive definite
or not because the problem is also NP-hard. For this case, recently, by introducing
the definition of strongH-tensor, Li et al. [14] provided the following theorem.

Theorem 1 Let A = (ai1···im) be an even-order real symmetric tensor of order m
dimension n with ak···k > 0 for all k ∈ [n]. If A is a strong H-tensor, then A is
positive definite.

Theorem 1 provides a method for identifying the positive definiteness of an even-
order symmetric tensor by determining strong H-tensors. But it is still difficult to
determine a strong H-tensor in practice by using the definition of strong H-tensor
because the conditions “there is an entrywise positive vector x = (x1, x2, . . . , xn) ∈
R

n such that for all i ∈ [n], the Inequation (1) holds” in Definition 3 is unverifiable
for there are an infinite number of positive vector in R

n. Therefore, finding effective
criteria to identify strongH-tensor is interesting.

In the present paper, several new simple interesting criteria for strong H-tensors
are obtained. In Section 2, we give an equivalent condition for a strong H-tensor.
Via using only the elements of tensors, five criteria for identifying strong H-tensor
are obtained in Section 3. A direct algorithm for identifying strong H-tensor is put
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forward in Section 4. Numerical examples are then presented in Section 5 which
shows that our proposed algorithm are efficient. Finally, we conclude the paper in
Section 6.

We adopt the following notation throughout this paper. The calligraphy letters A,
B, H, · · · denote the tensors; the capital letters A, B, D, · · · represent the matrices;
the lowercase letters x, y, · · · refer to the vectors.

2 A sufficient and necessary condition for a strong H-tensor

For the convenience of discussion, we start with the following definitions and
lemmas.

Definition 5 [26] Let A = (ai1i2···im) be a complex tensor of order m dimension n.
A is diagonally dominant if for all i ∈ [n],

|aii···i | ≥
∑

i2,...,im∈[n],
δii2 ...im

=0

|aii2···im |. (4)

A is strictly diagonally dominant if the strict inequality holds in (4) for all i.

Definition 6 [10, 15] The product of an order m dimension n tensor A = (ai1i2···im)

and a n-by-n matrix X = (xij ) on mode-k is defined by

(A ×k X)i1···jk ···im =
n∑

ik=1

ai1···ik ···imxikjk
.

Remark 1 According to the Definition 6, we denote

AXm−1 := A ×2 X ×3 · · · ×m X.

Particularly, for X = diag(x1, x2, · · · , xn), the product of the tensor A and the
matrix X is given by:

(AXm−1)i1i2···im = ai1i2···imxi2xi3 · · · xim. (5)

Lemma 1 [7] The following conditions are equivalent:

(i) A tensor A is a strongH-tensor;
(ii) There exists a positive diagonal matrix D such that ADm−1 is strictly

diagonally dominant;
(iii) There exist two positive diagonal matrix D1 and D2 such that D1ADm−1

2 is
strictly diagonally dominant.

The following is a sufficient and necessary condition for a tensor to be a strong
H-tensor.
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Theorem 2 Let A be a complex tensor of order m dimension n. Then A is a strong
H-tensor if and only ifAXm−1 is a strongH-tensor, where X is an arbitrary positive
diagonal matrix.

Proof Let X = diag(x1, x2, · · · , xn) is a positive diagonal matrix, and denote B1 =
(b

(1)
i1i2···im) = AXm−1. Then from Equality (5), we have

b
(1)
i1i2···im = ai1i2···imxi2xi3 · · · xim, ∀ij ∈ [n], j ∈ [m].

First, we show the necessity. Suppose that A is a strong H-tensor. By Definition
3, there exists an entrywise positive vector y = (y1, y2, . . . , yn)

T ∈ R
n such that for

all i ∈ [n],
|aii···i |ym−1

i >
∑

i2,...,im∈[n],
δii2 ...im

=0

|aii2···im |yi2 · · · yim. (6)

LetD = diag(
y1
x1

,
y2
x2

, · · · ,
yn

xn
). Obviously,D is a positive diagonal matrix. It follows

from Inequality (6) that for each i ∈ [n]

|b(1)
ii···i |(

yi

xi

)m−1 = |aii···ixm−1
i |(yi

xi

)m−1

= |aii···i |ym−1
i

>
∑

i2,...,im∈[n],
δii2 ...im

=0

|aii2···im |yi2 · · · yim

=
∑

i2,...,im∈[n],
δii2 ...im

=0

|b(1)
ii2···im |(yi2

xi2

) · · · (yim

xim

). (7)

This means that B1D
m−1 is strictly diagonally dominant. Furthermore, by Lemma 1,

B1 = AXm−1 is a strongH-tensor.
Now, we show the sufficiency. Assume that B1 is a strong H-tensor. Thus, there

exists an entrywise positive vector z = (z1, z2, . . . , zn)
T ∈ R

n such that for each
i ∈ [n],

|b(1)
i···i |zm−1

i >
∑

i2,...,im∈[n],
δii2 ...im

=0

|b(1)
ii2···im |zi2 · · · zim.

