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Abstract In this paper, we investigate the Laplacian, i.e., the normalized Laplacian
tensor of a k-uniform hypergraph. We show that the real parts of all the eigenvalues
of the Laplacian are in the interval [0, 2], and the real part is zero (respectively two)
if and only if the eigenvalue is zero (respectively two). All the H+-eigenvalues of
the Laplacian and all the smallest H+-eigenvalues of its sub-tensors are character-
ized through the spectral radii of some nonnegative tensors. All the H+-eigenvalues
of the Laplacian that are less than one are completely characterized by the spectral
components of the hypergraph and vice verse. The smallest H-eigenvalue, which is
also an H+-eigenvalue, of the Laplacian is zero. When k is even, necessary and suf-
ficient conditions for the largest H-eigenvalue of the Laplacian being two are given.
If k is odd, then its largest H-eigenvalue is always strictly less than two. The largest
H+-eigenvalue of the Laplacian for a hypergraph having at least one edge is one; and
its nonnegative eigenvectors are in one to one correspondence with the flower hearts
of the hypergraph. The second smallest H+-eigenvalue of the Laplacian is positive if
and only if the hypergraph is connected. The number of connected components of a
hypergraph is determined by the H+-geometric multiplicity of the zero H+-eigenvalue
of the Lapalacian.
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1 Introduction

In This paper, we establish some basic facts on the spectrum of the normalized Lapla-
cian tensor of a uniform hypergraph. It is an analogue of the spectrum of the normalized
Laplacian matrix of a graph (Chung 1997). This work is derived by the recently rapid
developments on both the spectral hypergraph theory (Lim 2007; Hu and Qi 2012a;
Cooper andv Dutle 2012; Qi 2012; Pearson and Zhang 2012; Li et al. 2012; Rota Bulò
and Pelillo 2009; Rota Bulò 2009; Xie and Chang 2012a, b, 2013c; Lim 2005) and the
spectral theory of tensors (Chang et al. 2008, 2011; Friedland 2013; Hu et al. 2013,
2011; Lim 2005, 2007; Li et al. 2012; Hu and Qi 2012b; Ng et al. 2009; Qi 2005,
2006, 2007, 2012; Yang and Yang 2010, 2011; Zhang et al. 2012; Hu et al. 2012).

The study of the Laplacian tensor for a uniform hypergraph was initiated by Hu
and Qi (2012a). The Laplacian tensor introduced there is based on the discretiza-
tion of the higher order Laplace-Beltrami operator. Following this, Li, Qi and Yu
proposed another definition of the Laplacian tensor (Li et al. 2012). Later, Xie and
Chang introduced the signless Laplacian tensor for a uniform hypergraph (Xie and
Chang 2012a, 2013c). All of these Laplacian tensors are in the spirit of the scheme
of sums of powers. In formalism, they are not as simple as their matrix counterparts
which can be written as D − A or D + A with A the adjacency matrix and D the
diagonal matrix of degrees of a graph. Also, this approach only works for even-order
hypergraphs.

Very recently, Qi (2012) proposed a simple definition D−A for the Laplacian tensor
and D+A for the signless Laplacian tensor. Here A = (ai1...ik ) is the adjacency tensor
of a k-uniform hypergraph and D = (di1...ik ) the diagonal tensor with its diagonal
elements being the degrees of the vertices. This is a natural generalization of the
definition for D − A and D + A in spectral graph theory (Brouwer and Haemers
2011). The elements of the adjacency tensor, the Laplacian tensor and the signless
Laplacian tensors are rational numbers. Some results were derived in Qi (2012). More
results are expected along this simple and natural approach.

On the other hand, there is another approach in spectral graph theory for the Lapla-
cian of a graph (Chung 1997). Suppose that G is a graph without isolated vertices.
Let the degree of vertex i be di . The Laplacian, or the normalized Laplacian matrix,
of G is defined as L = I − Ā, where I is the identity matrix, Ā = (āi j ) is the nor-
malized adjacency matrix, āi j = 1√

di d j
, if vertices i and j are connected, and āi j = 0

otherwise. This approach involves irrational numbers in general. However, it is seen
that λ is an eigenvalue of the Laplacian L if and only if 1 − λ is an eigenvalue of the
normalized adjacency matrix Ā. A comprehensive theory was developed based upon
this by Chung (1997).

In this paper, we will investigate the normalized Laplacian tensor approach. A
formal definition of the normalized Laplacian tensor and the normalized adjacency
tensor will be given in Definition 2.7.

In the sequel, the normalized Laplacian tensor is simply called the Laplacian as in
Chung (1997), and the normalized adjacency tensor simply as the adjacency tensor.
In this paper, hypergraphs refer to k-uniform hypergraphs on n vertices. For a positive
integer n, we use the convention [n] := {1, . . . , n}. Let G = (V, E) be a k-uniform
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hypergraph with vertex set V = [n] and edge set E , and di be the degree of the vertex
i . If k = 2, then G is a graph.

For a graph, let λ0 ≤ λ1 ≤ · · · ≤ λn−1 be the eigenvalues of L in increasing order.
The following results are fundamental in spectral graph theory (Chung 1997, Sect.
1.3).

(i) λ0 = 0 and
∑

i∈[n−1] λi ≤ n with equality holding if and only if G has no isolated
vertices.

(ii) 0 ≤ λi ≤ 2 for all i ∈ [n−1], and λn−1 = 2 if and only if a connected component
of G is bipartite and nontrivial.

(iii) The spectrum of a graph is the union of the spectra of its connected components.
(iv) λi = 0 and λi+1 > 0 if and only if G has exactly i + 1 connected components.

I. Our first major work is to show that the above results can be generalized to the
Laplacian L of a uniform hypergraph. Let c(n, k) := n(k − 1)n−1. For a k-th order n-
dimensional tensor, there are exactly c(n, k) eigenvalues (with algebraic multiplicity)
(Qi 2005; Hu et al. 2013). Let σ(L) be the spectrum of L (the set of eigenvalues, which
is also called the spectrum of G). Then, we have the followings.

(i) (Corollary 3.2) The smallest H-eigenvalue of L is zero.
(Proposition 3.1)

∑
λ∈σ(L) m(λ)λ ≤ c(n, k) with equality holding if and only if

G has no isolated vertices. Here m(λ) is the algebraic multiplicity of λ for all
λ ∈ σ(L).

(ii) (Theorem 3.1) For all λ ∈ σ(L), 0 ≤ Re(λ) with equality holding if and only if
λ = 0; and Re(λ) ≤ 2 with equality holding if and only if λ = 2.
(Corollary 6.2) When k is odd, we have that Re(λ) < 2 for all λ ∈ σ(L).
(Theorem 6.2/Corollary 6.5) When k is even, necessary and sufficient conditions
are given for 2 being an eigenvalue/H-eigenvalue of L.
(Corollary 6.6) When k is even and G is k-partite, 2 is an eigenvalue of L.

