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some known results. Some related results about L(G) are also 
mentioned.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let G be an ordinary graph, and A(G) be the adjacency matrix of G. We denote 
the set {1, 2, · · · , n} by [n]. Hypergraph is a natural generalization of ordinary graph 
(see [1]). A hypergraph G = (V (G), E(G)) on n vertices is a set of vertices, say V (G) =
{1, 2, · · · , n} and a set of edges, say E(G) = {e1, e2, · · · , em}, where ei = {i1, i2, · · · , il}, 
ij ∈ [n], j = 1, 2, · · · , l. If |ei| = k for any i = 1, 2, · · · , m, then G is called a k-uniform 
hypergraph. In particular, the 2-uniform hypergraphs are exactly the ordinary graphs. 
For a vertex v ∈ V (G) the degree dG(v) is defined as dG(v) = |{ei : v ∈ ei ∈ E(G)}|. 
Vertex with degree one is called pendent vertex in this paper.

An order k dimension n tensor T = (Ti1i2···ik) ∈ C
n×n×···×n is a multidimensional 

array with nk entries, where ij ∈ [n] for each j = 1, 2, · · · , k.
To study the properties of uniform hypergraphs by algebraic methods, adjacency 

matrix, signless Laplacian matrix and Laplacian matrix of graph are generalized to ad-
jacency tenor, signless Laplacian tensor and Laplacian tensor of uniform hypergraph.

Definition 1. (See [6,11].) Let G = (V (G), E(G)) be a k-uniform hypergraph on n vertices. 
The adjacency tensor of G is defined as the k-th order n-dimensional tensor A(G) whose 
(i1 · · · ik)-entry is:

(A(G))i1i2···ik =
{

1
(k−1)! if {i1, i2, · · · , ik} ∈ E(G),
0 otherwise.

Let D(G) be a k-th order n-dimensional diagonal tensor, with its diagonal entry Dii···i
the degree of vertex i, for all i ∈ [n]. Then Q(G) = D(G) +A(G) is the signless Laplacian 
tensor of the uniform hypergraph G, and L(G) = D(G) −A(G) is the Laplacian tensor 
of the uniform hypergraph G.

The following general product of tensors, was defined in [12] by Shao, which is a 
generalization of the matrix case.

Definition 2. Let A ∈ C
n1×n2×···×n2 and B ∈ C

n2×n3×···×nk+1 be order m ≥ 2 and k ≥ 1
tensors, respectively. The product AB is the following tensor C of order (m −1)(k−1) +1
with entries:
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Ciα1···αm−1 =
∑

i2,··· ,im∈[n2]

Aii2···imBi2α1 · · · Bimαm−1 , (1)

where i ∈ [n], α1, · · · , αm−1 ∈ [n3] × · · · × [nk+1].

Let T be an order k dimension n tensor, let x = (x1, · · · , xn)T ∈ C
n be a column 

vector of dimension n. Then by (1) T x is a vector in Cn whose ith component is as the 
following

(T x)i =
n∑

i2,··· ,ik=1
Tii2···ikxi2 · · ·xik . (2)

Let x[k] = (xk
1 , · · · , xk

n)T . Then (see [2,11]) a number λ ∈ C is called an eigenvalue of 
the tensor T if there exists a nonzero vector x ∈ C

n satisfying the following eigenequa-
tions

T x = λx[k−1], (3)

and in this case, x is called an eigenvector of T corresponding to eigenvalue λ.
An eigenvalue of T is called an H-eigenvalue, if there exists a real eigenvector cor-

responding to it (see [11]). In this paper we will focus on the largest H-eigenvalue of 
tensor T , denoted by λ(T ).

The concept of power hypergraphs was introduced in [4].

Definition 3. Let G = (V (G), E(G)) be an ordinary graph. For every k ≥ 2, the kth 
power of G, Gk := (V (Gk), E(Gk)) is defined as the k-uniform hypergraph with the edge 
set

E(Gk) := {e ∪ {ie,1, · · · , ie,k−2} | e ∈ E(G)}

and the vertex set

V (Gk) := V (G) ∪ (∪e∈E(G){ie,1, · · · , ie,k−2}).

For convenience here G2 = G. In [4], the k-th power of path, and cycle is called loose 
path, and loose cycle, respectively. Denote by Sm the star with m edges. The k-th power 
of star is called sunflower in [4], or hyperstar in [10].

