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Abstract In this paper, we consider the tensor generalized eigenvalue complemen-
tarity problem (TGEiCP), which is an interesting generalization of matrix eigenvalue
complementarity problem (EiCP). First, we give an affirmative result showing that
TGEiCP is solvable and has at least one solution under some reasonable assumptions.
Then, we introduce two optimization reformulations of TGEiCP, thereby beneficially
establishing an upper bound on cone eigenvalues of tensors. Moreover, some new
results concerning the bounds on the number of eigenvalues of TGEiCP further enrich
the theory of TGEiCP. Last but not least, an implementable projection algorithm for
solving TGEiCP is also developed for the problem under consideration. As an illus-
tration of our theoretical results, preliminary computational results are reported.
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1 Introduction

The complementarity problemhas becomeone of themostwell-established disciplines
within mathematical programming [10], in the last three decades. It is not surprising
that the complementarity problem has received much attention of researchers, due to
its widespread applications in the fields of engineering, economics and sciences. In the
literature, many theoretical results and efficient numerical methods were developed,
we refer the reader to [11] for an exhaustive survey on complementarity problems.

The eigenvalue complementarity problem (EiCP) not only is a special type of com-
plementarity problems, but also extends the classical eigenvalue problem which can
be traced back to more than 150 years (see [12,31]). EiCP first appeared in the study
of static equilibrium states of mechanical systems with unilateral friction [8], and has
been widely studied [1,9,14–16] in the last decade. Mathematically speaking, for two
given square matrices A, B ∈ R

n×n , EiCP refers to the task of finding a scalar λ ∈ R

and a vector x ∈ R
n\{0} such that

0 ≤ x ⊥ w := (λB − A)x ≥ 0.

EiCPs are closely related to a class of differential inclusions with nonconvex processes
defied by linear complementarity conditions, which serve as models for many dynam-
ical systems, e.g., see a monograph [30]. Given a linear mapping A : Rn → R

n , we
consider a dynamical system of the form:

⎧
⎨

⎩

u(t) ≥ 0,
u̇(t) − Au(t) ≥ 0,
〈u(t), u̇(t) − Au(t)〉 = 0.

(1.1)

It is obvious that (1.1) is equivalent to u̇(t) ∈ F(u(t)), where the process F : Rn → R
n

is given by

Gr(F) := {
(x, y) ∈ R

n × R
n : x ≥ 0, y − Ax ≥ 0, 〈x, y − Ax〉 = 0

}

and is nonconvex. As noticed already by Rockafellar [26], the change of variable
u(t) = eλtv(t) leads to an equivalent system

λv(t) + v̇(t) ∈ F(v(t)).

This transformation efficiently utilizes the positive homogeneity of F . Therefore, if
the pair (λ, x) satisfies λx ∈ F(x), then the trajectory t 	→ eλt x is a solution of
dynamical system (1.1). Moreover, if such a trajectory is nonconstant, then x must be
a nonzero vector, which further implies that (λ, x) is a solution of EiCP with B := I
(i.e., B is the identity matrix). The reader is referred to [8,27] for more details.

When B is symmetric positive definite and A is symmetric, EiCP is symmetric.
In this case, it is well analyzed in [25] that EiCP is equivalent to finding a stationary
point of a generalizedRayleighquotient on a simplex.Generally speaking, the resulting

123



On the cone eigenvalue complementarity problem... 145

equivalent optimization formulation is NP-complement [6,25] and very difficult to be
solved efficiently, and in particular when the dimension of the problem is large.

In the current numerical analysis literature, considerable interests have arisen in
extending concepts that are familiar from linear algebra to the setting of multilinear
algebra. As a natural extension of the concept of matrix, a tensor, denoted by A, is
a multidimensional array, and its order is the number of dimensions. Let m and n be
positive integers. We call A = (ai1···im ), where ai1···im ∈ R for 1 ≤ i1, . . . , im ≤ n,
a real m-th order n-dimensional square tensor, and it is further called symmetric if
its entries are invariant under any permutation of its indices. The eigenvalues and
eigenvectors of such a square tensor were introduced independently by Lim [18] and
Qi [20].

For a vector x = (x1, . . . , xn)
 ∈ C
n,Axm−1 is ann-vectorwith its i-th component

defined by

(
Axm−1

)

i
=

n∑

i2,...,im=1

aii2...im xi2 . . . xim , for i = 1, 2, . . . , n,

and Axm is the value at x of a homogeneous polynomial, defined by

Axm =
n∑

i1,i2,...,im=1

ai1i2...im xi1xi2 . . . xim .

For given tensors A and B with same structure, we say that (A,B) is an identical
singular pair, if

{
x ∈ C

n\{0} : Axm−1 = 0,Bxm−1 = 0
}

�= ∅.

Definition 1.1 ([5]) Let A and B be two m-th order n-dimensional tensors on R.
Assume that (A,B) is not an identical singular pair. We say (λ, x) ∈ C× (Cn\{0}) is
an eigenvalue–eigenvector pair of (A,B), if the n-system of equations:

(A − λB)xm−1 = 0, (1.2)

that is,

n∑

i2,...,im=1

(aii2...im − λbii2...im )xi2 . . . xim = 0, i = 1, 2, . . . , n,

possesses a nonzero solution. Here, λ is called a B-eigenvalue of A, and x is the
corresponding B-eigenvector of A.

With the above definition, the classical higher order tensor generalized eigenvalue
problem (TGEiP) is to find a pair of (λ, x) satisfying (1.2). It is obvious that if B = I,
the unit tensor I = (δi1···im ), where δi1···im is the Kronecker symbol
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δi1···im =
{
1, if i1 = · · · = im,

0, otherwise,

then the resulting B-eigenvalues reduce to the typical eigenvalues, and the real B-
eigenvalues with real eigenvectors are the H -eigenvalues, in the terminology of [20,
22]. In the literature, we have witnessed that tensors and eigenvalues/eigenvectors of
tensors have fruitful applications in various fields such as magnetic resonance imaging
[3,24], higher-order Markov chains [19] and best-rank one approximation in data
analysis [23], whereby many nice properties such as the Perron-Frobenius theorem
for eigenvalues/eigenvectors of nonnegative square tensor have been well established,
see, e.g., [4,32].

In this paper, we consider the tensor generalized eigenvalue complementarity prob-
lem (TGEiCP), which can bemathematically characterized as finding a nonzero vector
x̄ ∈ R

n and a scalar λ̄ ∈ R such that

x̄ ∈ K , λ̄Bx̄m−1 − Ax̄m−1 ∈ K ∗,
〈
x̄, λ̄Bx̄m−1 − Ax̄m−1

〉
= 0, (1.3)

where A and B are two given m-th order n-dimensional higher tensors, K is a closed
and convex cone in R

n , and K ∗ is the positive dual cone of K , i.e., K ∗ := {w ∈
R
n : 〈w, k〉 ≥ 0,∀ k ∈ K }. As EiCPs closely relate to differential inclusions with

processes defined by linear complementarity conditions, TGEiCPs are also closely
related to a class of differential inclusions with nonconvex processes H defined by

Gr(H) :=
{
(x, y) ∈ R

n × R
n : x ∈ K ,Bym−1

−Axm−1 ∈ K ∗,
〈
x,Bym−1 − Axm−1

〉
= 0

}
.