(iii) (Theorem 3.1 together with Lemmas 2.1 and 3.3) Viewed as sets, the spectrum
of G is the union of the spectra of its connected components.
Viewed as multisets, an eigenvalue of a connected component with algebraic
multiplicity w contributes to G as an eigenvalue with algebraic multiplicity w(k−
1)n−s . Here s is the number of vertices of the connected component.

(iv) (Corollaries 3.2 and 4.1) Let all the H+-eigenvalues of L be ordered in increasing
order as μ0 ≤ μ1 ≤ · · · ≤ μn(G)−1. Here n(G) is the number of H+-eigenvalues
of L (with H+-geometric multiplicity), see Definition 4.1.
Then μn(G)−1 ≤ 1 with equality holding if and only if |E | > 0.
μ0 = 0; and μi−2 = 0 and μi−1 > 0 if and only if log2i is a positive integer
and G has exactly log2i connected components. Thus, μ1 > 0 if and only if G
is connected.

On top of these properties, we also show that the spectral radius of the adjacency
tensor of a hypergraph with |E | > 0 is equal to one (Lemma 3.2). The linear sub-
space generated by the nonnegative H-eigenvectors of the smallest H-eigenvalue of
the Laplacian has dimension exactly the number of the connected components of the
hypergraph (Lemma 3.4). Equalities that the eigenvalues of the Laplacian should sat-
isfy are given in Proposition 3.1. The only two H+-eigenvalues of the Laplacian of
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a complete hypergraph are zero and one (Corollary 4.2). We give the H+-geometric
multiplicities of the H+-eigenvalues zero and one of the Laplacian respectively in
Lemma 4.4 and Proposition 4.2. We show that when k is odd and G is connected, the
H-eigenvector of L corresponding to the H-eigenvalue zero is unique (Corollary 6.4).
The spectrum of the adjacency tensor is invariant under multiplication by any s-th
root of unity, here s is the primitive index of the adjacency tensor (Corollary 6.3). In
particular, the spectrum of the adjacency tensor of a k-partite hypergraph is invariant
under multiplication by any k-th root of unity (Corollary 6.6).

II. Our second major work is that we study the smallest H+-eigenvalues of the
sub-tensors of the Laplacian. We give variational characterizations for these H+-
eigenvalues (Lemma 5.1), and show that an H+-eigenvalue of the Laplacian is the
smallest H+-eigenvalue of some sub-tensor of the Laplacian (Theorem 4.1 and 8).
Bounds for these H+-eigenvalues based on the degrees of the vertices and the second
smallest H+-eigenvalue of the Laplacian are given respectively in Propositions 5.1 and
5.2. We discuss the relations between these H+-eigenvalues and the edge connectivity
(Proposition 5.3) and the edge expansion (Proposition 5.5) of the hypergraph.

III. Our third major work is that we introduce the concept of spectral components
of a hypergraph and investigate their intrinsic roles in the structure of the spectrum of
the hypergraph. We simply interpret the idea of the spectral component first.

Let G = (V, E) be a k-uniform hypergraph and S ⊂ V be nonempty and proper.
The set of edges E(S, Sc) := {e ∈ E | e ∩ S �= ∅, e ∩ Sc �= ∅} is the edge cut with
respect to S. Unlike the graph counterpart, the number of intersections e∩Sc may vary
for different e ∈ E(S, Sc). We say that E(S, Sc) cuts Sc with depth at least r ≥ 1 if
|e∩Sc| ≥ r for every e ∈ E(S, Sc). A subset of V whose edge cut cuts its complement
with depth at least two is closely related to an H+-eigenvalue of the Laplacian. These
sets are spectral components (Definition 2.5). With edge cuts of depth at least r , we
define r -th depth edge expansion which generalizes the edge expansion for graphs
(Definition 5.1). A flower heart of a hypergraph is also introduced (Definition 2.6),
which is related to the largest H+-eigenvalue of the Laplacian.

We show that the spectral components characterize completely the H+-eigenvalues
of the Laplacian that are less than one and vice verse, and the flower hearts are in one
to one correspondence with the nonnegative eigenvectors of the H+-eigenvalue one
(Theorem 4.1). In general, the set of the H+-eigenvalues of the Laplacian is strictly
contained in the set of the smallest H+-eigenvalues of its sub-tensors (Theorem 4.1 and
Proposition 4.1). We introduce H+-geometric multiplicity of an H+-eigenvalue. The
second smallest H+-eigenvalue of the Laplacian is discussed, and a lower bound for it
is given in Proposition 5.2. Bounds are given for the r -th depth edge expansion based on
the second smallest H+-eigenvalue of L for a connected hypergraph (Proposition 5.4
and Corollary 5.5). For a connected hypergraph, necessary and sufficient conditions
for the second smallest H+-eigenvalue of L being the largest H+-eigenvalue (i.e., one)
are given in Proposition 4.3.

The rest of this paper begins with some preliminaries in the next section. In Sect.
2.1, the eigenvalues of tensors and some related concepts are reviewed. Some basic
facts about the spectral theory of symmetric nonnegative tensors are presented in Sect.
2.2. Some new observations are given. Some basic definitions on uniform hypergraphs
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are given in Sect. 2.3. The spectral components and the flower hearts of a hypergraph
are introduced.

In Sect. 3.1, some facts about the spectrum of the adjacency tensor are discussed.
Then some properties on the spectrum of the Laplacian are investigated in Sect. 3.2. We
characterize all the H+-eigenvalues of the Laplacian through the spectral components
and the flower hearts of the hypergraph in Sect. 4.1. In Sect. 4.2, the H+-geometric
multiplicity is introduced, and the second smallest H+-eigenvalue is explored.

The smallest H+-eigenvalues of the sub-tensors of the Laplacian are discussed in
Sect. 5. The variational characterizations of these eigenvalues are given in Sect. 5.1.
Then their connections to the edge connectivity and the edge expansion are discussed
in Sect. 5.2 and Sect. 5.3 respectively.

The eigenvectors of the eigenvalues on the spectral circle of the adjacency tensor
are characterized in Sect. 6.1. It gives necessary and sufficient conditions under which
the largest H-eigenvalue of the Laplacian is two. In Sect. 6.2, we reformulate the
above conditions in the language of linear algebra over modules and give necessary
and sufficient conditions under which the eigenvector of an eigenvalue on the spectral
circle of the adjacency tensor is unique. Some final remarks are made in the last section.

2 Preliminaries

Some preliminaries on the eigenvalues and eigenvectors of tensors, the spectral theory
of symmetric nonnegative tensors and basic concepts of uniform hypergraphs are
presented in this section.

2.1 Eigenvalues of tensors

In this subsection, some basic facts about eigenvalues and eigenvectors of tensors are
reviewed. For comprehensive references, see (Qi 2005, 2006, 2007; Hu et al. 2013)
and references therein.