Let D1 = diag(x1z1, x2z2, · · · , xnzn). By using the similar technique in Inequality
(7), we obtain ADm−1

1 is strictly diagonally dominant. Thus, by Lemma 1, A is a
strong H-tensor.

Remark 2 Note that the sufficient condition of a strongH-tensor in Theorem 2 is the
Corollary 2.1 proposed by Wang, Zhou, and Caccetta in [24]. In fact, we prove here
that this sufficient condition is also the necessary condition for a strongH-tensor.
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3 Criteria for identifying the strong H-tensors

In this section, we give five criteria for identifying strongH-tensors by making use of
elements of tensors only. First, some notations and two lemmas for strongH-tensors
are given.

Assume that � denote an arbitrary nonempty subset of [n], let
�m−1 := {i2i3 · · · im : ij ∈ �, j = 2, 3, · · · , m},

[n]m−1 \ �m−1 := {i2i3 · · · im : i2i3 · · · im ∈ [n]m−1 and i2i3 · · · im /∈ �m−1}.
Given an order m dimension n complex tensor A = (ai1···im), let

ri(A) :=
∑

i2,...,im∈[n],
δii2 ...im

=0

|aii2···im | =
∑

i2,...,im∈[n]
|aii2···im | − |ai···i |,

�1 := {i ∈ [n] : |ai···i | > ri(A)},

�2 := {i ∈ [n] : |ai···i | ≤ ri(A)}.

Lemma 2 [14] Let A be a complex tensor of order m dimension n. If A is a strictly
diagonally dominant tensor, then A is a strongH-tensor.

Lemma 3 [14] Let A be a complex tensor of order m dimension n. If A is a strong
H-tensor, then �1 �= ∅, that is, at least one i ∈ [n] such that

|ai···i | > ri(A).

Remark here that from Lemma 2, we have if �2 = ∅ (A is a strictly diagonally
dominant tensor), then A is a strongH-tensor. In addition, by Lemma 3, for a strong
H-tensor, there exists at least one strict diagonally dominant row, i.e., �1 �= ∅. So
we always assume that both �1 and �2 are not empty. We next give five criteria for
identifying strongH-tensors.

Theorem 3 Let A = (ai1i2···im) be a complex tensor of order m dimension n. If

|aii···i | >
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im =0

|aii2···im |

+
∑

i2i3···im∈�m−1
1

max
j∈{i2,i3,··· ,im}

rj (A)

|ajj ···j | |aii2···im |, ∀i ∈ �2, (8)

then A is a strongH-tensor.
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Proof Let

ξi ≡ 1∑
i2i3···im∈�m−1

1

|aii2···im |

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|aii···i | −
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im=0

|aii2···im |

−
∑

i2i3···im∈�m−1
1

max
j∈{i2,i3,··· ,im}

rj (A)

|ajj ···j | |aii2···im |

⎫⎪⎬
⎪⎭ , ∀i ∈ �2. (9)

If
∑

i2i3···im∈�m−1
1

|aii2···im | = 0, we denote ξi = +∞. From Inequality (8), we obtain

ξi > 0 for all i ∈ �2. Hence, there exists a positive number ε > 0 such that

0 < ε < min

{
min
i∈�2

ξi, 1 − max
j∈�1

rj (A)

|ajj ···j |
}

. (10)

Let the matrix X = diag(x1, x2, · · · , xn), where

xi =
⎧⎨
⎩

(
ε + ri (A)

|aii···i |
) 1

m−1
, i ∈ �1,

1, i ∈ �2.

By Inequality (10), we have
(
ε + ri (A)

|aii···i |
) 1

m−1
< 1, for all i ∈ �1. Because ε �= +∞,

so xi �= +∞, which implies that X is a diagonal matrix with positive entries.
Let B2 = (b

(2)
i1i2···im) = AXm−1. From Equality (5), we obtain

b
(2)
i1i2···im = ai1i2···imxi2xi3 · · · xim, ∀ij ∈ [n], j ∈ [m].

Now, we prove that B2 is strictly diagonally dominant. Let us first consider i ∈ �2.
If

∑
i2i3···im∈�m−1

1

|aii2···im | = 0, then by Inequalities (8) and (10), we have

ri(B2)

=
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im =0

|b(2)
ii2···im | +

∑
i2i3···im∈�m−1

1

|b(2)
ii2···im |

=
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im =0

|aii2···im |xi2 · · · xim +
∑

i2i3···im∈�m−1
1

|aii2···im |xi2 · · · xim

=
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im =0

|aii2···im |xi2 · · · xim

≤
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im =0

|aii2···im |

< |aii···i | = |b(2)
ii···i |. (11)
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If
∑

i2i3···im∈�m−1
1

|aii2···im | �= 0, then by Inequalities (9) and (10), we have

ri(B2)