Definition 4. (See [4].) Let G = (V, E) be a k-uniform hypergraph. If there is a disjoint 
partition of the vertex set V as V = V0∪V1∪· · ·∪Vd such that |V0| = 1 and |V1| = · · · =
|Vd| = k − 1, and E = {V0 ∪ Vi | i ∈ [d]}, then G is called a sunflower. The degree d of 
the vertex in V0, which is called the heart, is the size of the sunflower. Denote by Sk

d the 
k-uniform sunflower of size d.
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For even k, when G is a cycle or star, Hu, Qi and Shao proved that {λ(Q(Gk))}
is a strictly decreasing sequence in [4]. They believed that it is true for any graph G, 
see Conjecture 4.1 of [4]. This phenomena was also observed in [16] when G is a path 
(namely, Gk is a loose path).

Conjecture 5. (See [4].) Let G be an ordinary graph, k = 2r be even and Gk be the k-th 
power hypergraph of G. Then {λ(L(Gk)) = λ(Q(Gk))} is a strictly decreasing sequence.

For t ≥ 1 let tSk
1 be t disjoint union of Sk

1 . We may point out that when G = tS2
1 , we 

have λ(L(Gk)) = λ(Q(Gk)) = 2 for any k ≥ 2. Namely, in this case Conjecture 5 is false.
Let H be a uniform hypergraph and H �= tSk

1 , and H ′ be obtained from H by 
inserting a new pendent vertex in each edge. In Section 3, we will prove that λ(Q(H ′)) <
λ(Q(H)) in Theorem 10. So for any ordinary graph G �= tS1 (maximum degree Δ ≥ 2), 
{λ(Q(Gk))} is a strictly decreasing sequence, which affirm Conjecture 5 for λ(Q(Gk)). 
We also determine the value limk→∞ λ(Q(Gk)) in Theorem 20.

For an ordinary graph G, the definition for k-th power hypergraph Gk has been 
generalized by Khan and Fan in [7].

Definition 6. Let G = (V, E) be an ordinary graph. For any k ≥ 3 and 1 ≤ s ≤ k/2. 
For each v ∈ V (and e ∈ E), let Vv (and Ve) be a new vertex set with s (and k − 2s) 
elements such that all these new sets are pairwise disjoint. Then the generalized power 
of G, denoted by Gk,s, is defined as the k-uniform hypergraph with the vertex set

V (Gk,s) =
( ⋃

v∈V

Vv

)⋃( ⋃
e∈E

Ve

)

and edge set

E(Gk,s) = {Vu ∪ Vv ∪ Ve : e = {u, v} ∈ E}.

If s = 1, then Gk,s is exactly the kth power hypergraph Gk. The eigenvalues prop-
erties about A(Gk) was discussed in [17], and A(Gk,k/2) was discussed in [7] and [8]. 
In Section 4, we will prove some eigenvalues properties about A(Gk,s), which generalize 
some known results.

2. Auxiliary results for nonnegative tensors and H-spectrum of hypergraphs

In [3], the weak irreducibility of nonnegative tensors was defined. It was proved in [3]
and [15] that a k-uniform hypergraph G is connected if and only if its adjacency tensor 
A(G) (and so Q(G)) is weakly irreducible.

Let T be a kth-order n-dimensional nonnegative tensor. The spectral radius of T is 
defined as (see [10,7,8])
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ρ(T ) = max{|μ| : μ is an eigenvalue of T }.

Part of Perron–Frobenius theorem for nonnegative tensors is stated in the following for 
reference.

Theorem 7. (See [2,14].) Let T be a nonnegative tensor. Then we have the following 
statements.

(1) ρ(T ) is an eigenvalue of T with a nonnegative eigenvector x corresponding to it.
(2) If T is weakly irreducible, then x is positive, and for any eigenvalue μ with nonneg-

ative eigenvector, μ = ρ(T ) holding.
(3) The nonnegative eigenvector x corresponding to ρ(T ) is unique up to a constant 

multiple.

In virtue of (1) of Theorem 7, the largest H-eigenvalue of A(G) (or Q(G)) is ex-
actly the spectral radius of A(G) (or Q(G)). For weakly irreducible nonnegative T of 
order k, the positive eigenvector x with ||x||k = 1 corresponding to ρ(T ) (i.e., the largest 
H-eigenvalue) is called the principal eigenvector of T in this paper.

Lemma 8. (See [7].) Suppose that T is a weakly irreducible nonnegative tensor of order k. 
If there exists a nonnegative vector y such that T y ≤ μy[k−1] and (T y)i < μyk−1

i holding 
for some i, then λ(T ) < μ.