Let C (R) be the field of complex (real) numbers and C
n (Rn) the n-dimensional

complex (real) space. The nonnegative orthant of R
n is denoted by R

n+, the interior
of R

n+ is denoted by R
n++. For integers k ≥ 3 and n ≥ 2, a real tensor T = (ti1...ik )

of order k and dimension n refers to a multiway array (also called hypermatrix) with
entries ti1...ik such that ti1...ik ∈ R for all i j ∈ [n] and j ∈ [k]. Tensors are always
referred to k-th order real tensors in this paper, and the dimensions will be clear from
the content. Given a vector x ∈ C

n , define an n-dimensional vector T xk−1 with its
i-th element being

∑
i2,...,ik∈[n] tii2...ik xi2 · · · xik for all i ∈ [n]. Let I be the identity

tensor of appropriate dimension, e.g., ii1...ik = 1 if and only if i1 = · · · = ik ∈ [n],
and zero otherwise when the dimension is n. The following definitions are introduced
by Qi (2005, 2012).

Definition 2.1 Let T be a k-th order n-dimensional real tensor. For some λ ∈ C, if
polynomial system (λI − T ) xk−1 = 0 has a solution x ∈ C

n \ {0}, then λ is called
an eigenvalue of the tensor T and x an eigenvector of T associated with λ. If an
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eigenvalue λ has an eigenvector x ∈ R
n , then λ is called an H-eigenvalue and x an

H-eigenvector. If x ∈ R
n+ (Rn++), then λ is called an H+-(H++-)eigenvalue.

It is easy to see that an H-eigenvalue is real. We denote by σ(T ) the set of all
eigenvalues of the tensor T . It is called the spectrum of T . We denoted by ρ(T )

the maximum module of the eigenvalues of T . It is called the spectral radius of T .
In the sequel, unless stated otherwise, an eigenvector x would always refer to its
normalization x

k
√∑

i∈[n] |xi |k
. This convention does not introduce any ambiguities, since

the eigenvector defining equations are homogeneous. Hence, when b f xinR
n+, we

always refer to x satisfying
∑n

i=1 xk
i = 1. The algebraic multiplicity of an eigenvalue

is defined as the multiplicity of this eigenvalue as a root of the characteristic polynomial
χT (λ). To give the definition of the characteristic polynomial, the determinant or the
resultant theory is needed. For the determinant theory of a tensor, see (Hu et al. 2013).
For the resultant theory of polynomial equations, see (Cox 2006, 1998).

Definition 2.2 Let T be a k-th order n-dimensional real tensor and λ be an indeter-
minate variable. The determinant Det(λI − T ) of λI − T , which is a polynomial in
C[λ] and denoted by χT (λ), is called the characteristic polynomial of the tensor T .

It is shown that σ(T ) equals the set of roots of χT (λ), see (Hu et al. 2013, Theorem
2.3 ). If λ is a root of χT (λ) of multiplicity s, then we call s the algebraic multiplicity
of the eigenvalue λ. Let c(n, k) = n(k − 1)n−1. By (Hu et al. 2013, Theorem 2.3)
χT (λ) is a monic polynomial of degree c(n, k).

Definition 2.3 Let T be a k-th order n-dimensional real tensor and s ∈ [n]. The k-th
order s-dimensional tensor U with entries ui1...ik = t ji1 ... jik

for all i1, . . . , ik ∈ [s]
is called the sub-tensor of T associated to the subset S := { j1, . . . , js}. We usually
denoted U as T (S).

For a subset S ⊆ [n], we denoted by |S| its cardinality. For b f xinC
n , b f x S) is

defined as an |S|-dimensional sub-vector of x with its entries being xi for i ∈ S, and
sup(x) := {i ∈ [n] | xi �= 0} is its support. The following lemma follows from (Hu et
al. 2013, Theorem 4.2).

Lemma 2.1 Let T be a k-th order n-dimensional real tensor such that there exists an
integer s ∈ [n − 1] satisfying ti1i2...ik ≡ 0 for every i1 ∈ {s + 1, . . . , n} and all indices
i2, . . . , ik such that {i2, . . . , ik} ∩ {1, . . . , s} �= ∅. Denote by U and V the sub-tensors
of T associated to [s] and {s + 1, . . . , n}, respectively. Then it holds that

σ(T ) = σ(U) ∪ σ(V).

Moreover, if λ ∈ σ(U) is an eigenvalue of the tensor U with algebraic multiplicity r ,
then it is an eigenvalue of the tensor T with algebraic multiplicity r(k − 1)n−s , and if
λ ∈ σ(V) is an eigenvalue of the tensor V with algebraic multiplicity p, then it is an
eigenvalue of the tensor T with algebraic multiplicity p(k − 1)s .
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2.2 Symmetric nonnegative tensors

The spectral theory of nonnegative tensors is a useful tool to investigate the spectrum
of a uniform hypergraph (Cooper andv Dutle 2012; Pearson and Zhang 2012; Xie
and Chang 2012a, b, 2013c; Qi 2012). A tensor is called nonnegative, if all of its
entries are nonnegative. A tensor T is called symmetric, if tτ(i1)...τ (ik ) = ti1...ik for all
permutations τ on (i1, . . . , ik) and all i1, . . . , ik ∈ [n]. In this subsection, we present
some basic facts about symmetric nonnegative tensors which will be used extensively
in the sequel. For comprehensive references on this topic, see (Chang et al. 2008,
2011; Friedland 2013; Hu et al. 2011; Ng et al. 2009; Qi 2012; Yang and Yang 2010,
2011) and references therein.

By (Pearson and Zhang 2012, Lemma 3.1) hypergraphs are related to weakly irre-
ducible nonnegative tensors. Essentially, weakly irreducible nonnegative tensors are
introduced in Friedland (2013). In this paper, we adopt the following definition (Hu
et al. 2011, Definition 2.2). For the definition of reducibility for a nonnegative matrix,
see (Horn 1985, Chap. 8).

Definition 2.4 Suppose that T is a nonnegative tensor of order k and dimension n. We
call an n ×n nonnegative matrix R(T ) the representation of T , if the (i, j)-th element
of R(T ) is defined to be the summation of tii2...ik with indices {i2, . . . , ik}  j .

We say that the tensor T is weakly reducible if its representation R(T ) is a reducible
matrix. If T is not weakly reducible, then it is called weakly irreducible.

For convenience, a one dimensional tensor, i.e., a scalar, is regarded to be weakly
irreducible.

We summarize the Perron–Frobenius theorem for nonnegative tensors which will
be used in this paper in the next lemma. For comprehensive references on this theory,
see (Chang et al. 2008; Yang and Yang 2010, 2011; Friedland 2013; Hu et al. 2011;
Chang et al. 2011; Qi 2012) and references therein.

Lemma 2.2 Let T be a nonnegative tensor. Then we have the followings.