The scalar λ and the nonzero vector x satisfying system (1.3) are respectively called
a K -eigenvalue of (A,B) and an associated K -eigenvector. In this situation, (λ, x) is
also called a K -eigenpair of (A,B). The set of all eigenvalues is called the K -spectrum
of (A,B), which is defined by

σK (A,B) :=
{
λ ∈ R : ∃x ∈ R

n\{0}, K � x ⊥ λBxm−1 − Axm−1 ∈ K ∗} .

Throughout this paper, we assume the cone K is a pointed cone, i.e., K ∩(−K ) = {0}.
Moreover, we assume Bxm �= 0 for any x ∈ K\{0}. Clearly, when K = R

n+ := {x ∈
R
n : x ≥ 0}, then (1.3) reduces to

x̄ ≥ 0, λ̄Bx̄m−1 − Ax̄m−1 ≥ 0,
〈
x̄, λ̄Bx̄m−1 − Ax̄m−1

〉
= 0, (1.4)

which is a specialization of TGEiP. The scalar λ and the nonzero vector x satisfying
system (1.4) are called a Pareto-eigenvalue of (A,B) and an associated Pareto-
eigenvector, respectively. The set of all Pareto-eigenvalues, defined by σ(A,B), is
called thePareto-spectrumof (A,B). If in additionm = 2, the problemunder consider-
ation immediately reduces to the classical EiCP. If x̄ ∈ int(K ) (respectively, x̄ ∈ {x ∈
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R
n : x > 0}), then λ̄ is called a strict K -eigenvalue (respectively, Pareto-eigenvalue) of

(A,B). In particular, if B = I, then the K (Pareto)-eigenvalue/eigenvector of (A,B)

is called the K (Pareto)-eigenvalue/eigenvector ofA, and the K (Pareto)-spectrum of
(A,B) is called the K (Pareto)-spectrum of A.

The main contributions of this paper are fourfold. As we have mentioned in above,
TGEiCP is an essential extension of EiCP. Accordingly, a natural question is that
whether TGEiCP has solutions like EiCP. In this paper, we first give an affirmative
answer to this question, thereby discussing the existence of the solution of TGEiCP
(1.3) under some conditions. Note that TGEiCP is also a special case of complemen-
tarity problem, and it is well documented in [10] that one of the most popular avenues
to solve complementarity problems is reformulating them as optimization problems.
Hence, we here also introduce two equivalent optimization reformulations of TGEiCP,
which further facilitates the analysis of upper bound on cone eigenvalues of tensors.
With the existence of the solution of TGEiCP, one may be interested in the number of
such eigenvalues. Therefore, the third objective of this paper is to establish theoretical
results concerning the bounds on the number of eigenvalues of TGEiCP. Finally, we
develop a projection algorithm to solve TGEiCP, which is an easily implementable
algorithm as long as the convex cone K is simple enough in the sense that the projec-
tion onto K has an explicit representation. As an illustration of our theoretical results,
we implement our proposed projection algorithm to solve some synthetic examples
and report the corresponding computational results.

The structure of this paper is as follows. In Sect. 2, the existence of solution for
TGEiCP is discussed under some reasonable assumptions. Two optimization reformu-
lations of TGEiCP are presented in Sect. 3, and the relationship of TGEiCP with the
optimization of the Rayleigh quotient associated with tensors has been established.
Moreover, based upon a reformulated optimization model, an upper bound on cone
eigenvalues of tensor is also established. In Sect. 4, some theoretical results concerning
the bounds on the number of eigenvalues of TGEiCP are presented. To solve TGEiCP,
we develop the so-called scaling-and-projection algorithm (SPA) and conduct some
numerical simulations to support our results of this paper. Finally, we complete this
paper with drawing some concluding remarks in Sect. 6.
NotationLetRn denote the real Euclidean space of column vectors of length n. Denote
R
n+ = {x ∈ R

n : x ≥ 0} and R
n++ = {x ∈ R

n : x > 0}. Let A be a tensor of order
m and dimension n, and J be a subset of the index set N := {1, 2, . . . , n}. We denote
the principal sub-tensor of A by AJ , which is obtained by homogeneous polynomial
Axm for all x = (x1, x2, . . . , xn)
 with xi = 0 for N\J . So, AJ is a tensor of order
m and dimension |J |, where the symbol |J | denotes the cardinality of J . For a vector
x ∈ R

n and an integer r ≥ 0, denote x [r ] = (xr1, x
r
2, . . . , x

r
n)


.

2 Existence of the solution for TGEiCP

This section deals with the existence of the solution for TGEiCP. Let K be a closed
and convex pointed cone in R

n . Recall that a nonempty set S ⊂ R
n generates a cone

K and write K := cone(S) if K := {ts : s ∈ S, t ∈ R+}. If in addition S does
not contain the zero vector and for each k ∈ K\{0}, there exist unique s ∈ S and
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148 C. Ling et al.

t ∈ R+ such that k = ts, then we say that S is a basis of K . Whenever S is a finite
set, cone(conv(S)) is called a polyhedral cone, where conv(S) stands for the convex
hull of S. Let K be a closed convex cone associated with a compact basis S. To study
the existence of solution for TGEiCP, we first make the following assumption.

Assumption 2.1 It holds that Bxm �= 0 for every vector x ∈ S.

Remark 2.1 It is easy to see that Assumption 2.1 holds if and only if one of the tensors
B (or −B) is strictly K -positive, i.e., Bxm > 0 (or − Bxm > 0) for any x ∈ K\{0}.
In particular, when K = R

n+, the authors in [21,29] defined B as a strictly copositive
tensor, i.e., Bxm > 0 for any x ∈ R

n+\{0}. It is easy to see that if B is nonnegative,
i.e., B ≥ 0, and there is no index subset J of N such that BJ is a zero tensor, then B
is a strictly copositive tensor, which immediately implies that Assumption 2.1 holds
in this case.

From (1.3), one knows that if (λ̄, x̄) ∈ R × (Rn\{0}) is a K -eigenpair of (A,B),
then necessarily

λ̄ = Ax̄m

Bx̄m ,

provided Bx̄m �= 0. Consequently, by the second expression of (1.3), it holds that

Ax̄m

Bx̄m Bx̄m−1 − Ax̄m−1 ∈ K ∗.

We now present the existence theorem of TGEiCP, which is a particular instance of
Theorem 3.3 in [17]. However, for the sake of completeness, here we still present its
proof.

Theorem 2.1 Let K be a cone associated with convex compact basis S. If Assumption
2.1 holds, then TGEiCP (1.3) has at least one solution.