The H-spectrum of a real tensor T , denoted by Hspec(T ), is defined to be the set of 
distinct H-eigenvalues of T [13]. Namely,

Hspec(T ) = {μ | μ is an H-eigenvalue of T }.

Lemma 9. Let G = ∪t
i=1Gi, where Gi is a connected uniform hypergraph. Then

Hspec(L(G)) =
t⋃

i=1
Hspec(L(Gi)), (4)

and so

λ(L(G)) = max
1≤i≤t

{λ(L(Gi))}.

Proof. Without loss of the generality, we may assume that the vertices of G are ordered 
in such a way that if i < j, then any vertex in Gi precedes any vertex in Gj . Let x be a 
column vector of dimension |V (G)|. We write x in the following block form

x = (xT
1 , x

T
2 , · · · , xT

t )T , (5)
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where xi is a column vector corresponding to the vertices of Gi. Then it is not difficult 
to see that

L(G)x = ((L(G1)x1)T , (L(G2)x2)T , · · · , (L(Gt)xt)T )T . (6)

Now we prove Eq. (4). If λ ∈ Hspec(L(G)) with a real eigenvector x as in (5), where 
xj �= 0. Then by L(G)x = λx[k−1] and Eq. (6) we have

L(Gj)xj = λx
[k−1]
j .

Thus

λ ∈ Hspec(L(Gj)) ⊆
t⋃

i=1
Hspec(L(Gi)). (7)

On the other hand, if λ ∈
⋃t

i=1 Hspec(L(Gi)), say, λ ∈ Hspec(L(Gj)) for some 1 ≤ j ≤ t

with a real eigenvector xj . Take xi = 0 for all i �= j and take x as in (5). Then by 
Eq. (6) we can verify that L(G)x = λx[k−1], thus λ ∈ Hspec(L(G)). Combining these 
two aspects, we obtain (4).

Particularly, we have

λ(L(G)) = max
1≤i≤t

{λ(L(Gi))}.

Similarly, we may prove that these results are also true for Q(G) and A(G). �
3. Largest H-eigenvalue of signless Laplacian tensor of Gk

In this section we will prove that for any graph G with maximum degree Δ ≥ 2, 
{λ(Q(Gk))} is a strictly decreasing sequence. First we will prove a more general result 
by constructing a new vector and using Lemma 8.

Theorem 10. Let H be a k-uniform (k ≥ 2) hypergraph, and H ′ be obtained from H
by inserting a new pendent vertex in each edge. Then λ(Q(H ′)) ≤ λ(Q(H)), equality 
holding if and only if H = tSk

1 for some t.

Proof. If H = tSk
1 for some t, then λ(Q(H ′)) = λ(Q(H)) = 2. We suppose that H �= tSk

1
for any t.

Denote by

E(H) = {e1, e2, · · · , em},

and let vi be the new pendent vertex inserted in ei for any 1 ≤ i ≤ m, i.e.,

V (H ′) = V (H) ∪ {v1, v2, · · · , vm}.
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(1) First suppose that H is a connected, so Q(H) is weakly irreducible. Let x be the 
principal eigenvector to λ(Q(H)), namely,

Q(H)x = λ(Q(H))x[k−1].

Now we construct a new vector y (of dimension |V (H ′)|) from x by adding m components. 
If w ∈ V (H), set yw = xw; if w = vi, i.e., w is a new pendent vertex inserted in ei, set 
yw = min{xu | u ∈ ei}.

Now we will show Q(H ′)y ≤ λ(Q(H))y[k].
For any vertex w ∈ V (H) we have

(Q(H ′)y)w = dH′(w)ykw +
∑

{w,vi,t2,··· ,tk}∈E(H′)

yviyt2 · · · ytk

≤ dH(w)xk
w +

∑
{w,vi,t2,··· ,tk}∈E(H′)

xwxt2 · · ·xtk (8)

= xw

[
dH(w)xk−1

w +
∑

{w,t2,··· ,tk}∈E(H)

xt2 · · ·xtk

]

= xw(Q(H)x)w
= xwλ(Q(H))xk−1

w

= λ(Q(H))xk
w

= λ(Q(H))ykw.

Ineq. (8) is due to the fact yvi ≤ xw. Furthermore, if xw > yvi , namely, xw > min{xu |
u ∈ ei} for some edge ei containing w, Ineq. (8) becomes strict.