(i) ρ(T ) is an H+-eigenvalue of T .
(ii) If T is weakly irreducible, then ρ(T ) is the unique H++-eigenvalue of T .

Proof The conclusion (i) follows from (Yang and Yang 2010, Theorem 2.3). The
conclusion (ii) follows from (Friedland 2013, Theorem 4.1). ��
The next lemma is useful.

Lemma 2.3 Let B and C be two nonnegative tensors, and B ≥ C in the sense of
componentwise. If B is weakly irreducible and B �= C, then ρ(B) > ρ(C). Thus, if
x ∈ R

n+ is an eigenvector of B corresponding to ρ(B), then x ∈ R
n++ is positive.

Proof By (Yang and Yang 2011, Theorem 3.6) ρ(B) ≥ ρ(C) and the equality holding
implies that |C| = B. Since C is nonnegative and B �= C, we must have the strict
inequality.

The second conclusion follows immediately from the first one and the weak irre-
ducibility of B. For another proof, see (Yang and Yang 2011, Lemma 3.5). ��
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Note that the second conclusion of Lemma 2.3 is equivalent to that ρ(S) < ρ(B)

for any sub-tensor S of B other than the trivial case S = B. By (Hu et al. 2011,
Theorem 5.3) without the weakly irreducible hypothesis, it is easy to construct an
example such that the strict inequality in Lemma 2.3 fails.

For general nonnegative tensors which are weakly reducible, there is a character-
ization on their spectral radii based on partitions, see (Hu et al. 2011, Theorems 5.2
and 5.3). As remarked before (Hu et al. 2011, Theorem 5.4) such partitions can result
in diagonal block representations for symmetric nonnegative tensors. Recently, Qi
proved that for a symmetric nonnegative tensor T , it holds that (Qi 2012, Theorem 2)

ρ(T ) = max

⎧
⎨

⎩
T xk := xT (T xk−1) | x ∈ R

n+,
∑

i∈[n]
xk

i = 1

⎫
⎬

⎭
. (1)

We summarize the above results in the next theorem with some new observations.

Theorem 2.1 Let T be a symmetric nonnegative tensor of order k and dimension n.
Then, there exists a pairwise disjoint partition {S1, . . . , Sr } of the set [n] such that
every tensor T (S j ) is weakly irreducible. Moreover, we have the followings.

(i) For any x ∈ C
n,

T xk =
∑

j∈[r ]
T (S j )x(S j )

k, and ρ(T ) = max
j∈[r ] ρ(T (S j )).

(ii) λ is an eigenvalue of T with eigenvector x if and only if λ is an eigenvalue of T (Si )

with eigenvector x(Si )

k
√∑

j∈Si
|x j |k

whenever x(Si ) �= 0.

(iii) ρ(T ) = max{T xk | x ∈ R
n+,

∑

i∈[n]
xk

i = 1}. Furthermore, x ∈ R
n+ is an eigen-

vector of T corresponding to ρ(T ) if and only if it is an optimal solution of the
maximization problem 1.

Proof (i) By (Hu et al. 2011, Theorem 5.2) there exists a pairwise disjoint partition
{S1, . . . , Sr } of the set [n] such that every tensor T (S j ) is weakly irreducible. More-
over, by the proof for (Hu et al. 2011, Theorem 5.2) and the fact that T is symmetric,
{T (S j ), j ∈ [r ]} encode all the possible nonzero entries of the tensor T . After a
reordering of the index set, if necessary, we get a diagonal block representation of the
tensor T . Thus, T xk = ∑

j∈[r ] T (S j )x(S j )
k follows for every x ∈ C

n . The spectral
radii characterization is (Hu et al. 2011, Theorem 5.3).

(ii) follows from the partition immediately.
(iii) Suppose that x ∈ R

n+ is an eigenvector of T corresponding to ρ(T ), then
ρ(T ) = xT (T xk−1). Hence, x is an optimal solution of 1.

On the other side, suppose that x is an optimal solution of 1. Then, by (i), we have

ρ(T ) = T xk = T (S1)x(S1)
k + · · · + T (Sr )x(Sr )

k .
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Whenever x(Si ) �= 0, we must have ρ(T )(
∑

j∈Si

(x(Si ))
k
j ) = T (Si )x(Si )

k , since

ρ(T )(
∑

j∈Si

(y(Si ))
k
j ) ≥ T (Si )y(Si )

k for any y ∈ R
n+ by 1. Hence, ρ(T (Si )) = ρ(T ).

By Lemma 2.3, 1 and the weak irreducibility of T (Si ), we must have that x(Si ) is a
positive vector whenever x(Si ) �= 0. Otherwise, ρ([T (Si )](sup(x(Si )))) = ρ(T (Si ))

with sup(x(Si )) being the support of x(Si ), which is a contradiction. Thus,

max

⎧
⎨

⎩
T (Si )zk | z ∈ R

|Si |+ ,
∑

i∈Si

zk
i = 1

⎫
⎬

⎭

has an optimal solution x(Si ) in R
|Si |++. By optimization theory (Bertsekas 1999), we

must have that (T (Si ) − ρ(T )I)x(Si )
k−1 = 0. Then, by (ii), x is an eigenvector of

T . ��

2.3 Uniform hypergraphs

In this subsection, we present some preliminary concepts of uniform hypergraphs
which will be used in this paper. Please refer to Berge (1973), Chung (1997), Brouwer
and Haemers (2011) for comprehensive references.

In this paper, unless stated otherwise, a hypergraph means an undirected simple
k-uniform hypergraph G with vertex set V , which is labeled as [n] = {1, . . . , n}, and
edge set E . By k-uniformity, we mean that for every edge e ∈ E , the cardinality |e|
of e is equal to k. Throughout this paper, k ≥ 3 and n ≥ k.

For a subset S ⊂ [n], we denoted by ES the set of edges {e ∈ E | S ∩ e �= ∅}.
For a vertex i ∈ V , we simplify E{i} as Ei . It is the set of edges containing the vertex
i , i.e., Ei := {e ∈ E | i ∈ e}. The cardinality |Ei | of the set Ei is defined as the
degree of the vertex i , which is denoted by di . Then we have that k|E | = ∑

i∈[n] di .
If di = 0, then we say that the vertex i is isolated. Two different vertices i and j are
connected to each other (or the pair i and j is connected), if there is a sequence of
edges (e1, . . . , em) such that i ∈ e1, j ∈ em and er ∩ er+1 �= ∅ for all r ∈ [m − 1]. A
hypergraph is called connected, if every pair of different vertices of G is connected. A
set S ⊆ V is a connected component of G, if every two vertices of S are connected and
there is no vertices in V \ S that are connected to any vertex in S. For the convenience,
an isolated vertex is regarded as a connected component as well. Then, it is easy to
see that for every hypergraph G, there is a partition of V as pairwise disjoint subsets
V = V1 ∪ . . . ∪ Vs such that every Vi is a connected component of G. Let S ⊆ V ,
the hypergraph with vertex set S and edge set {e ∈ E | e ⊆ S} is called the sub-
hypergraph of G induced by S. We will denoted it by GS . In the sequel, unless stated
otherwise, all the notations introduced above are reserved for the specific meanings.