=
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im=0

|aii2···im |xi2 · · · xim +
∑

i2i3···im∈�m−1
1

|aii2···im |xi2 · · · xim

=
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im=0

|aii2···im |xi2 · · · xim +
∑

i2i3···im∈�m−1
1

|aii2···im |

·
(

ε + ri2(A)

|ai2i2···i2 |
) 1

m−1 · · ·
(

ε + rim(A)

|aimim···im |
) 1

m−1

≤
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im=0

|aii2···im |xi2 · · · xim

+
∑

i2i3···im∈�m−1
1

|aii2···im |
(

ε + max
j∈{i2,i3,··· ,im}

rj (A)

|ajj ···j |
)

≤
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im=0

|aii2···im | +
∑

i2i3···im∈�m−1
1

|aii2···im | max
j∈{i2,i3,··· ,im}

rj (A)

|ajj ···j |

+ε
∑

i2i3···im∈�m−1
1

|aii2···im |

< |aii···i | = |b(2)
ii···i |. (12)

Finally, we consider i ∈ �1. Since |aii···i | > ri(A), we have

|aii···i | −
∑

i2i3···im∈�
m−1
1 ,

δii2···im =0

|aii2···im | > 0, (13)

and

∑
i2i3···im∈[n]m−1\�m−1

1

|aii2···im | +
∑

i2i3···im∈�
m−1
1 ,

δii2···im =0

|aii2···im | max
j∈{i2,i3,··· ,im}

rj (A)

|ajj ···j |

− ri(A) ≤ 0,
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which, together with Inequality (13) and ε > 0, yields

ε >
1

|aii···i | − ∑
i2i3···im∈�

m−1
1 ,

δii2···im =0

|aii2···im |

⎧⎪⎨
⎪⎩

∑
i2i3···im∈[n]m−1\�m−1

1

|aii2···im |

+
∑

i2i3···im∈�
m−1
1 ,

δii2···im =0

|aii2···im | max
j∈{i2,i3,··· ,im}

rj (A)

|ajj ···j | − ri(A)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (14)

From Inequality (14), for each i ∈ �1, we have

|b(2)
ii···i | − ri(B2)

= |aii···i |
(

ε + ri(A)

|aii···i |
)

−
∑

i2i3···im∈[n]m−1\�m−1
1

|aii2···im |xi2 · · · xim

−
∑

i2i3···im∈�
m−1
1 ,

δii2···im =0

|aii2···im |
(

ε + ri2(A)

|ai2i2···i2 |
) 1

m−1 · · ·
(

ε + rim(A)

|aimim···im |
) 1

m−1

≥ |aii···i |
(

ε + ri(A)

|aii···i |
)

−
∑

i2i3···im∈[n]m−1\�m−1
1

|aii2···im |

−
∑

i2i3···im∈�
m−1
1 ,

δii2···im =0

|aii2···im |
(

ε + max
j∈{i2,i3,··· ,im}

rj (A)

|ajj ···j |
)

= ε

⎛
⎜⎜⎜⎜⎝|aii···i | −

∑
i2i3···im∈�

m−1
1 ,

δii2···im =0

|aii2···im |

⎞
⎟⎟⎟⎟⎠ + ri(A) −

∑
i2i3···im∈[n]m−1\�m−1

1

|aii2···im |

−
∑

i2i3···im∈�
m−1
1 ,

δii2···im =0

|aii2···im | max
j∈{i2,i3,··· ,im}

rj (A)

|ajj ···j | > 0. (15)

Hence, from Inequalities (11), (12), and (15), we obtain |b(2)
ii···i | > ri(B2) for all i ∈

[n], that is, B2 is strictly diagonally dominant; therefore, A is a strongH-tensor.

Remark 3 If �1 contain only one element, then Theorem 3 reduces to Lemma 12 of
[14].
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Remark 4 For a set � with finite elements, we use |�| to denote the number of ele-
ments in the set �. From Inequation (8), we obtain the number of the basic arithmetic
operations of Inequation (8) is nm −2n+|�2|(nm−1 −2)+|�2||�1|m−1 +|�1||�2|
(requiring nm − 2n + |�2|(nm−1 − 2) additions and |�2||�1|m−1 + |�1||�2| mul-
tiplications and divisions of numbers). Furthermore, it follows from |�1| < n

and |�2| < n that nm − 2n + |�2|(nm−1 − 2) + |�2||�1|m−1 + |�1||�2| <

3nm + n2 − 2n. Thus, Inequation (8) of Theorem 3 can be checked in polynomial
time.

Theorem 4 Let A = (ai1i2···im) be a complex tensor of order m dimension n. If

|aii···i | >
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im=0

|aii2···im |, ∀i ∈ �2, (16)

and
∑

j2j3···jm∈[n]m−1\�m−1
1

|ajj2···jm | = 0, ∀j ∈ �1, (17)

then A is a strongH-tensor.