For w = vi for some 1 ≤ i ≤ m, i.e., w is a new pendent vertex inserted in ei, we 
suppose ei = {w1, w2, · · · , wk} and xw1 = min{xw1 , xw2 , . . . , xwk

}. Then we have

(Q(H ′)y)w = ykw + yw1yw2 · · · ywk

= xk
w1

+ xw1xw2 · · ·xwk

≤ xw1

[
dH(w1)xk−1

w1
+ xw2 · · ·xwk

]
(9)

≤ xw1(Q(H)x)w1

= λ(Q(H))xk
w1

= λ(Q(H))ykw.

Ineq. (9) is due to the fact dH(w1) ≥ 1. Furthermore, if dH(w1) > 1, Ineq. (9) becomes 
strict. So we have proved Q(H ′)y ≤ λ(Q(H))y[k].

If there exists {w, w′} ⊆ ei for some ei ∈ E(H) such that xw > xw′ , then xw >

min{xu | u ∈ ei}, and then Ineq. (8) becomes strict. Now we suppose all the vertices 
in each edge have the equal corresponding component in x. Furthermore, since H is 
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connected, we know that all the components of x are equal, thus H is regular. We 
suppose H is a d-regular. Since H �= Sk

1 , we have d ≥ 2. Now for some edge ei, set 
xw1 = min{xu | u ∈ ei}, then dH(w1) = d > 1, and Ineq. (9) becomes a strict one.

Thus we have proved that (Q(H ′)y)i < λ(Q(H))y[k]
i for some i, therefore, λ(Q(H ′)) <

λ(Q(H)) by Lemma 8.
(2) If H = H1 ∪H2 ∪ · · · ∪Ht, where Hi is a connected component of H for 1 ≤ i ≤ t

and t ≥ 2, then

H ′ = H ′
1 ∪H ′

2 ∪ · · · ∪H ′
t.

Since H �= tSk
1 , we may suppose that Hi �= Sk

1 for 1 ≤ i ≤ t′ ≤ t, and t′ ≥ 1. Then for 
1 ≤ i ≤ t′ we have λ(Q(H ′

i)) < λ(Q(Hi)) by the above arguments. It is obvious that for 
1 ≤ i ≤ t′ we have λ(Q(Hi)) > λ(Q(Sk

1 )) and λ(Q(H ′
i)) > λ(Q(Sk+1

1 )). By Lemma 9 we 
have

λ(Q(H ′)) = max
1≤i≤t′

{λ(Q(H ′
i))} < max

1≤i≤t′
{λ(Q(Hi))} = λ(Q(H)).

The proof is completed. �
By Theorem 10, we have the following result for {λ(Q(Gk))}, which affirm Conjec-

ture 5 for Q(Gk).

Theorem 11. Let G be an ordinary graph with maximum Δ ≥ 2. When k ≥ 2 we have 
λ(Q(Gk+1)) < λ(Q(Gk)).

The notion of odd-bipartite even-uniform hypergraphs was introduced in [5].

Definition 12. (See [5].) Let k be even and G = (V, E) be a k-uniform hypergraph. It is 
called odd-bipartite if either it is trivial (i.e., E = ∅) or there is a disjoint partition of 
the vertex set V as V = V1 ∪ V2 such that V1, V2 �= ∅ and every edge in E intersects V1
with exactly an odd number of vertices.

For even uniform odd-bipartite hypergraph, the following result was proved in [6] (see 
Theorem 5.8 of [6]), or in [13] (see Theorem 2.2 of [13]).

Lemma 13. (See [6,13].) Let G be a connected even uniform odd-bipartite hypergraph. 
Then λ(L(G)) = λ(Q(G)).

In fact Lemma 13 is also true for general even uniform odd-bipartite hypergraph G, 
see Lemma 14.

Lemma 14. Let G be an even uniform odd-bipartite hypergraph. Then λ(L(G)) =
λ(Q(G)).
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Proof. By Lemma 13, we only need to consider the case that G is not connected. Set 
G = ∪t

i=1Gi, where Gi is a connected component of G for 1 ≤ i ≤ t and t ≥ 2. Since G
is even uniform and odd-bipartite, each Gi is connected even uniform and odd-bipartite. 
Thus by Lemma 13 we have λ(L(Gi)) = λ(Q(Gi)) (i = 1, · · · , t), and moreover, by 
Lemma 9 we have

λ(L(G)) = max
1≤i≤t

{λ(L(Gi))} = max
1≤i≤t

{λ(Q(Gi))} = λ(Q(G)).