Here are some convention. For a subset S ⊆ [n], Sc denotes the complement of S
in [n]. For a nonempty subset S ⊆ [n] and x ∈ C

n , we denoted by xS the monomial∏
i∈S xi .
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Let G = (V, E) be a k-uniform hypergraph. Let S ⊂ V be a nonempty proper
subset. Then, the edge set is partitioned into three pairwise disjoint parts: E(S) :=
{e ∈ E | e ⊆ S}, E(Sc) and E(S, Sc) := {e ∈ E | e ∩ S �= ∅, e ∩ Sc �= ∅}. E(S, Sc)

is called the edge cut of G with respect to S.
When G is a usual graph (i.e., k = 2), for every edge in an edge cut E(S, Sc)

whenever it is nonempty, it contains exactly one vertex from S and the other one
from Sc. When G is a k-uniform hypergraph with k ≥ 3, the situation is much
more complicated. We will say that an edge in E(S, Sc) cuts S with depth at least r
(1 ≤ r < k) if there are at least r vertices in this edge belonging to S. If every edge in
the edge cut E(S, Sc) cuts S with depth at least r , then we say that E(S, Sc) cuts S
with depth at least r .

Definition 2.5 Let G = (V, E) be a k-uniform hypergraph. A nonempty subset B ⊆
V is called a spectral component of the hypergraph G if either the edge cut E(B, Bc)

is empty or E(B, Bc) cuts Bc with depth at least two.

It is easy to see that any nonempty subset B ⊂ V satisfying |B| ≤ k − 2 is a spectral
component. Suppose that G has connected components {V1, . . . , Vr }, it is easy to see
that B ⊂ V is a spectral component of G if and only if B ∩ Vi , whenever nonempty,
is a spectral component of GVi . We will establish the correspondence between the
H+-eigenvalues that are less than one with the spectral components of the hypergraph,
see Theorem 4.1.

Definition 2.6 Let G = (V, E) be a k-uniform hypergraph. A nonempty proper subset
B ⊆ V is called a flower heart if Bc is a spectral component and E(Bc) = ∅.

If B is a flower heart of G, then G likes a flower with edges in E(B, Bc) as leafs. It is
easy to see that any proper subset B ⊂ V satisfying |B| ≥ n − k + 2 is a flower heart.
There is a similar characterization between the flower hearts of G and these of its
connected components. Theorem 4.1 will show that the flower hearts of a hypergraph
correspond to its largest H+-eigenvalue.

We here give the definition of the normalized Laplacian tensor of a uniform hyper-
graph.

Definition 2.7 Let G be a k-uniform hypergraph with vertex set [n] = {1, . . . , n} and
edge set E . The normalized adjacency tensor A, which is a k-th order n-dimension
symmetric nonnegative tensor, is defined as

ai1i2...ik :=
{ 1

(k−1)!
∏

j∈[k]
1

k
√

di j

i f {i1, i2 . . . , ik} ∈ E,

0 otherwise.

The normalized Laplacian tensor L, which is a k-th order n-dimensional symmetric
tensor, is defined as

L := J − A,

where J is a k-th order n-dimensional diagonal tensor with the i-th diagonal element
ji ...i = 1 whenever di > 0, and zero otherwise.
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When G has no isolated points, we have that L = I − A. The spectrum of L is called
the spectrum of the hypergraph G, and they are referred interchangeably.

The current definition is motivated by the formalism of the normalized Laplacian
matrix of a graph investigated extensively by Chung (1997). We have a similar explana-
tion for the normalized Laplacian tensor to the Laplacian tensor (i.e., L= Pk ·(D−B) 1)
as that for the normalized Laplacian matrix to the Laplacian matrix (Chung 1997).
Here P is a diagonal matrix with its i-th diagonal element being 1

k√di
when di > 0

and zero otherwise.
We have already pointed out one of the advantages of this definition, namely, L =

I − A whenever G has no isolated vertices. Such a special structure only happens for
regular hypergraphs under the definition in Qi (2012). (A hypergraph is called regular
if di is a constant for all i ∈ [n].) By Definition 2.1, the eigenvalues of L are exactly a
shift of the eigenvalues of −A. Thus, we can establish many results on the spectra of
uniform hypergraphs through the spectral theory of nonnegative tensors without the
hypothesis of regularity. We note that, by Definition 2.1, L and D − B do not share
the same spectrum unless G is regular.

In the sequel, the normalized Laplacian tensor and the normalized adjacency tensor
are simply called the Laplacian and the adjacency tensor respectively.

By Definition 2.4, the following lemma can be proved similarly to (Pearson and
Zhang 2012, Lemma 3.1).

Lemma 2.4 Let G be a k-uniform hypergraph with vertex set V and edge set E. G is
connected if and only if A is weakly irreducible.

For a hypergraph G = (V, E), it can be partitioned into connected components
V = V1 ∪ · · · ∪ Vr for r ≥ 1. Reorder the indices, if necessary, L can be represented
by a block diagonal structure according to V1, . . . , Vr . By Definition 2.1, the spectrum
of L does not change when reordering the indices. Thus, in the sequel, we assume
that L is in the block diagonal structure with its i-th block tensor being the sub-tensor
of L associated to Vi for i ∈ [r ]. By Definition 2.7, it is easy to see that L(Vi ) is
the Laplacian of the sub-hypergraph GVi for all i ∈ [r ]. Similar convention for the
adjacency tensor A is assumed.

3 The spectrum of a uniform hypergraph

Basic properties of the eigenvalues of a uniform hypergraph are established in this
section.

3.1 The adjacency tensor

In this subsection, some basic facts of the eigenvalues of the adjacency tensor are
discussed.

1 The matrix-tensor product is in the sense of (Qi 2005, p. 1321): L = (li1...ik ) := Pk · (D − A) is a k-th
order n-dimensional tensor with its entries being li1...ik :=∑

js∈[n], s∈[k] pi1 j1 · · · pik jk (d j1... jk −a j1... jk ).
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By Definition 2.1, H+-eigenvalues of A should be nonnegative, since A is non-
negative. For a connected hypergraph G, the following lemma says that the smallest
H+-eigenvalue of A is zero. Moreover, it establishes the relations between the non-
negative eigenvectors of the zero eigenvalue of A and the flower hearts of G.

Lemma 3.1 Let G be a k-uniform connected hypergraph. Then zero is the smallest
H+-eigenvalue of A. Moreover, a nonzero vector x ∈ R

n+ is an eigenvector of A
corresponding to the eigenvalue zero if and only if [sup(x)]c is a flower heart of G.

Proof Let x be the vector with its i-th element being one and the other entries being
zero. Then, by Definition 2.7, it is easy to see

Axk−1 = 0.