Proof Define F : S × S → R by

F(x, y) =
〈
Axm−1, y

〉
− Axm

Bxm
〈
Bxm−1, y

〉
. (2.1)

Since Bxm �= 0 for any x ∈ S, it is obvious that F(·, y) is lower-semicontinuous
on S for any fixed y ∈ S, and F(x, ·) is concave on S for any fixed x ∈ S. By the
well-known Ky Fan inequality [2], there exists a vector x̄ ∈ S ⊂ K\{0} such that

sup
y∈S

F(x̄, y) ≤ sup
y∈S

F(y, y). (2.2)

Consequently, since F(y, y) = 0 for any y ∈ S, it follows from (2.2) that F(x̄, y) ≤ 0
for any y ∈ S. Let λ̄ = Ax̄m

Bx̄m . Then, by (2.1), oneknows that 〈λ̄Bx̄m−1−Ax̄m−1, y〉 ≥ 0
for any y ∈ S, which implies

λ̄Bx̄m−1 − Ax̄m−1 ∈ K ∗, (2.3)
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since for any y ∈ K it holds that y = ts for some t ∈ R+ and s ∈ S. Moreover, it is
easy to observe that

〈
x̄, λ̄Bx̄m−1 − Ax̄m−1

〉
= 0,

which means, together with (2.3) and the fact that x̄ ∈ K\{0}, that (λ̄, x̄) is a solution
of (1.3). We obtain the desired result and complete the proof. ��

From Theorem 2.1, we obtain the following corollary.

Corollary 2.1 If B is strictly copositive, then (1.4) has at least one solution.

Proof Let S be the standard simplex in Rn defined by

S :=
{

x ∈ R
n+ :

n∑

i=1

xi = 1

}

. (2.4)

Clearly, S is a convex compact basis of Rn+. Thus, we immediately get the assertion
of this corollary from Theorem 2.1. ��

The following example shows that Assumption 2.1 is necessary to ensure the exis-
tence of the solution of TGEiCP.

Example 2.1 Let m = 2. Consider the case where

A =
(
1 3
4 1

)

and B =
(
1 0
0 −1

)

.

It is easy to see that Assumption 2.1 does not hold for the above two matrices. Since
det(λB − A) = −λ2 − 11 �= 0 for any λ ∈ R, we claim that the system of linear
equations (λB−A)x = 0 has only one unique solution 0 for any λ ∈ R, which means
that (λ, x) ∈ R × R

2++ satisfying (1.4) does not exist. Moreover, we may check that
(λB − A)x ≥ 0 does not hold for any (λ, x) ∈ R × (R2+\{0}) with x = (x1, 0)
 or
x = (0, x2)
. Therefore, problem (1.4) has no solution.

3 Optimization reformulations of TGEiCP

In this section, we study two optimization reformulations of (1.4). We begin with
introducing the so-called generalized Rayleigh quotient related to tensors. For two
given m-th order n dimensional tensors A and B, the related Rayleigh quotient is
defined by

λ(x) = Axm

Bxm , (3.1)

where Bxm �= 0. If m = 2, then λ(x) defined by (3.1) reduces to the result presented
in [25]. WhenA is symmetric and B is symmetric and strictly copositive, it is easy to
see that the gradient of λ(x) is
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∇λ(x) = m

Bxm
[
Axm−1 − λ(x)Bxm−1

]
. (3.2)

Notice that the gradient formula (3.2) of the Rayleigh quotient is only valid when
A and B are both symmetric. Moreover, in this case, the stationary points of λ(x)
correspond to solutions of (1.4). However, if either A or B is not symmetric, (3.2) is
incorrect, and the relationship between stationary points and solutions of the TGEiCP
with K = R

n+ ceases to hold.
The following lemma presents two fundamental properties of the generalized

Rayleigh quotient λ(x) in (3.1), whose matrix version has been proposed in [25].
Its proof is straightforward and skipped here.

Lemma 3.1 For all x ∈ R
n\{0}, the following statements hold:

(i). λ(τ x) = λ(x), ∀τ > 0;
(ii). x
∇λ(x) = 0.

We first consider the following optimization problem

ρ(A,B) := max
x

{ λ(x) : x ∈ S } , (3.3)

where λ(x) is defined in (3.1), and the constraint set S is determined by (2.4).
We generalize the result of symmetric EiCP studied in [25] to TGEiCP as the

following proposition.

Proposition 3.1 Assume that the tensors A and B are symmetric and B is strictly
copositive. Let x̄ be a stationary point of (3.3). Then (λ(x̄), x̄) is a solution of TGEiCP
with K = R

n+.

Proof Since x̄ is a stationary solution of (3.3), from the structure of S, there exist
ᾱ ∈ R

n and β̄ ∈ R, such that

⎧
⎪⎪⎨

⎪⎪⎩

−∇λ(x̄) = ᾱ + β̄e,
ᾱ ≥ 0, x̄ ≥ 0,
ᾱ
 x̄ = 0,
e
 x̄ = 1,

(3.4)

where e ∈ R
n is a vector of ones. By (3.4), we know −x̄
∇λ(x̄) = β̄, which implies,

together with Lemma 3.1 (ii), that β̄ = 0. Consequently, from (3.2), the first two
expressions of (3.4) and the fact thatBx̄m > 0, it holds that λ(x̄)Bx̄m−1−Ax̄m−1 ≥ 0.
This means, together with the fact that x̄ ≥ 0 and x̄
(λ(x̄)Bx̄m−1 − Ax̄m−1) = 0,
that (λ(x̄), x̄) is a solution of TGEiCP with K = R

n+. We complete the proof. ��
In what follows, we denote

λmax
A,B = max

{
λ : ∃ x ∈ R

n+\{0} suct that (λ, x) is a solution of (1.4)
}

for notational simplicity. Then, the following theorem characterizes the relationship
between problem (3.3) and TGEiCP with K := R

n+.
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Theorem 3.1 Let A and B be two m-th order n-dimensional symmetric tensors. If B
is strictly copositive, then λmax

A,B = ρ(A,B).

Proof It is obvious that the constraint setΩ of (3.3) is compact, and hence there exists
a vector x̄ ∈ Ω such that ρ(A,B) = λ(x̄). It is clear that {e} ∪ {ei : i ∈ I (x̄)}
is linearly independent because of x̄ �= 0, where I (x̄) := {i ∈ N : x̄i = 0}.
Consequently, the first order optimality condition of (3.3) holds, which means that x̄
is stationary point of (3.3). By Proposition 3.1, we know that (λ(x̄), x̄) is a solution
of TGEiCP with K = R

n+. Hence, it holds that ρ(A,B) ≤ λmax
A,B.

On the other hand, let (λ, x) be a solution of TGEiCP with K := R
n+, then λ =

Axm/Bxm . Taking y = x/(e
x) implies that y ∈ Ω . By Lemma 3.1 (i), we know
λ = Aym/Bym , which implies that λ ≤ ρ(A,B) from the definition of ρ(A,B). So,
we have λmax

A,B ≤ ρ(A,B).
Therefore, we obtain the desired result and complete the proof. ��
We now study another optimization reformulation of TGEiCP with K := R

n+. We
consider the following optimization problem

φ(A,B) = max
x

{Axm : x ∈ �
}
, (3.5)

where � := {x ∈ R
n+ : Bxm = 1} is assumed to be compact.

Remark 3.1 If B is strictly copositive, then we claim that � is compact. Indeed, if �

is not compact, then there exists a sequence {x (k)} ⊂ � such that ‖x (k)‖ → ∞ as
k → ∞. Taking y(k) := x (k)/‖x (k)‖ clearly shows y(k) ∈ R

n+ and ‖y(k)‖ = 1.Without
loss of generality, wemay assume that there exists a vector ȳ ∈ R

n+ satisfying ‖ȳ‖ = 1,
such that y(k) → ȳ as k → ∞. On the other hand, we have B(y(k))m = 1/‖x (k)‖m ,
which implies B ȳm = 0. It contradicts the fact that B ȳm > 0, because of ȳ ∈ R

n+\{0}.
For TGEiCP with K := R

n+ and (3.5), we have the following theorem which can
be proved in a similar way that used in [28].