Proof By Inequality (16), for each i ∈ �2, there exists a positive number ςi > 1,
such that

|aii···i | >
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im =0

|aii2···im |

+ 1

ςi

∑
i2i3···im∈�m−1

1

|aii2···im | max
j∈{i2,i3,··· ,im}

rj (A)

|ajj ···j | . (18)

Denote, ς ≡ max{ςi, i ∈ �2}. By Inequality (18), we obtain

|aii···i | >
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im =0

|aii2···im |

+ 1

ς

∑
i2i3···im∈�m−1

1

|aii2···im | max
j∈{i2,i3,··· ,im}

rj (A)

|ajj ···j | , ∀i ∈ �2. (19)

Since |aii···i | ≤ ri(A), for all i ∈ �2 and Inequality (16), so

∑
i2i3···im∈�m−1

1

|aii2···im | > 0, ∀i ∈ �2. (20)
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Denote

χi ≡ 1∑
i2i3···im∈�m−1

1

|aii2···im |

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|aii···i | −
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im=0

|aii2···im |

− 1

ς

∑
i2i3···im∈�m−1

1

max
j∈{i2,i3,··· ,im}

rj (A)

|ajj ···j | |aii2···im |

⎫⎪⎬
⎪⎭ , ∀i ∈ �2.

From Inequalities (19) and (20), we have χi > 0. Therefore, there exists a positive
number ε > 0 such that

0 < ε < min

{
min
i∈�2

χi, 1 − max
j∈�1

rj (A)

ς |ajj ···j |
}

.

Let the matrix X = diag(x1, x2, · · · , xn), where

xi =

⎧⎪⎨
⎪⎩

(
ε + ri (A)

ς |aii···i |
) 1

m−1
, i ∈ �1,

1, i ∈ �2.

Let B3 = (b
(3)
i1i2···im) = AXm−1. Similar to the proof of Theorem 3, we can prove that

B3 is strictly diagonally dominant. Then A is a strongH-tensor.

Remark 5 Using the same argument as Remark 4 in Section 3, the number of the
basic arithmetic operations of Inequalities (16) and (17) is less than 2nm−2n, respec-
tively. Thus, Inequalities (16) and (17) of Theorem 4 can be checked in polynomial
time.

Remark 6 There is no inclusion relation between the conditions of Theorem 3 and
the conditions of Theorem 4, which can be seen from the following examples.

Example 1 Consider a tensor A = (aijk) of order 3 dimension 3 defined as follows:

A = [A(1, :, :), A(2, :, :), A(3, :, :)],

A(1, :, :) =
⎛
⎝ 15 1 0

1 10 0
1 1 10

⎞
⎠ , A(2, :, :) =

⎛
⎝ 1 1 0
0 8 0
1 0 1

⎞
⎠ ,

A(3, :, :) =
⎛
⎝ 2 0 0
0 3 0
0 0 10

⎞
⎠ .

By calculation, we have

|a111| = 15, r1(A) = 24, |a222| = 8, r2(A) = 4, |a333| = 10, r3(A) = 5,

r2(A)

|a222| = 1

2
,
r3(A)

|a333| = 1

2
,
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and �1 = {2, 3}, �2 = {1}. Since
∑

jk∈[3]2\�2
1,

δ1jk=0

|a1jk| +
∑

jk∈�2
1

max
t∈{j,k}

rt (A)

|attt | |a1jk| = 13.5 < 15 = |a111|,

we know that A satisfies the conditions of Theorem 3, then A is a strong H-tensor.
But

∑
jk∈[3]2\�2

1

= 3 �= 0, so A does not satisfy the conditions of Theorem 4.

Example 2 Consider a tensor A = (aijk) of order 3 dimension 3 defined as follows:

A = [A(1, :, :), A(2, :, :), A(3, :, :)],

A(1, :, :) =
⎛
⎝ 4 1 0
1 10 0
1 1 10

⎞
⎠ , A(2, :, :) =

⎛
⎝ 0 0 0
0 8 2
0 1 1

⎞
⎠ ,

A(3, :, :) =
⎛
⎝ 0 0 0
0 3 1
0 1 10

⎞
⎠ .

By calculation, we have

|a111| = 4, r1(A) = 24, |a222| = 8, r2(A) = 4, |a333| = 10, r3(A) = 5,

r2(A)

|a222| = 1

2
,
r3(A)

|a333| = 1

2
,

and �1 = {2, 3}, �2 = {1}. Since
∑

jk∈[3]2\�2
1,

δ1jk=0

|a1jk| = 3 < 4 = |a111|,

and ∑
jk∈[3]2\�2

1

|a2jk| = 0,
∑

jk∈[3]2\�2
1

|a3jk| = 0.

we have that A satisfies the conditions of Theorem 4, then A is a strong H-tensor.
But

∑
jk∈[3]2\�2

1,

δ1jk=0

|a1jk| +
∑

jk∈�2
1

max
t∈{j,k}

rt (A)

|attt | |a1jk| = 27

2
> 4 = |a111|,

so A does not satisfy the conditions of Theorem 3.
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Theorem 5 Let A = (ai1i2···im) be a complex tensor of order m dimension n and

α = max
i∈�2

ri(A)

|aii···i | .