Thus, zero is an H+-eigenvalue of A by Definition 2.1. The minimality follows from
the nonnegativity of H+-eigenvalues.

For the necessity of the second half of this lemma, suppose that x ∈ R
n+ is an

eigenvector of A corresponding to the eigenvalue zero. Since Axk = 0 and G is
connected with n ≥ k, we must have that sup(x) is a proper subset of [n]. Thus,
[sup(x)]c is nonempty. Let d̃ ∈ R

n be the n-vector with its i-th element being k
√

di for
all i ∈ [n]. Then, by Definition 2.7, for all i ∈ [sup(x)]c,

0 = (Axk−1)i =
∑

e∈E([sup(x)]c), i∈e

xe\{i}

d̃e
+

∑

e∈E(sup(x),[sup(x)]c), i∈e

xe\{i}

d̃e

=
∑

e∈E(sup(x),[sup(x)]c), i∈e

xe\{i}

d̃e
.

Thus, we have that xe\{i} = 0 for all e ∈ {e | e ∈ E(sup(x), [sup(x)]c), i ∈ e}
whenever it is nonempty. Thus, the edge cut E(sup(x), [sup(x)]c) must satisfy that
either it is empty or it cuts [sup(x)]c with depth at least two. Then, by Definition 2.5,
sup(x) is a spectral component.

For the other i ∈ sup(x), we have

0 = (Axk−1)i =
∑

e∈E(sup(x)), i∈e

xe\{i}

d̃e
+

∑

e∈E(sup(x),[sup(x)]c), i∈e

xe\{i}

d̃e

=
∑

e∈E(sup(x)), i∈e

xe\{i}

d̃e
.

Hence, E(sup(x)) must be empty. This, together with the previous result and Definition
2.6, implies that [sup(x)]c is a flower heart.

For the sufficiency, suppose that there is a nonnegative nonzero vector x such that
[sup(x)]c is a flower heart of G. Reversing the above analysis, it is easy to see that
Axk−1 = 0. Hence, x ∈ R

n+ is an eigenvector of A corresponding to the eigenvalue
zero.

The proof is complete. ��
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By Lemma 2.2, ρ(A) is the largest H+-eigenvalue of A. The next lemma says that
ρ(A) = 1 if and only if |E | > 0, and ρ(A) = 0 if and only if |E | = 0.

Lemma 3.2 Let G be a k-uniform hypergraph. Then A is a symmetric nonnegative
tensor, and ρ(A) is the largest H+-eigenvalue of A. Moreover, if E = ∅, then A = 0
and hence ρ(A) = 0; and if G has at least one edge, then ρ(A) = 1.

Proof The first half of the conclusion follows from Lemma 2.2 and Definition 2.7.
The trivial case E = ∅ is obvious. In the following, we assume that E �= ∅ and

prove that ρ(A) = 1. Let x be a nonzero nonnegative vector. Then, we have that

Axk =
∑

e∈E

k
∏

i∈e

xi
k
√

di
≤

∑

e∈E

k

(
1

k

∑

i∈e

(
xi

k
√

di

)k
)

=
∑

e∈E

∑

i∈e

xk
i

di
=

∑

i∈[n], di >0

∑

e∈Ei

xk
i

di

=
∑

i∈[n], di >0

xk
i .

By Theorem 2.1 (iii), we then have that ρ(A) ≤ 1.
Let d̃ ∈ R

n be the n-vector with its i-th element being k
√

di for all i ∈ [n]. Then,
by Definition 2.7, we have that

Ad̃k =
∑

e∈E

kd̃e
∏

i∈e

1
k
√

di
=

∑

e∈E

kd̃e 1

d̃e
=

∑

e∈E

k = k|E | =
∑

i∈[n]
di > 0.

Thus, A( d̃
k
√∑

i∈[n] di
)k = 1. This, together with ρ(A) ≤ 1 and Theorem 2.1 (iii),

implies that ρ(A) = 1. ��
The next lemma is a direct consequence of Lemmas 2.1, 3.1 and 3.2, and Definition

2.7.

Lemma 3.3 Let G be a k-uniform hypergraph. Suppose that G has s ≥ 0 isolated
vertices {i1, . . . , is} and r ≥ 0 connected components V1, . . . , Vr satisfying |Vi | > 1
for i ∈ [r ]. Then we have the followings.

(i) As sets,

σ(A) = σ(A1) ∪ σ(A2) ∪ · · · ∪ σ(Ar ), (2)

where Ai is the sub-tensor of A associated to Vi for i ∈ [r ], and the right hand
side of 2 is understood as {0} whenever r = 0.

(ii) Ai defined above is the adjacency tensor of the sub-hypergraph Gi of G induced
by Vi for all i ∈ [r ]. Thus, ρ(Ai ) = 1.

(iii) Let mi (λ) be the algebraic multiplicity of λ as an eigenvalue of Ai . As multisets,
we have that zero is an eigenvalue of A with algebraic multiplicity

s(k − 1)n−1 +
∑

i∈[r ]
mi (0)(k − 1)n−|Vi |,
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and λ ∈ σ(Ai ) \ {0} is an eigenvalue of A with algebraic multiplicity

∑

i∈[r ]
mi (λ)(k − 1)n−|Vi |.

The next corollary follows from Lemmas 2.2, 2.4 and 3.3, and Theorem 2.1 (ii).

Corollary 3.1 Let G be a k-uniform hypergraph. Then, 1 is the unique H++-
eigenvalue of A if and only if G has no isolated vertices.

3.2 The Laplacian

In this subsection, we discuss some facts on the eigenvalues of the Laplacian of a
uniform hypergraph. We start with the following theorem.

Theorem 3.1 Let G be a k-uniform hypergraph. Then, we have the followings.

(i) If G has at least one edge, then λ ∈ σ(L) if and only if 1 − λ ∈ σ(A). Otherwise,
σ(L) = σ(A) = {0}.

(ii) If λ ∈ σ(L), then Re(λ) ≥ 0 with equality holding if and only if λ = 0, and
2 ≥ Re(λ) with equality holding if and only if λ = 2.

Proof Suppose that G has s ≥ 0 isolated vertices {i1, . . . , is} and r ≥ 0 connected
components V1, . . . , Vr satisfying |Vi | > 1 for i ∈ [r ]. Let Ai be the adjacency tensor
and Li the Laplacian of the sub-hypergraph GVi of G induced by Vi for all i ∈ [r ].

For the conclusion (i), if s = n, then L = A = 0. Thus, σ(L) = σ(A) = {0}. If
s = 0, then L = I − A by Definition 2.7. We get the conclusion (i) by Definition
2.1. In the following, suppose that G has at least one edge and s ≥ 1. We then have
that r ≥ 1. By Lemma 2.1, Theorem 2.1 and Definition 2.7, L has a block diagonal
structure with diagonal sub-tensors {0,L1, . . . ,Lr }, and moreover

σ(L) = {0} ∪ σ(L1) ∪ · · · ∪ σ(Lr ).