Theorem 3.2 Let A and B be two m-th order n dimensional symmetric tensors. If
Bxm > 0 for any x ∈ R

n+\{0}, then λmax
A,B = φ(A,B).

It follows from Theorems 3.1 and 3.2 that solving the largest Pareto eigenvalue of
TGEiCP is anNP-hard problem in general, i.e., there are no polynomial-time algorithm
for solving the largest Pareto eigenvalue of TGEiCP. In the rest of this section, based
upon Theorem 3.2, we further study the bound of Pareto eigenvalue of TGEiCP with
B := I and K := R

n+.
We denote by Ω∗ the solution set of (1.4) with B := I and let

|λ|max
A = max

{ |λ| : ∃ x ∈ R
n+\{0} suct that (λ, x) ∈ Ω∗ } .

Theorem 3.3 Suppose B := I. It holds that

|λ|max
A ≤ min

{
n

m−2
2 ‖A‖F , ā · nm−1

}
,

where ā := max
{ |ai1i2...im | : 1 ≤ i1, i2, . . . , im ≤ n

}
.
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Proof Let (λ, x) be an arbitrary solution of (1.4) with B := I. Then it holds that

λ = Axm
∑n

i=1 x
m
i

,

which implies

|λ| = |Axm |
∑n

i=1 x
m
i

≤ ‖A‖F‖xm‖F
∑n

i=1 x
m
i

,

where xm := (
xi1xi2 . . . xim

)

1≤i1,...,im≤n , which is anm-th order n-dimensional tensor.
Since

‖xm‖2F =
n∑

i1,i2,...,im=1

(
xi1xi2 . . . xim

)2 =
(

n∑

i=1

x2i

)m

≤ nm−2

(
n∑

i=1

xmi

)2

,

we obtain

|λ| ≤ n
m−2
2 ‖A‖F .

On the other hand, we have

|λ| = |Axm |
∑n

i=1 x
m
i

≤ ā
(∑n

i=1 xi
)m

∑n
i=1 x

m
i

≤ ā · nm−1.

Hence we know

|λ| ≤ min
{
n

m−2
2 ‖A‖F , ā · nm−1

}
.

Since λ is arbitrary, we obtain the desired result and complete the proof. ��
For the case where B is strict copositive but B �= I, similarly, we may obtain

|λmax
A,B| ≤ 1

Nmin(B)
min

{
n

m−2
2 ‖A‖F , ā · nm−1

}
,

where Nmin(B) := min
{Bxm : x ∈ R

n+,
∑n

i=1 x
m
i = 1

}
> 0 ( see [21, Theorem

5]). Here, we notice that the computation of Nmin(B) is also NP-hard itself.

4 Bounds for the number of Pareto eigenvalues

In this section, we study the estimation of the numbers of Pareto-eigenvalue of (A,B),
whereA and B are two givenm-th order n-dimensional tensors. We begin this section
with some basic concepts and properties of eigenvalue/eigenvector of tensors.
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It is well known that, on the left-hand side of (1.2), (A − λB)xm−1 is indeed a
set of n homogeneous polynomials with n variables, denoted by {Pλ

i (x) : 1 ≤ i ≤
n}, of degree (m − 1). In the complex field, in order to study the solution set of a
system of n homogeneous polynomials (P1, . . . , Pn), in n variables, the concept of
the resultant Res(P1, . . . , Pn) is well defined and introduced in algebraic geometry
literature, e.g., see [7]. Actually, Res(P1, . . . , Pn) is a polynomial in the coefficients
ai1i2...im − λbi1i2...im , whose total degree is n(m − 1)n−1 in the considered case here.
Moreover, (1.2) has nonzero solutions if and only if Res(P1, . . . , Pn) = 0, we refer
the reader to [7] for more details. Applying it to our current problem, Res(P1, . . . , Pn)
has the following properties.

Proposition 4.1 We have the following results:

(i). Res(P1, . . . , Pn) = 0, if and only if there exists (λ, x) ∈ C× (Cn\{0}) satisfying
(1.2).

(ii). The degree of λ in Res(P1, . . . , Pn) is at most n(m − 1)n−1.

For the special case where m = 2, we notice that the resultant Res(P1, . . . , Pn)
coincides with the ordinary determinant det(A−λB). Accordingly, Proposition 4.1
reduces to the corresponding classical properties of matrix eigenvalue/eigenvector
problems.

For TGEiCP with K = R
n+, we present the following proposition which fully

characterizes the Pareto-spectrum of TGEiCP.

Proposition 4.2 LetA andB be twom-th order n-dimensional tensors. A real number
λ is Pareto-eigenvalue of (A,B), if and only if there exists a nonempty subset J ⊆ N
and a vector w ∈ R

|J |
++ such that

AJw
m−1 = λBJw

m−1 (4.1)

and

∑

i2,...,im∈J

(λbii2...im − aii2...im )wi2 · · ·wim ≥ 0, for every i ∈ N\J. (4.2)

In such a case, the vector x ∈ R
n+ defined by

xi =
{

wi , i ∈ J,
0, i ∈ N\J

is a Pareto-eigenvector of (A,B), associated with the real number λ.

Proof It can be proved in a similar way that used in [28] and we skip it here. ��
Remark 4.1 It is obvious that, in the case where B := I, (4.1) and (4.2) turn out to be

AJw
m−1 = λw[m−1] (4.3)
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and ∑

i2,...,im∈J

aii2...imwi2 . . . wim ≤ 0, for every i ∈ N\J, (4.4)

respectively. The corresponding conclusions of Pareto-eigenvalues of A have been
studied in [28].

By Proposition 4.2, if λ is Pareto-eigenvalue of (A,B), then there exists a nonempty
subset J ⊆ N such that λ is a strict eigenvalue of (AJ ,BJ ). Motivated by the works
on estimating the cardinality of the Pareto-spectrum of matrices [27], we now state
and prove the main results in this section.

Theorem 4.1 Let A and B be two given m-th order n-dimensional tensors. Assume
that (A,B) is not an identical singular pair. Then there are at most �m,n := nmn−1

Pareto-eigenvalues of (A,B).

Proof It is obvious that, for every k = 0, 1, . . . , n − 1, there are
( n
n−k

)
corresponding

principal sub-tensors pair of order m dimension n − k. Moreover, by Proposition 4.1,
we know that every principal sub-tensors pair of order m dimension n − k can have
at most (n − k)(m − 1)n−k−1 strict Pareto-eigenvalues. By Proposition 4.2, we obtain
the upper bound

�m,n =
n−1∑

k=0

(
n

n − k

)

(n − k)(m − 1)n−k−1 = nmn−1.

Hence proved. ��
Now we extend the above result to a more general case where K is a polyhedral

convex cone. A closed convex cone K in Rn is said to be finitely generated if there is
a linearly independent collection {c1, c2, . . . , cp} of vectors in Rn such that

K = cone{c1, c2, . . . , cp} =
{ p∑

i=1

α j c j : α = (α1, α2, . . . , αp)

 ∈ R

p
+

}

. (4.5)

Apparently, K = {C
α : α ∈ R
p
+}, where C = [c1, c2, . . . , cp]
. Moreover, we can

see that the dual cone of K , denoted by K ∗, is equivalent to {w ∈ R
n : Cw ≥ 0}.