If ⎛
⎜⎜⎜⎜⎝ri(A) −

∑
i2i3···im∈[n]m−1\�m−1

1 ,

δii2···im=0

|aii2···im |α

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝|ajj ···j | −

∑
j2j3···jm∈�

m−1
1 ,

δjj2···jm=0

|ajj2···jm |

⎞
⎟⎟⎟⎟⎠

>
∑

l2l3···lm∈�m−1
1

|ail2···lm |
∑

t2t3···tm∈[n]m−1\�m−1
1

|ajt2···tm |α, ∀i ∈ �2, j ∈ �1, (21)

then A is a strongH-tensor.

Proof Let

�i ≡

ri(A) − ∑
i2i3···im∈[n]m−1\�m−1

1 ,

δii2···im=0

|aii2···im |α

∑
l2l3···lm∈�m−1

1

|ail2···lm | , ∀i ∈ �2,

and

θj ≡

∑
t2t3···tm∈[n]m−1\�m−1

1

|ajt2···tm |α

|ajj ···j | − ∑
j2j3···jm∈�

m−1
1 ,

δjj2···jm=0

|ajj2···jm | , ∀j ∈ �1.

It follows from inequality |ajj ···j | > rj (A) for each j ∈ �1 that

|ajj ···j | −
∑

j2j3···jm∈�
m−1
1 ,

δjj2···jm=0

|ajj2···jm | > 0, ∀j ∈ �1,

which, together with Inequality (21), yields

�i > θj ≥ 0, ∀i ∈ �2, j ∈ �1.

If
∑

l2l3···lm∈�m−1
1

|ail2···lm | = 0, we denote �i = +∞, then there exists a positive

number ε > 0 such that

0 ≤ max
j∈�1

θj < max
j∈�1

θj + ε < min{min
i∈�2

�i, α}. (22)
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Let the matrix X = diag(x1, x2, · · · , xn), where

xi =

⎧⎪⎨
⎪⎩

(
max
j∈�1

θj + ε

) 1
m−1

, i ∈ �1,

α
1

m−1 , i ∈ �2.

We have by Inequalities (22) that

(
max
i∈�1

θi + ε

) 1
m−1

< α
1

m−1 . Because ε �= +∞,

so xi �= +∞, which shows that X is a diagonal matrix with positive entries. Let
B4 = (b

(4)
i1i2···im) = AXm−1. From Equality (5), we have

b
(4)
i1i2...im

= ai1i2...imxi2xi3 · · · xim, ∀ij ∈ [n], j ∈ [m].

Now, we prove that B4 is strictly diagonally dominant.
For any i ∈ �2, we have

|b(4)
ii···i | − ri(B4)

= |aii···i |α −
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im =0

|aii2···im |xi2 · · · xim

−
∑

i2i3···im∈�m−1
1

|aii2···im |
(
max
j∈�1

θj + ε

)

≥ |aii···i | · ri(A)

|aii···i | −
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im =0

|aii2···im |α

−
∑

i2i3···im∈�m−1
1

|aii2···im |
(
max
j∈�1

θj + ε

)

= ri(A) −
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im =0

|aii2···im |α

−
∑

i2i3···im∈�m−1
1

|aii2···im |
(
max
j∈�1

θj + ε

)
. (23)

If
∑

i2i3···im∈�m−1
1

|aii2···im | = 0, then Inequality (23) and �i > 0 imply that

|b(4)
ii···i | − ri(B4) ≥ ri(A) −

∑
i2i3···im∈[n]m−1\�m−1

1 ,

δii2···im =0

|aii2···im |α > 0. (24)
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If
∑

i2i3···im∈�m−1
1

|aii2···im | �= 0, then by Inequalities (22) and (23), we have

|b(4)
ii···i | − ri(B4)

≥ ri(A) −
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im =0

|aii2···im |α

−
∑

i2i3···im∈�m−1
1

|aii2···im |
(
max
j∈�1

θj + ε

)

> ri(A) −
∑

i2i3···im∈[n]m−1\�m−1
1 ,

δii2···im =0

|aii2···im |α −
∑

i2i3···im∈�m−1
1

|aii2···im |�i

= 0. (25)

For any i ∈ �1, we have

|b(4)
ii···i | − ri (B4)

= |aii···i |
(
max
j∈�1

θj + ε

)
−

∑
i2i3···im∈[n]m−1\�m−1

1

|aii2···im |xi2 · · · xim

−
(
max
j∈�1

θj + ε

) ∑
i2 i3 ···im∈�

m−1
1 ,

δii2 ···im =0

|aii2···im |

≥ |aii···i |
(
max
j∈�1

θj + ε

)
−

∑
i2i3···im∈[n]m−1\�m−1

1

|aii2···im |α

−
(
max
j∈�1

θj + ε

) ∑
i2 i3 ···im∈�

m−1
1 ,

δii2 ···im =0

|aii2···im |

=

⎛
⎜⎜⎜⎝|aii···i | −

∑
i2 i3 ···im∈�

m−1
1 ,

δii2 ···im =0

|aii2···im |

⎞
⎟⎟⎟⎠

(
max
j∈�1

θj + ε

)