Since every GVi is connected, by the established results, we have that λ ∈ σ(Li ) if and
only if 1−λ ∈ σ(Ai ) for all i ∈ [r ]. By Lemmas 3.2 and 3.3, we have that ρ(Ai ) = 1
for all i ∈ [r ]. Hence, {0} ⊂ σ(Li ) for all i ∈ [r ]. Combining these results, (i) follows.

For the conclusion (ii), if G has no edges, then the results are trivial. In the sequel,
suppose that s < n. If λ ∈ σ(L), then 1 − λ ∈ σ(Ai ) for some Ai by (i) and Lemma
3.3. Then, by the definition for the spectral radius, it follows that |1−λ| ≤ ρ(Ai ) = 1.
Thus, we must have that 0 ≤ Re(λ) ≤ 2. By the same reason, we have the necessary
and sufficient characterizations, since we must have Im(λ) = 0 whenever the equalities
are fulfilled. ��

In Sect. 6, we will show that Re(λ) < 2 if k is odd, i.e., it is impossible that λ = 2
is an eigenvalue of L when k is odd. Necessary and sufficient conditions are given for
λ = 2 being an eigenvalue of L when k is even.

The next corollary says that the H+-eigenvalues of L have a much more modest
behavior than the eigenvalues.
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Corollary 3.2 Let G be a k-uniform hypergraph. Then, we have the followings.

(i) Zero is the unique H++-eigenvalue of L. The smallest H-eigenvalue of L is zero.
(ii) All the H+-eigenvalues of L are in the interval [0, 1]. The largest H+-eigenvalue

of L is one if and only if |E | > 0, and it is zero if and only if |E | = 0.
(iii) All the H-eigenvalues of L are nonnegative. If k is even, then L is positive semi-

definite (i.e., Lxk ≥ 0 for all x ∈ R
n), and Lxk can be written as a sum of squares

(i.e., Lxk = ∑
i∈[r ] pi (x)2 for some integer r and polynomials pi ).

Proof For (i), zero is an H++-eigenvalue follows from Definition 2.1, Lemma 2.2
and 3.2 and Theorem 3.1 (i) immediately. The uniqueness follows from Lemma 2.2,
Corollary 3.1 and Theorem 3.1 (i), since 1 is the unique H++-eigenvalue of the con-
nected components that have more than one vertices, and the spectra of the isolated
vertices are the same set {0}. Finally, the minimality follows from Theorem 3.1 (ii),
since all the H-eigenvalues are real.

For the conclusion (ii), first we have that all the H+-eigenvalues of L are in the
interval [0, 2] by Theorem 3.1 (ii). Suppose that λ > 1 is an H+-eigenvalue of L.
Then, by Definition 2.1, Theorems 2.1 and 3.1 and Lemma 3.3, 1 − λ < 0 is an
H+-eigenvalue of some connected component of G. This is a contradiction to Lemma
3.1. Thus, λ ∈ [0, 1]. The remaining conclusions follow from Theorem 3.1 (i), and
Lemmas 3.1 and 3.3 immediately.

By Theorem 3.1 (ii), all the H-eigenvalues of L are nonnegative. When k is even, it
is further equivalent to that L is positive semidefinite by (Qi 2005, Theorem 5). Thus,
the first two statements of the conclusion (iii) follow. This, together with (Fidalgo and
Kovacec 2011, Corollary 2.8) implies the last statement of the conclusion. ��

We remark that, unlike the graph counterpart (Chung 1997), there would be little
hope to write Lxk as a sum of powers of linear forms.

The next lemma is on the H-eigenvectors of the smallest H-eigenvalue of L.

Lemma 3.4 Let G be a k-uniform hypergraph. Suppose that G has connected com-
ponents V1, . . . , Vr . We have the followings.

(i) Let L ⊆ R
n be the subspace generated by the H-eigenvectors of L corresponding

to the H-eigenvalue zero. Let Li be the Laplacian of GVi . Let L̃i be the subspace
generated by the H-eigenvectors of Li corresponding to the H-eigenvalue zero,
and Li be the canonical embedding of L̃i into R

n with respect to Vi . Then L has
a direct sum decomposition:

L = L1 ⊕ · · · ⊕ Lr . (3)

(ii) Let M ⊆ R
n be the subspace generated by the nonnegative H-eigenvectors of L

corresponding to the H-eigenvalue zero. Let M̃i and Mi be defined similarly. Then
M = M1 ⊕ · · · ⊕ Mr , dim(Mi ) = 1 for all i ∈ [r ], and hence dim(M) = r .

Proof Let Ai be the adjacency tensor of the sub-hypergraph GVi of G induced by Vi

for all i ∈ [r ]. When Vi is a singleton, then Ai is the scalar zero. When |Vi | > 1, by
Lemma 2.4, Ai is a weakly irreducible nonzero tensor.
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(i) Suppose x ∈ R
n is an H-eigenvector of L corresponding to the eigenvalue zero.

By Definition 2.1, and Theorems 2.1 (ii) and 3.1 (i), whenever x(Vi ) �= 0, x(Vi )

an H-eigenvector of Li corresponding to the eigenvalue zero. Thus, x(Vi ) ∈ L̃i for
all i ∈ [r ]. The reverse of the statement is true as well: if 0 �= z ∈ R

|Vi | is an H-
eigenvector of Li corresponding to the eigenvalue zero, then its embedding into R

n is
an H-eigenvector of L.

Suppose that y ∈ L is nonzero and for some positive integer s, y = ∑
i∈[s] xi with

xi being H-eigenvectors of L corresponding to the eigenvalue zero. Then, xi (Vj ) ∈ L̃ j

for all j ∈ [r ] and i ∈ [s] by the preceding discussion. Thus,

y =
∑

i∈[s]
xi (V1) ⊕ · · · ⊕

∑

i∈[s]
xi (Vr ) ∈ L1 ⊕ · · · ⊕ Lr .

Here we use the same notation xi (Vj ) for both xi (Vj ) ∈ R
|Vj | and its embedding in

R
n .
On the contrary, suppose that yi ∈ Li is nonzero for i ∈ [r ]. Then, we have that

yi = ∑
j∈[si ] xi, j for some positive integer si and H-eigenvectors xi, j (Vi ) of Li .