Theorem 4.2 Let A and B be two given m-th order n-dimensional tensors. If the
closed convex cone K admits representation (4.5), then (A,B) has at most �m,p :=
pmp−1K-eigenvalues.

Proof Wefirst prove that problem (1.3) with K defined by (4.5) is equivalent to finding
a vector ᾱ ∈ R

p\{0} and λ̄ ∈ R such that

ᾱ ≥ 0, λ̄Dᾱm−1 − Gᾱm−1 ≥ 0,
〈
ᾱ, λ̄Dᾱm−1 − Gᾱm−1

〉
= 0, (4.6)

123



On the cone eigenvalue complementarity problem... 155

whereD and G are twom-th order p-dimensional tensors, whose elements are denoted
by

di1i2...im =
n∑

j1, j2,..., jm=1

b j1 j2... jm ci1 j1ci2 j2 . . . cim jm

and

gi1i2...im =
n∑

j1, j2,..., jm=1

a j1 j2... jm ci1 j1ci2 j2 . . . cim jm ,

for 1 ≤ i1, i2, . . . , im ≤ p, respectively.
Let (x̄, λ̄) ∈ (Rn\{0}) × R be a solution of (1.3) with K defined by (4.5). Since

x̄ ∈ K , by the definition of K , there exists a nonzero vector ᾱ ∈ R
p
+ such that

x̄ = C
ᾱ. Consequently, from λ̄Bx̄m−1 −Ax̄m−1 ∈ K ∗ and the expression of K ∗, it
holds that C(λ̄Bx̄m−1 − Ax̄m−1) ≥ 0, which implies

C

(

λ̄B
(
C
ᾱ

)m−1 − A
(
C
ᾱ

)m−1
)

≥ 0. (4.7)

By the definitions of D and G, we know that (4.7) can be equivalently written as

λ̄Dᾱm−1 − Gᾱm−1 ≥ 0.

Moreover, it is easy to verify that 〈ᾱ, λ̄Dᾱm−1 −Gᾱm−1〉 = 0. Conversely, if (ᾱ, λ̄) ∈
(Rp\{0}) × R satisfies (4.6), then we can prove that (x̄, λ̄) with x̄ = C
ᾱ satisfies
(1.3) in a similar way.

Consequently, by applying Theorem 4.1 to the problem (4.6), we know that (A,B)

has at most �m,p = pmp−1K -eigenvalues. The proof is completed. ��
The above theorem shows that σK (A,B) has finitely many elements in case K is

a polyhedral convex cone. However, in the nonpolyhedral case the situation can be
worse. For instance, IusemandSeeger [13] constructed a symmetricmatrix A (i.e., 2-th
order n dimensional tensor) and a nonpolyhedral convex cone K such that σK (A, In)
behaves like the Cantor ternary set, i.e., it is uncountable and totally disconnected.

In the rest of this section, we discuss the case where B := I. We first present the
following lemmas.

Lemma 4.1 LetAbeanm-th order n-dimensional nonnegative tensor, i.e., ai1...im ≥ 0
for 1 ≤ i1, . . . , im ≤ n. If A has two eigenvectors in R

n++, then, the corresponding
eigenvalues are equal.

Proof Let λ1 and λ2 be two Pareto-eigenvalues of A, and let x, y ∈ R
n++ be the

corresponding Pareto-eigenvectors, which means

Axm−1 = λ1x
[m−1] and Aym−1 = λ2y

[m−1].
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Since A is nonnegative tensor, we know that λ1, λ2 are nonnegative. Without loss of
generality, assume λ1 ≥ λ2. If λ1 = 0, then λ2 = 0. Now we assume λ1 > 0. Denote

t0 = min
{
t > 0 : t y − x ∈ R

n+
}
, (4.8)

which must exist since y ∈ R
n++. It is obvious that t0y − x ∈ R

n+, which immediately
implies that t0yi ≥ xi for all i . Consequently, since ai1...im ≥ 0 for 1 ≤ i1, . . . , im ≤ n,
by the definitions of Axm−1 and A(t0y)m−1, one knows that

tm−1
0 λ2y

[m−1] − λ1x
[m−1] = A(t0y)

m−1 − Axm−1 ∈ R
n+,

which implies

t0(λ2/λ1)
1

m−1 y − x ∈ R
n+.

By (4.8), we know that t0 ≤ t0(λ2/λ1)
1

m−1 , which implies λ1 ≤ λ2. Therefore, we
obtain λ1 = λ2 and complete the proof. ��

Let A be an m-th order n-dimensional tensor. We say that A is a Z -tensor, if all
off-diagonal entries of A are nonpositive.

Lemma 4.2 Let A be an m-th order n-dimensional tensor satisfying any of the fol-
lowing conditions: (i) −A is a Z-tensor; (ii)A is a Z-tensor. Then,A admits at most
one strict eigenvalue, i.e., its corresponding eigenvector has positive entries.

Proof We first consider case (i). Let λ1, λ2 ∈ R be two strict eigenvalues of A, i.e.,
there are vectors x, y ∈ R

n++ such that Axm−1 = λ1x [m−1] and Aym−1 = λ2y[m−1].
Hence,

(A + μI)xm−1 = (λ1 + μ)x [m−1] and (A + μI)ym−1 = (λ2 + μ)y[m−1],

where μ is any real number. Since −A is a Z -tensor, A + μI is nonnegative for μ

sufficiently large. By Lemma 4.1, we obtain the equality λ1 + μ = λ2 + μ, which
implies the desired conclusion.

For case (ii), the conclusion can be proved in a similar way. ��

Proposition 4.3 Let A be an m-th order n-dimensional tensor satisfying any of the
following conditions: (i) −A is a Z-tensor; (ii) A is a Z-tensor. Then, A has at most
ρn := 2n − 1 Pareto eigenvalues.

Proof Weonly consider case (i). The conclusion for case (ii) can be proved in a similar
way. For every k = 0, 1, . . . , n − 1, there are

( n
n−k

)
principal sub-tensors of order m

dimension n − k. Since −A is a Z -tensor, it is clear that any principal sub-tensors of
−A are also Z -tensors. Consequently, by Lemma 4.2, we know that, every principal
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sub-tensor can have at most one strict eigenvalue. Therefore, by Proposition 4.2, one
gets the upper bound

ρn =
n−1∑

k=0

(
n

n − k

)

· 1 = 2n − 1.

We obtain the desired result and complete the proof. ��
It is easy to see that, if A is a nonnegative tensor, then −A is a Z -tensor. Hence,

by Proposition 4.3, we know that any m-th order n dimensional nonnegative tensor
can have at most (2n − 1) Pareto eigenvalues. The following example shows that the
bound ρn is sharp within the second class mentioned in Proposition 4.3. This is what
we call the exponential growth phenomenon.