−
∑

i2i3···im∈[n]m−1\�m−1
1

|aii2···im |α

>

⎛
⎜⎜⎜⎝|aii···i | −

∑
i2 i3 ···im∈�

m−1
1 ,

δii2 ···im =0

|aii2···im |

⎞
⎟⎟⎟⎠ θi −

∑
i2i3···im∈[n]m−1\�m−1

1

|aii2···im |α

= 0 (26)
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Hence, from Inequalities (24), (25), and (26), we conclude that |b(4)
ii···i | > ri(B4)

for all i ∈ [n], that is, B4 is strictly diagonally dominant. As a result, A is a strong
H-tensor.

Remark 7 Using the same argument as Remark 4 in Section 3, the number of
the basic arithmetic operations in Inequation (21) is less than 5(nm)2 − n2. Thus,
Inequation (21) of Theorem 5 can be checked in polynomial time.

To give Theorem 6, we need the following definition and lemma.

Definition 7 [22] A complex tensor A = (ai1···im) of order m dimension n is called
reducible, if there exists a nonempty proper index subset I ⊂ [n] such that

ai1i2···im = 0 f or all i1 ∈ I, f or all i2, . . . , im /∈ I.

If A is not reducible, then we call A irreducible.

Lemma 4 [14] Let A = (ai1···im) be a complex tensor of order m dimension n. If A
is irreducible,

|ai···i | ≥ ri(A) i ∈ [n],
and strictly inequality holds for at least one i, then A is a strongH-tensor.

Theorem 6 Let A = (ai1i2···im) be a complex tensor of order m dimension n. Define
α be the number defined in Theorem 5. If A is irreducible, and

⎛
⎜⎜⎜⎜⎝ri(A) −

∑
i2i3···im∈[n]m−1\�m−1

1 ,

δii2···im=0

|aii2···im |α

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝|ajj ···j | −

∑
j2j3···jm∈�

m−1
1 ,

δjj2···jm=0

|ajj2···jm |

⎞
⎟⎟⎟⎟⎠

≥
∑

l2l3···lm∈�m−1
1

|ail2···lm |
∑

t2t3···tm∈[n]m−1\�m−1
1

|ajt2···tm |α, ∀i ∈ �2, j ∈ �1, (27)

in addition, the strict inequality holds for at least one pair of indices i ∈ �2 and
j ∈ �1. Then A is a strongH-tensor.

Proof Defining �i and θj as in the proof of Theorem 5. From Inequality (27), we
have min

i∈�2
�i ≥ max

j∈�1
θj . In addition, a strict inequality holds for at least onel pair of

indices i ∈ �2 and j ∈ �1. Notice that A is irreducible, this implies∑
t2t3···tm∈[n]m−1\�m−1

1

|ajt2···tm | > 0, j ∈ �1,
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which, together with the definition of θj , yields max
j∈�1

θj > 0. Let the matrix X =
diag(x1, x2, · · · , xn), where

xi =

⎧⎪⎪⎨
⎪⎪⎩

(
max
j∈�1

θj

) 1
m−1 , i ∈ �1,

α
1

m−1 , i ∈ �2.

Let B5 = (b
(5)
i1i2···im) = AXm−1.

Adopting the same procedure as in the proof of Theorem 5, we conclude that
|b(5)

ii···i | ≥ ri(B5) for all i ∈ [n]. Because of �i ≥ θj , for all i ∈ �2 and j ∈ �1;
moreover, the strict inequality holds for at least one pair of indices i ∈ �2 and
j ∈ �1, thus, there exists at least an i ∈ [n] such that |b(5)

ii···i | > ri(B5).
On the other hand, sinceA is irreducible and so is B5. Then by Lemma 4, we have

that B5 is a strongH-tensor. By Theorem 2, A is also a strongH-tensor.

Remark 8 Using the same argument as Remark 4 in Section 3. The number of
the basic arithmetic operations in Inequation (27) is less than 5(nm)2 − n2. Thus,
Inequation (27) of Theorem 6 can be checked in polynomial time.

Theorem 7 Let A be a complex tensor of order m dimension n, and

h1(A) = r1(A),

hi(A) =
∑

i2i3···im∈[i−1]m−1

|aii2···im |
(

hi2(A)

|ai2···i2 |
) 1

m−1 · · ·
(

him(A)

|aim···im |
) 1

m−1

+
∑

i2i3···im∈[n]m−1\[i−1]m−1,

δii2···im=0

|aii2···im |, i = 2, 3, · · · , n. (28)

If

|aii···i | > hi(A), (29)

and for each i1 ∈ [n − 1], there exists j ∈ {2, 3, · · · , m} such that ij > i1, and
|ai1i2···im | �= 0, then A is a strongH-tensor.