The proof is completed. �
Remark 15. We can mention here that the condition λ(L(G)) = λ(Q(G)) does not imply 
that G is an even uniform odd-bipartite hypergraph. In fact take G = G1 ∪ G2, where 
G1 is not odd-bipartite and G2 is a sunflower with size Δ satisfying

Δ > λ(Q(G1)) ≥ λ(L(G1)).

From Proposition 3.2 of [6] and Lemma 13, we know that

λ(L(G2)) = λ(Q(G2)) > Δ.

Then G is not odd-bipartite (since G1 is not), but we have

λ(L(G)) = max
1≤i≤2

{λ(L(Gi))} = λ(L(G2)) = λ(Q(G2)) = max
1≤i≤2

{λ(Q(Gi))} = λ(Q(G)).

Obviously, when k is even and k ≥ 4, the k-th power hypergraph Gk is odd-bipartite. 
Then Lemma 14 and Theorem 11 imply that Conjecture 5 is true for L(Gk).

Theorem 16. Let G = (V, E) be an ordinary graph with maximum Δ ≥ 2, k = 2r be 
even and Gk be the k-power hypergraph of G. Then {λ(L(Gk)) = λ(Q(Gk))} is a strictly 
decreasing sequence.

The value limk→∞ λ(Q(Gk)) was determined for a regular graph G by Zhou et al. 
in [17].

Lemma 17. (See [17].) For any d-regular graph G with d ≥ 2, we have limk→∞ λ(Q(Gk))
= d.

Now we will prove that when k goes to infinity, λ(Q(Sk
d )) converges to d, the maximum 

degree of Sk
d .

Lemma 18. When k ≥ 2, d ≥ 2 we have limk→∞ λ(Q(Sk
d )) = d.

Proof. Write λk = λ(Q(Sk
d )) for short. Let x be the principal eigenvector of Q(Sk

d )
corresponding to λk. Let a be the component of x corresponding to the heart of Sk

d . 
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By the symmetry of the pendent vertices in the same edge, we see that they have the 
same component in x. Furthermore, by the uniqueness of x (see (3) of Theorem 7), we 
see that all the pendent vertices in Sk

d have the same component in x, say b. Then λk

satisfies the following equations

{
λka

k−1 = dak−1 + dbk−1,

λkb
k−1 = bk−1 + abk−2.

By eliminations of a and b, we obtain

(λk − d)(λk − 1)k−1 − d = 0.

Set

fk(λ) = (λ− d)(λ− 1)k−1 − d,

then λk is the largest real root of the equation fk(λ) = 0.
Particularly,

(λk+1 − d)(λk+1 − 1)k = d.

Since fk(d) = −d < 0, and limλ→+∞ fk(λ) = +∞, we have λk > d.
So {λk} is a strictly decreasing sequence and λk > d when d ≥ 2. Thus limk→∞ λk

exists. From

(λk − d)(λk − 1)k−1 = d,

we have

lim
k→∞

λk − d = d

limk→∞(λk − 1)k−1 = 0,

thus limk→∞ λk = d, i.e., limk→∞ λ(Q(Sk
d )) = d holds. �

To determine the value limk→∞ λ(Q(Gk)) for a general graph G, we first cite a result 
just for a graph due to Köing.

Lemma 19. (See [9].) Every graph G of maximum degree Δ is an induced subgraph of 
some Δ-regular graph.

Theorem 20. Let G be an ordinary graph with maximum degree Δ ≥ 2. Then we have 
limk→∞ λ(Q(Gk)) = Δ.
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Proof. We have proved that {λ(Q(Gk))} is a strictly decreasing sequence by Theorem 11. 
Obviously, λ(Q(Gk)) > 0 for any k ≥ 2. Thus limk→∞ λ(Q(Gk)) exists.

It is known that if F ′ is a sub-hypergraph of F , then λ(Q(F ′)) ≤ λ(Q(F )) (see 
Proposition 4.5 in [6]).

Since G has maximum degree Δ, G contains star SΔ as a sub-graph, and then Gk con-
tains the sunflower Sk

Δ as a sub-hypergraph. Thus λ(Q(Gk)) ≥ λ(Q(Sk
Δ)). Furthermore 

Lemma 18 implies that

lim
k→∞

λ(Q(Gk)) ≥ lim
k→∞

λ(Q(Sk
Δ)) = Δ.

On the other hand, by Lemma 19, G is a subgraph of some Δ-regular graph F . Then 
Gk is a sub-hypergraph of F k. Thus λ(Q(Gk)) ≤ λ(Q(F k)). Furthermore by Lemma 17
we have

lim
k→∞

λ(Q(Gk)) ≤ lim
k→∞

λ(Q(F k)) = Δ.