Example 4.1 Consider a 3-rd order n-dimensional tensorA = (ai1i2i3)1≤i1,i2,i3≤n with
ai1i2i3 = −ai1+i2+i3 and a >

3
√
4. Given an arbitrary index set J = {l1, l2, . . . , lr }

with 1 ≤ l1 < l2 < · · · < lr ≤ n, the principal sub-tensor AJ = (c j1 j2 j3)1≤ j1, j2, j3≤r

has c j1 j2 j3 = −al j1+l j2+l j3 . Take vector ξ = (a
l1
2 , a

l2
2 , . . . , a

lr
2 )
. It is obvious that

ξ ∈ R
r++ and

(
AJ ξ

2
)

j
=

r∑

j2, j3=1

c j j2 j3ξ j2ξ j3 = −
r∑

j2, j3=1

al j+l j2+l j3a
l j2
2 a

l j3
2

= −
(
∑

s∈J

a
3
2 s

)2

al j = λJ ξ
2
j ,

whereλJ = −
(∑

s∈J a
3
2 s
)2
. Thismeans that (4.3) holds. Since ai1i2i3 < 0 and ξ > 0,

we do not worry about the condition (4.4). ByRemark 4.1, we know that λJ is a Pareto-
eigenvalue ofA. Now, let us proceed to check that λJ1 �= λJ2 whenever J1 �= J2. Take
J1, J2 ⊆ {1, 2, . . . , n} with J1 �= J2. Since J1�J2 = (J1\J2) ∪ (J2\J1) �= ∅, one
can define k = max{k ∈ {1, 2, . . . , n}, k ∈ J1�J2}. Without loss of generality, we
assume that k ∈ J2, which implies k /∈ J1. In this case, we have

√
λJ1 − √

λJ2 =
∑

s∈J2

a
3
2 s −

∑

s∈J1

a
3
2 s =

∑

s∈J2,s≤k

bs −
∑

s∈J1,s≤k−1

bs .

where b = a
3
2 . This implies that

√
λJ1 − √

λJ2 =
∑

s∈J2,s≤k

bs −
∑

s∈J1,s≤k−1

bs ≥ bk −
k−1∑

s=1

bs

= bk+1 − 2bk + b

b − 1
≥ b

b − 1
> 0,
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where the last inequality comes from the fact b > 2 with a given condition a >
3
√
4.

Therefore, we conclude that λJ1 �= λJ2 . Since there are 2
n − 1 ways of choosing the

index set J , many elements exist in the Pareto spectrum of this special tensor A.

Proposition 4.4 Suppose that there exists an index subset J0 ⊆ N with |J0| = l
such that aii2...im > 0 for any i ∈ J0 and i2, . . . , im ∈ N\{i}. Then A has at most
γ l
m,n := [n(m−1)+l](m−1)l−1mn−l−1 Pareto-eigenvalues. In particular, if J0 = N,

then A has at most �m−1,n := n(m − 1)n−1 Pareto-eigenvalues.

Proof Under the given condition, we only need to consider the principal sub-tensor
AJ with J0 ⊆ J , which is due to the condition (4.2). Among the principal sub-tensors
of order m dimension k, there are

(n−l
k−l

)
of them satisfying that property. This leads to

the upper bound

γ l
m,n =

n∑

k=l

(
n − l

k − l

)

k(m − 1)k−1

= (m − 1)l
n−l∑

s=0

(
n − l

s

)

(s + l)(m − 1)s−1

= [n(m − 1) + l](m − 1)l−1mn−l−1.

In particular, if J0 = N , we immediately obtain the desired result. The proof is
completed. ��

A similar type of argument leads to the following result:

Proposition 4.5 Suppose that there exists an index set J0 ⊆ N with |J0| = l such
that aii2...im > 0 for any i ∈ J0 and i2, . . . , im ∈ N\{i}. Moreover, suppose that −A
is a Z-tensor. Then, A has at most αl

n := 2n−l Pareto-eigenvalues.

Proof This time one has to compute

αl
n =

n∑

k=l

(
n − l

k − l

)

· 1 =
n−l∑

s=0

(
n − l

s

)

· 1 = 2n−l .

We obtain the desired result and complete the proof. ��
Theorems 4.1–4.2 and Propositions 4.3–4.5 extend the corresponding results for

bounds on Pareto eigenvalues of square matrices, which have been studied in [27],
to the case higher order tensors. For the square matrix case, i.e., m = 2, it is well
established in [27] that

α1
n ≤ ρn ≤ γ 1

2,n ≤ �2,n .

Considering the tensor case, i.e., m ≥ 3, it is obvious that αl
n ≤ ρn and γ l

m,n ≤ �m,n

for any 1 ≤ l ≤ n. Moreover, it is not difficult to verify that, if l = n then γ l
m,n =
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n(m−1)n−1 ≥ n2n−1 ≥ ρn ; if 1 ≤ l ≤ n−1, then γ l
m,n ≥ [n(m−1)+1](m−1)n−2 ≥

(2n + 1)2n−2 ≥ ρn . Therefore, it always holds that

αl
n ≤ ρn ≤ γ l

m,n ≤ �m,n

for any 1 ≤ l ≤ n.

5 Numerical algorithm and simulations

In this section, we first introduce an implementable algorithm for solving the TGEiCP.
Then, we conduct some numerical results to verify the existence of the solution of
TGEiCP and the reliability of our proposed algorithm.

5.1 Numerical algorithm

It well known that the general nonlinear complementarity problem can also be trans-
formed into a system of equations. Therefore, it is of course possible to apply the
semismooth and smoothing Newton methods to solve the problem under consider-
ation in this paper. However, TGEiCP is more complicated than the classical EiCP
due to the high-dimensional structure of tensors, thereby making such second-order
algorithms difficult to be implemented. Motivated by the recent work in [9] for solving
matrix cone constrained eigenvalue problem, in this section, we extend the so-called
scaling-and-projection algorithm (SPA), developed in [9], to solve (1.3) and follow the
same name for TGEiCP. The corresponding algorithm can be described in Algorithm
1. Throughout this section, we assume that B is strictly K -positive, i.e., Bxm > 0 for
any x ∈ K\{0}.

Algorithm 1 A Scaling-and-Projection Algorithm (SPA).

1: Take any starting point u(0) ∈ K\{0}, and define x(0) = u(0)/
m
√
B(u(0))m .

2: for k = 0, 1, 2, · · · do
3: One has a current point x(k) ∈ K\{0}. Compute

λk =
A
(
x(k)

)m

B (
x(k)

)m and y(k) = A
(
x(k)

)m−1 − λkB
(
x(k)

)m−1
. (5.1)

4: If ‖y(k)‖ = 0, then stop. Otherwise, let sk := ‖y(k)‖, and compute

u(k) = �K

[
x(k) + sk y

(k)
]

and x(k+1) = u(k)

m
√
B(u(k))m

. (5.2)

5: end for

It is easy to verify that iterative scheme (5.1) always ensures 〈x (k), y(k)〉 = 0. As
a consequence, y(k) ∈ K ∗ clearly means that (x (k), y(k)) is a solution of problem
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(1.3). However, for the sake of convenience, we often use ‖y(k)‖ = 0 as the stopping
condition in algorithmic framework instead of y(k) ∈ K ∗.

As we have mentioned, our proposed algorithm is a straightforward extension of
[9], we can easily get the following convergence theorem. For sake of simplicity, we
skip the proof of convergence of Algorithm 1; the interested reader is referred to [9]
for a similar proof.