Proof Observe that, by hypothesis, for each i1 ∈ [n − 1], there exists ij > i1, such
that |ai1i2···im | �= 0. Then ∑

i2i3···im∈[n]m−1\[i−1]m−1,

δii2···im =0

|aii2···im | > 0, ∀i ∈ [n − 1], (30)

which implies

hi(A) > 0, ∀i ∈ [n − 1],
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which, together with (29), yields 0 <

(
hi(A)
|aii···i |

) 1
m−1

< 1 for all i ∈ [n − 1], and
there exists a positive number ε > 0 such that 0 <

hn(A)
|ann···n| + ε < 1. Let the matrix

X = diag(x1, x2, · · · , xn), where

xi =

⎧⎪⎪⎨
⎪⎪⎩

(
hi(A)
|aii···i |

) 1
m−1

, i ∈ [n − 1],
(

hn(A)
|ann···n| + ε

) 1
m−1

, i = n,

and B6 = (b
(6)
i1i2···im) = AXm−1, then from Equality (5), we obtain

b
(6)
i1i2...im

= ai1i2...imxi2xi3 · · · xim, ∀ij ∈ [n], j ∈ [m].
Let us first consider i ∈ [n − 1]. By Inequalities (28) and (30), we have

|b(6)
ii···i | = |aii···i |(xi)

m−1 = hi(A)

=
∑

i2i3···im∈[i−1]m−1

|aii2···im |
(

hi2(A)

|ai2i2···i2 |
) 1

m−1 · · ·
(

him(A)

|aimim···im |
) 1

m−1

+
∑

i2i3···im∈[n]m−1\[i−1]m−1,

δii2···im =0

|aii2···im |

>
∑

i2,i3,··· ,im∈[n],
δii2···im =0

|aii2···im |xi2 · · · xim =
∑

i2,i3,··· ,im∈[n],
δii2···im =0

|b(6)
ii2···im |. (31)

Finally, we consider i = n. By Inequalities (28) and (29), we have

|b(6)
nn···n| = |ann···n|

(
hn(A)

|ann···n| + ε

)
=hn(A)+ ε|ann···n|

=
∑

i2i3···im∈[n−1]m−1

|ani2···im |
(

hi2 (A)

|ai2i2···i2 |
) 1

m−1 · · ·
(

him (A)

|aimim···im |
) 1

m−1

+
∑

i2 i3 ···im∈[n]m−1\[n−1]m−1 ,

δni2 ···im =0

|ani2···im | + ε|ann···n|

>
∑

i2i3···im∈[n−1]m−1

|ani2···im |
(

hi2 (A)

|ai2i2···i2 |
) 1

m−1 · · ·
(

him (A)

|aimim···im |
) 1

m−1

+
∑

i2 i3 ···im∈[n]m−1\[n−1]m−1 ,

δni2 ···im =0

|ani2···im |

≥
∑

i2 ,i3 ,··· ,im∈[n],
δni2 ···im =0

|ani2···im |xi2 · · · xim =
∑

i2 ,i3 ,··· ,im∈[n],
δni2 ···im =0

|b(6)
ni2···im |. (32)
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Hence, form Inequalities (31) and (32), we conclude that |b(6)
ii···i | > ri(B6) for all i ∈

[n], that is,B6 is strictly diagonally dominant. Consequently,A is a strongH-tensor.

Remark 9 Using the same argument as Remark 4 in Section 3. The number of the
basic arithmetic operations in Inequality (28) is less than (2m − 1)nm − 2n.

4 An algorithm for identifying strongH-tensors

In this section, we present an algorithm for identifying strongH-tensors on the basis
of the results in the above section.

Algorithm 1

Step 0. Set k1 := 0, k2 := 0, k3 := 0 and s := 50.
Step 1. Given a complex tensor A = (ai1···im) with ai···i �= 0 for all i ∈ [n]. If

k3 = s, then output k1 and k2, stop. Otherwise,
Step 2. Compute |ai···i | and ri(A) for all i ∈ [n],
Step 3. If �1 = [n], then print “A is a strong H-tensor.” and go to step 4.

Otherwise, go to step 5.
Step 4. Replace k1 by k1 + 1 and replace k3 by k3 + 1, and go to step 1.
Step 5. If �1 = ∅, then print “A is a not strong H-tensor.” and go to step 6.

Otherwise, go to step 7.
Step 6. Replace k2 by k2 + 1 and replace k3 by k3 + 1. Go to Step 1.
Step 7. Compute ∑

i2i3···im∈�m−1
1

|aii2···im |, ∑
i2i3···im∈[n]m−1\�m−1

1 ,

δii2···im =0

|aii2···im |,

and
∑

i2i3···im∈�m−1
1

max
j∈{i2,i3,··· ,im}

rj (A)

|ajj ···j | |aii2···im |, f or all i ∈ �2.

Step 8. If Inequality (8) holds, then print “A is a strongH-tensor.” and go to step
4. Otherwise,

Step 9. Compute∑
j2j3···jm∈�

m−1
1 ,

δjj2···jm=0

|ajj2···jm | and
∑

j2j3···jm∈[n]m−1\�m−1
1

|ajj2···jm |, f or all j ∈ �1.