So we obtain

lim
k→∞

λ(Q(Gk)) = Δ. �

4. Largest H-eigenvalue of adjacency tensor of Gk,s

In [17], it was proved that λ(A(Gk)) = λ(A(G)) 2
k ; in [7] it was proved that 

λ(A(Gk,k/2)) = λ(A(G)). By using the technique provided in [17], we will prove a general 
case.

Theorem 21. If μ > 0 is an eigenvalue of the adjacency matrix A(G) of graph G having 
a nonnegative eigenvector, then μ

2s
k is an eigenvalue of the adjacency tensor A(Gk,s)

having a nonnegative eigenvector. Moreover λ(A(Gk,s)) = λ(A(G)) 2s
k .

Proof. Suppose that x is a nonnegative eigenvector of the eigenvalue μ > 0 of A(G). As 
shown in Definition 6, for any edge e = {u, v} denote by Vu ∪ Vv ∪ Ve the corresponding 
edge of Gk,s.

Now we construct a new nonnegative vector y (of dimension |V (Gk,s)|) from x by 
adding components. Set

yw =
{

(xv)
2
k if w ∈ Vv for some v,

(μ−1xuxv)
1
k if w ∈ Ve for some edge e = {u, v}.

Now we will show A(Gk,s)y = μ
2s
k y[k−1] holding.
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For any w ∈ Vv for some v, by the formula
∑

{u,v}∈E(G)

xu = μxv,

we have

(A(Gk,s)y)w =
∑

{u,v}∈E(G)

(xv)
2(s−1)

k (xu) 2s
k (μ−1xuxv)

k−2s
k

= μ
2s
k −1(xv)

k−2
k

∑
{u,v}∈E(G)

xu

= μ
2s
k (xv)

2(k−1)
k

= μ
2s
k yk−1

w . (10)

For w ∈ Ve for any edge e = {u, v}, we have

(A(Gk,s)y)w = (xu) 2s
k (xv)

2s
k (μ−1xuxv)

k−2s−1
k

= μ
2s
k (μ−1xuxv)

k−1
k

= μ
2s
k yk−1

w .

Hence μ
2s
k is an eigenvalue of A(Gk,s) with a nonnegative eigenvector y.

If G is connected and μ = λ(A(G)), then we may choose x as a positive eigenvector of 
λ(A(G)) by Perron–Frobenius theorem for irreducible nonnegative matrix. In this case 
y is a positive eigenvector of the eigenvalue λ(A(G)) 2s

k of the tensor A(Gk,s). In virtue 
of (2) of Theorem 7 (or see Lemma 15 of [17]), we have

λ(A(Gk,s)) = λ(A(G)) 2s
k .

If G = G1 ∪G2 ∪ · · · ∪Gt, where Gi is a connected component of G for 1 ≤ i ≤ t and 
t ≥ 2, then by Lemma 9

λ(A(Gk,s)) = max
1≤i≤t

{λ(A(Gk,s
i )} = max

1≤i≤t
{λ(A(Gi))

2s
k } = λ(A(G)) 2s

k .

The proof is completed. �
Take s = 1, or s = k/2 for even k, and noting that Gk = Gk,1, we have Corollary 22

and Corollary 23.

Corollary 22. (See [17].) If μ > 0 is an eigenvalue of the adjacency matrix A(G) of graph 
G having a nonnegative eigenvector, then μ

2
k is an eigenvalue of the adjacency tensor 

A(Gk) of the hypergraph Gk having a nonnegative eigenvector. Moreover λ(A(Gk)) =
λ(A(G)) 2

k .
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Corollary 23. (See [7].) Let G be a connected ordinary graph, and let x > 0 be vector 
defined on V (G). Let y > 0 be a vector defined on V (Gk,k/2) such that yu = x

2
k
v for each 

vertex u ∈ Vv. Then x is an eigenvector of A(G) corresponding to λ(A(G)) if and only if 
y is an eigenvector of A(Gk,k/2) corresponding to λ(A(Gk,k/2)). Hence λ(A(Gk,k/2)) =
λ(A(G)).

Corollary 24. Let G be an ordinary graph with maximum Δ ≥ 2, s ≥ 1 be a fixed integer. 
Then λ(A(Gk+1,s)) < λ(A(Gk,s)), and limk→∞ λ(A(Gk,s)) = 1.
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