Theorem 5.1 Let the sequence {x (k)} be generated by Algorithm 1 and further satisfy
B(x (k))m = 1. Assume convergence of {x (k)} toward some limit that one denotes by
x̄ . Then,

lim
k→∞ λk = λ̄ := Ax̄m

Bx̄m , lim
k→∞ y(k) = ȳ := Ax̄m−1 − λ̄Bx̄m−1, (5.3)

and (λ̄, x̄) is a solution of (1.3).

Remark 5.1 As mentioned in [9], if K has a complicated structure, then computing
u(k) in Algorithm 1 is not an easy task. However, there are many interesting cones for
which the projection map admits an explicit and easily computable formula. This is
true, for instance, for the Pareto cone, for the Loewner cone of positive semidefinite
symmetric matrices, for the Lorentz cone and, more generally, for any revolution cone.
Therefore Algorithm 1 is easily implemented as long as the projection onto K is easy
enough to be computed explicitly.

Remark 5.2 The tensors A and B considered above are not necessarily symmetric. If
K = R

n+ and the tensors A and B are both symmetric, then the symmetric TGEiCP
can be solved by computing a stationary point of the nonlinear program (3.3). The
constraint set of this program is the simplex S defined by (2.4). The special structure
of this set S makes the computation of projections of vectors over S very easy. On the
other hand, the objective function of the required nonlinear programhasHessianwhose
computation is quite complicated. These features lead to our decision of investigating
first order algorithms that are based on gradients and projections.

5.2 Numerical simulations

We have theoretically discussed the existence of the solution of TGEiCP in Sect. 2 and
introduced an implementable projection method to solve the problem under consider-
ation in Sect. 5.1. Thus, in this section, we aim at verifying that our theoretical results
are true, in addition to demonstrating the reliability of the proposed algorithm. We
implement Algorithm 1 by Matlab R2012b and conduct the numerical simulations
on a Lenovo notebook with Inter(R) Core(TM) i5-2410M CPU 2.30GHz and 4GB
RAM running on Windows 7 Home Premium operating system.

In our experiments, we concentrate on three concrete TGEiCPs with symmetric
structure and only list the details of tensors A and B in the ensuing examples.

Example 5.1 We consider two 4-th order 2-dimensional symmetric tensors A and B,
where the tensor A is specified as
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A(:, :, 1, 1) =
(
0.8147 0.5164
0.5164 0.9134

)

, A(:, :, 1, 2) =
(
0.4218 0.8540
0.8540 0.9595

)

,

A(:, :, 2, 1) =
(
0.4218 0.8540
0.8540 0.9595

)

, A(:, :, 1, 2) =
(
0.6787 0.7504
0.7504 0.3922

)

,

and the tensor B is specified as

B(:, :, 1, 1) =
(
1.6324 1.1880
1.1880 1.5469

)

, B(:, :, 1, 2) =
(
1.6557 1.4424
1.4424 1.9340

)

,

B(:, :, 2, 1) =
(
1.6557 1.4424
1.4424 1.9340

)

, B(:, :, 1, 2) =
(
1.6555 1.4386
1.4386 1.0318

)

.

Example 5.2 This example considers two 4-th order 3-dimensional symmetric tensors
A and B, where A and B are specified as follows:

A(:, :, 1, 1) =
⎛

⎝
0.6229 0.2644 0.3567
0.2644 0.0475 0.7367
0.3567 0.7367 0.1259

⎞

⎠ , A(:, :, 1, 2) =
⎛

⎝
0.7563 0.5878 0.5406
0.5878 0.1379 0.0715
0.5406 0.0715 0.3725

⎞

⎠ ,

A(:, :, 1, 3) =
⎛

⎝
0.0657 0.4918 0.9312
0.4918 0.7788 0.9045
0.9312 0.9045 0.8711

⎞

⎠ , A(:, :, 2, 1) =
⎛

⎝
0.7563 0.5878 0.5406
0.5878 0.1379 0.0715
0.5406 0.0715 0.3725

⎞

⎠ ,

A(:, :, 2, 2) =
⎛

⎝
0.7689 0.3941 0.6034
0.3941 0.3577 0.3465
0.6034 0.3465 0.4516

⎞

⎠ , A(:, :, 2, 3) =
⎛

⎝
0.8077 0.4910 0.2953
0.4910 0.5054 0.5556
0.2953 0.5556 0.9608

⎞

⎠ ,

A(:, :, 3, 1) =
⎛

⎝
0.0657 0.4918 0.9312
0.4918 0.7788 0.9045
0.9312 0.9045 0.8711

⎞

⎠ , A(:, :, 3, 2) =
⎛

⎝
0.8077 0.4910 0.2953
0.4910 0.5054 0.5556
0.2953 0.5556 0.9608

⎞

⎠ ,

A(:, :, 3, 3) =
⎛

⎝
0.7581 0.7205 0.9044
0.7205 0.0782 0.7240
0.9044 0.7240 0.3492

⎞

⎠ , B(:, :, 1, 1) =
⎛

⎝
0.6954 0.4018 0.1406
0.4018 0.9957 0.0483
0.1406 0.0483 0.0988

⎞

⎠ ,

B(:, :, 1, 2) =
⎛

⎝
0.6730 0.5351 0.4473
0.5351 0.2853 0.3071
0.4473 0.3071 0.9665

⎞

⎠ , B(:, :, 1, 3) =
⎛

⎝
0.7585 0.6433 0.2306
0.6433 0.8986 0.3427
0.2306 0.3427 0.5390

⎞

⎠ ,

B(:, :, 2, 1) =
⎛

⎝
0.6730 0.5351 0.4473
0.5351 0.2853 0.3071
0.4473 0.3071 0.9665

⎞

⎠ , B(:, :, 2, 2) =
⎛

⎝
0.3608 0.3914 0.5230
0.3914 0.6822 0.5516
0.5230 0.5516 0.7091

⎞

⎠ ,

B(:, :, 2, 3) =
⎛

⎝
0.4632 0.2043 0.2823
0.2043 0.7282 0.7400
0.2823 0.7400 0.9369

⎞

⎠ , B(:, :, 3, 1) =
⎛

⎝
0.7585 0.6433 0.2306
0.6433 0.8986 0.3427
0.2306 0.3427 0.5390

⎞

⎠ ,

B(:, :, 3, 2) =
⎛

⎝
0.4632 0.2043 0.2823
0.2043 0.7282 0.7400
0.2823 0.7400 0.9369

⎞

⎠ , B(:, :, 3, 3) =
⎛

⎝
0.8200 0.5914 0.4983
0.5914 0.0762 0.2854
0.4983 0.2854 0.1266

⎞

⎠ .