Step 10. If Inequalities (16) and (17) hold, then print “A is a strongH-tensor.” and
go to step 4. Otherwise,

Step 11. Compute α. If Inequality (21) holds, then print “A is a strong H-tensor.”
and go to step 4. Otherwise,

Step 12. Compute hi(A), ∀i ∈ [n]. If Inequality (29) holds and for each i1 ∈ [n −
1], there exists j ∈ {2, 3, · · · , m} such that ij > i1, and |ai1i2···im | �= 0,
then print “A is a strongH-tensor.”, and go to step 4. Otherwise,

Step 13. Print “WhetherA is a strongH-tensor is not checkable by using Lemmas
2 and 3, Theorems 3-5 and 7.”, replace k3 by k3 + 1. Go to Step 1.
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Remark 10 (i) Note that s denotes the total number of tensors. The output
parameter k1 is the number of tensors which are strong H-tensor and
the output parameter k2 is the number of tensors which are not strong
H-tensor.

(ii) Algorithm 1 is a direct method for identifying strong H-tensor and the calcu-
lations only depend on the elements of tensor. Therefore, Algorithm 1 stops
after finitely steps.

(iii) For some tensors, we are unable to identify whether they are strong H-tensor
or not by using Algorithm 1, because the conditions of Lemma 2 and The-
orems 3–5 and 7 are sufficient but not necessary for a strong H-tensor. It is
easy to obtain that the number of tensors which are not checkable by using
Algorithm 1 is s − k1 − k2.

5 Numerical example

Example 3 In the implementation of Algorithm 1. Randomly generate 50 tensors of
order m dimension n such that the elements of each tensor satisfying

ai1i2···im ∈
{

(−nm × 0.6, nm × 0.6), if i1 = i2 = · · · = im;
(−1, 1), otherwise.

We determine whether they are strong H-tensor or not by using Algorithm 1.
The numerical results are reported in Table 1. In this table, m and n specify the
order and the dimension of the randomly generated tensor, respectively. In the “k1”
column, we show the number of tensors which are strong H-tensor. In the “k2”
column, we show the number of tensors which are not strong H-tensor. In the
“s − k1 − k2” column, we give the number of tensors that whether they are strong
H-tensor are not checkable by using Algorithm 1. The results reported in Table 1
show that Algorithm 1 can identifying some tensors whether are strong H-tensors
or not.

We remark here that the randomly generated tensors in Example 3 satisfy �1 �= ∅,
therefore k2 = 0.

The following example shows that Algorithm 1 also can be used to testing the
positive definiteness of the multivariate form f (x) in (3) for some cases.

Example 4 Consider the following 6th-degree homogeneous polynomial

f (x) = Ax6, (33)

Author's personal copy



Numer Algor (2017) 74:199–221 219

Table 1 The numbers of strong H-tensors in the 50 randomly generated tensors

m(order) n(dimension) k1 k2 s − k1 − k2

4 10 31 0 19

4 11 30 0 20

4 12 35 0 15

4 13 32 0 18

4 14 33 0 17

4 15 34 0 16

5 10 29 0 21

5 11 29 0 21

5 12 33 0 17

5 13 29 0 21

5 14 31 0 19

5 15 23 0 27

6 10 33 0 17

6 11 35 0 15

6 12 26 0 24

6 13 31 0 19

6 14 26 0 24

6 15 29 0 21

where x = (x1, · · · , x6)
T and A = (ai1···i6) is a symmetric tensor of order 6

dimension 6 with elements defined as follows:

a111111 = 4, a222222 = 18, a333333 = 35, a444444 = 16, a555555 = 1, a666666 = 1

a122222 = a212222 = a221222 = a222122 = a222212 = a222221 = −1,

a133333 = a313333 = a331333 = a333133 = a333313 = a333331 = −2,

a144444 = a414444 = a441444 = a444144 = a444414 = a444441 = −1,

a233333 = a323333 = a332333 = a333233 = a333323 = a333332 = −2,

a244444 = a424444 = a442444 = a444244 = a444424 = a444442 = −1,

a344444 = a434444 = a443444 = a444344 = a444434 = a444443 = −1,

a222333 = a223233 = a223323 = a223332 = a232233 = a232323 = a232332 = −1

a233223 = a233232 = a233322 = a333222 = a332322 = a332232 = a332223 = −1

a323322 = a323232 = a323223 = a322332 = a322323 = a322233 = −1, other ai1···i6 = 0.

In Algorithm 1, set s := 1, we obtain that A is a strong H-tensor with ai···i > 0 for
all i ∈ {1, · · · , 6}. It follows from Theorem 1 that A is positive definite, that is, the
f (x) in (33) is positive definite.
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6 Conclusions

In this paper, we give some criterions for identifying the strongH-tensor which only
depend on the elements of tensor. We also present an algorithm for identifying the
strongH-tensor based on these criterions.
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