Example 5.3 This example also considers two 4-th order 3-dimensional symmetric
tensors A and B, where A and B take their components as follows:
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A(:, :, 1, 1) =
⎛

⎝
0.4468 0.4086 0.5764
0.4086 0.8176 0.5867
0.5764 0.5867 0.8116

⎞

⎠ , A(:, :, 1, 2) =
⎛

⎝
0.2373 0.5028 0.7260
0.5028 0.5211 0.4278
0.7260 0.4278 0.6791

⎞

⎠ ,

A(:, :, 1, 3) =
⎛

⎝
0.0424 0.0841 0.6220
0.0841 0.8181 0.4837
0.6220 0.4837 0.6596

⎞

⎠ , A(:, :, 2, 1) =
⎛

⎝
0.2373 0.5028 0.7260
0.5028 0.5211 0.4278
0.7260 0.4278 0.6791

⎞

⎠ ,

A(:, :, 2, 2) =
⎛

⎝
0.3354 0.7005 0.3154
0.7005 0.1068 0.7164
0.3154 0.7164 0.7150

⎞

⎠ , A(:, :, 2, 3) =
⎛

⎝
0.1734 0.5972 0.6791
0.5972 0.0605 0.4080
0.6791 0.4080 0.6569

⎞

⎠ ,

A(:, :, 3, 1) =
⎛

⎝
0.0424 0.0841 0.6220
0.0841 0.8181 0.4837
0.6220 0.4837 0.6596

⎞

⎠ , A(:, :, 3, 2) =
⎛

⎝
0.1734 0.5972 0.6791
0.5972 0.0605 0.4080
0.6791 0.4080 0.6569

⎞

⎠ ,

A(:, :, 3, 3) =
⎛

⎝
0.4897 0.6299 0.6104
0.6299 0.0527 0.5803
0.6104 0.5803 0.5479

⎞

⎠ , B(:, :, 1, 1) =
⎛

⎝
2.5328 2.6133 2.7630
2.6133 2.5502 2.4151
2.7630 2.4151 2.3012

⎞

⎠ ,

B(:, :, 1, 2) =
⎛

⎝
2.3955 2.2026 2.8921
2.2026 2.8852 2.5060
2.8921 2.5060 2.2619

⎞

⎠ , B(:, :, 1, 3) =
⎛

⎝
2.5186 2.8867 2.7372
2.8867 2.4538 2.2579
2.7372 2.2579 2.1332

⎞

⎠ ,

B(:, :, 2, 1) =
⎛

⎝
2.3955 2.2026 2.8921
2.2026 2.8852 2.5060
2.8921 2.5060 2.2619

⎞

⎠ , B(:, :, 2, 2) =
⎛

⎝
2.9037 2.7948 2.5391
2.7948 2.1978 2.2653
2.5391 2.2653 2.4799

⎞

⎠ ,

B(:, :, 2, 3) =
⎛

⎝
2.6280 2.1537 2.2689
2.1537 2.9841 2.2698
2.2689 2.2698 2.1981

⎞

⎠ , B(:, :, 3, 1) =
⎛

⎝
2.5186 2.8867 2.7372
2.8867 2.4538 2.2579
2.7372 2.2579 2.1332

⎞

⎠ ,

B(:, :, 3, 2) =
⎛

⎝
2.6280 2.1537 2.2689
2.1537 2.9841 2.2698
2.2689 2.2698 2.1981

⎞

⎠ , B(:, :, 3, 3) =
⎛

⎝
2.9427 2.3596 2.7611
2.3596 2.7011 2.6822
2.7611 2.6822 2.6665

⎞

⎠ .

Note that the stopping criterion in Algorithm 1 is ‖y(k)‖ = 0 for exactly solving
TGEiCP. In practical implementation, we usually use

RelErr : =
∥
∥
∥y(k)

∥
∥
∥ :=

∥
∥
∥A(x (k))m−1 − λkB(x (k))m−1

∥
∥
∥ ≤ Tol (5.4)

as the termination criterion to pursue an approximate solution with a preset tolerance
‘Tol’. Now, we test three scenarios of ‘Tol’ by setting Tol := {

5 × 10−3 , 10−3, 5
×10−4

}
. We consider two cases of the starting point u(0), where the first case is

a vector of ones, i.e., u(0) = (1, . . . , 1)
, and the second one is a random vector
uniformly distributed in (0, 1), (the corresponding Matlab script is rand(n,1)).
To demonstrate the reliability of Algorithm 1, we report the number of iterations
(‘Iter.’), computing time in seconds (‘Time’), the relative error (‘RelErr’) defined by
(5.4), eigenvalue (‘EigValue’) and the corresponding eigenvector (‘EigVector’). The
computational results with respect to different initial points are summarized in Tables
1 and 2, respectively.

From the data reported in Tables 1 and 2, it is clear that our Algorithm 1 can
successfully solve the TGEiCP, even though it seems that the number of iterations
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Fig. 1 Evolutions of ‘RelErr’ defined by (5.4) with respect to iterations. The left plot corresponds to the
original projection scheme, i.e., α = 1. The right one is corresponding to (5.5) with α = 5

increases significantly as the decrease of tolerance ‘Tol’. Actually, we tested a series of
random starting points, and observed that random starting points often perform better
than the deterministic vector of ones in terms of taking less iterations as reported
in Table 2. However, all experiments show that Algorithm 1 is reliable for solving
TGEiCP.

Taking a revisit on Algorithm 1, the iterative scheme (5.2) plays an significant role
in the whole algorithm. In other words, the projection step given in (5.2) dominates
the main task of Algorithm 1. As we know, the typical projection methods consist of
two important components, i.e., step size and search direction. In Algorithm 1, sk and
y(k) serve as the step size and search direction, respectively. It is well known that good
choices of step size and search directionmay lead to promising numerical performance.
Turning our attention to (5.2), it can be easily seen that step size sk approaches to zero
as the sequence {x (k)} gets close to a solution of TGEiCP, thereby reducing the speed
of convergence of Algorithm 1. A naturally simple idea is to increase sk by attaching
a larger constant α to it, that is, the projection step in (5.2) turns out to be

u(k) = �K

[
x (k) + αsk y

(k)
]
. (5.5)

In our experiments, we observe that Algorithm 1 could be accelerated greatly when
we set α ∈ (1, 8). We also report some computational results in Table 3.

By comparing the results in Tables 1 and 3, it is apparent that the refined projection
step (5.5) outperforms the original one in (5.2) in terms of taking much less iterations.
In Fig. 1, we further consider two different projection steps, and graphically plot
the evolutions of the relative error defined by (5.4) in the logarithmic sense, i.e.,
log(‖y(k)‖), with respect to iterations, where the stopping tolerance ‘Tol’ is set to be
Tol : = 10−4.

It is clear from the above results that attaching a relaxation factor α in (5.5) is
necessary to improve the numerical performance of our algorithm. In future work,
we will introduce a self-adaptive strategy to adjust the relaxation factor α for an
acceleration of the proposed method.
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6 Conclusions

This paper considers the TGEiCP with symmetric structure, which is an interest-
ing generalization of matrix eigenvalue complementarity problem. To the best of our
knowledge, the development of TGEiCP is in its infancy and such a problem has been
received much less attention. In this paper, we discuss the existence of the solution of
TGEiCP under some conditions, in addition to presenting two equivalent optimization
reformulations for the purpose of analyzing the upper bound on cone eigenvalues of
tensors. The bounds on the number of eigenvalues of TGEiCP are also presented.
Finally, we develop a first-order projection method which might be a better candidate
for TGEiCP than second-order solvers. Note that we only consider the optimization
reformulations of symmetric TGEiCP, and many problems lack such a symmetric
structure. Hence, our future work will further study TGEiCPs in absence of the sym-
metric property. On the other hand, our numerical simulations showus that the attached
α in (5.5) is important for algorithmic acceleration. Then, how to improve the numer-
ical performance of Algorithm 1 is also one of our future concerns.
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