Moreover, xi, j (Vl) = 0 whenever l �= i by the definition of Li . Thus, xi, j ∈ L by the
preceding discussion. Hence, y = y1 ⊕· · ·⊕yr = ∑

j∈[1 j ] x1, j ⊕· · ·⊕∑
j∈[r j ] xr, j =

∑
i∈[r ]

∑
j∈[si ] xi, j ∈ L . Combining these results, the direct sum decomposition 3

follows.
(ii) Note that M̃i is the subspace generated by the nonnegative eigenvectors of Li

corresponding to the eigenvalue zero. If |Vi | = 1, then M̃i = R. When |Vi | > 1,
by Lemmas 2.2, 2.3 and 2.4, the nonnegative eigenvectors of Ai corresponding to
ρ(Ai ) = 1 is unique and positive. Thus, by Theorem 3.1 (i), the nonnegative eigen-
vector of Li corresponding to the eigenvalue zero is unique and positive. Hence,
dim(M̃i ) = dim(Mi ) = 1. A similar proof as that for (i) shows that M = M1⊕· · ·⊕Mr

and hence dim(M) = ∑

i∈[r ]
dim(Mi ) = r . ��

Lemma 3.4 says that the dimension of the linear subspace generated by the non-
negative eigenvectors of the eigenvalue zero of the Laplacian is exactly the number of
the connected components of the hypergraph. By Corollary 6.4, we will see that if k
is odd, then dim(Li ) = 1 for all i ∈ [r ] and hence dim(L) = r .

The next proposition gives equations that the eigenvalues of the Laplacian should
satisfy.

Proposition 3.1 Let G be a k-uniform hypergraph. We have the followings.

(i) Let m(λ) be the algebraic multiplicity of λ ∈ σ(L) and c(n, k) = n(k − 1)n−1.
Then

∑

λ∈σ(L)

m(λ)λ ≤ c(n, k)

with equality holding if and only if G has no isolated vertices.
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(ii) Suppose that G has no isolated vertices. Let {λ0, λ1, . . . , λh} be the H-eigenvalues
of L in increasing order with algebraic multiplicity; and {αi ± √−1βi , i ∈ [w]}
be the remaining eigenvalues2 of L with algebraic multiplicity. Then,

∑

j∈[h]
λ j + 2

∑

j∈[w]
α j = c(n, k), (4)

and

∑

j∈[h]
λ2

j + 2
∑

j∈[w]
α2

j − 2
∑

j∈[w]
β2

j = c(n, k). (5)

If furthermore k ≥ 4, then we also have

∑

j∈[h]
λ3

j + 2
∑

j∈[w]
α3

j − 6
∑

j∈[w]
α jβ

2
j = c(n, k). (6)

Proof (i) follows from Definition 2.7 and (Hu et al. 2013, Corollary 6.5 (i)) which says
that the summation of the eigenvalues is equal to (k − 1)n−1 times the summation
of the diagonal elements of L.

(ii) First note that λ0 = 0 by Corollary 3.2 (i). Second, by (Hu et al. 2013, Theorem
2.3) the degree of χT (λ) is c(n, k). Hence,

∑
λ∈σ(L) m(λ) = c(n, k). Third, by

Definition 2.7 and the proof of (Cooper andv Dutle 2012, Corollary 3.14) we see
that the h-th order traces of the tensor A is zero for all h ∈ [k −1]. (Hu et al. 2013,
Theorem 6.10) says that the summation of the h-th powers of all the eigenvalues
of A is equal to the h-th trace of A for all h ≤ c(n, k). Thus, by Theorem 3.1 (i)
and (Hu et al. 2013, Theorem 6.10) we have that

∑

λ∈σ(L)

m(λ)(1 − λ)h = 0, ∀h ∈ [k − 1].

Then, 4, 5 and 6 are just the expansions of the corresponding equalities for h = 1, 2
and 3 respectively. ��

We can derive more equalities for the other h ∈ [k − 1] similarly.

4 H+-eigenvalues of the Laplacian

In this section, we discuss the H+-eigenvalues of the Laplacian. We denote by σ+(L)

the set of all the H+-eigenvalues of L. By Corollary 3.2, it is nonempty. We character-
ize all the H+-eigenvalues and the corresponding nonnegative eigenvectors through

2 By the discussion on (Qi 2005, p. 1315) they must appear in conjugate complex pairs. They are called
N-eigenvalues in that paper.
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the spectral components and the flower hearts of G in Sect. 4.1. Then, in the other sub-
section, we introduce the H+-geometric multiplicity of an H+-eigenvalue and discuss
the second smallest H+-eigenvalue of L.

4.1 Characterizations

The next lemma characterizes all the H+-eigenvalues of L.

Lemma 4.1 Let G be a k-uniform hypergraph. Suppose that G has connected com-
ponents V1, . . . , Vr for some positive integer r . Let Li be the Laplacian of the sub-
hypergraph Gi of G induced by Vi . Then, we have the followings.

(i) λ = 0 is an H+-eigenvalue of L with nonnegative eigenvector x if and only if
x(Vi ) is the unique positive eigenvector of Li whenever x(Vi ) �= 0.

(ii) 1 > λ > 0 is an H+-eigenvalue of L with nonnegative eigenvector x if and only
if x(Vi ) = 0 whenever |Vi | = 1, and 1 − λ is an H+-eigenvalue of Ai with
eigenvector x(Vi ) whenever |Vi | > 1 and x(Vi ) �= 0.

(iii) λ = 1 is an H+-eigenvalue of L with nonnegative eigenvector x if and only if
x(Vi ) = 0 whenever |Vi | = 1, and [sup(x(Vi ))]c is a flower heart of Gi whenever
|Vi | > 1 and x(Vi ) �= 0.

Proof (i) By Definition 2.1 and Theorem 2.1, it is easy to see that λ = 0 is an
H+-Eigenvalue of L with nonnegative eigenvector x if and only if x(Vi ) is a non-
negative eigenvector of Li whenever x(Vi ) �= 0. In this situation, when |Vi | = 1,
x(Vi ) > 0 is a scalar; and when |Vi | > 1, x(Vi ) is a nonnegative eigenvector
of the adjacency tensor of the connected sub-hypergraph Gi corresponding to its
spectral radius 1. By Lemmas 2.3 and 2.4, and Theorem 3.1, it follows that x(Vi )

is the unique positive eigenvector of Li . The converse is also true.
(ii) follows from Definitions 2.1 and 2.7, and Theorem 3.1 immediately.

(iii) follows from Definitions 2.1 and 2.7, Lemma 3.1 and Theorem 3.1.
��

By Lemma 4.1 (i) and (iii), the H+-eigenvalues zero and one of L and their corre-
sponding nonnegative eigenvectors are clear. In the following, without loss of gener-
ality by Lemma 4.1 (ii), we consider a connected hypergraph G.

The next lemma, together with Theorem 2.1, says that the spectral radius λ of
the sub-tensor of A associated to a spectral component of G contributes to an H+-
eigenvalue 1 − λ of L.

Lemma 4.2 Let G be a k-uniform connected hypergraph. Let S ⊆ [n] be a nonempty
subset. Suppose that S is a spectral component of G. Let

λ = max

⎧
⎨

⎩
Ayk | y ∈ R

n+,
∑

i∈[n]
yk

i = 1, yi = 0,∀i ∈ Sc

⎫
⎬

⎭
. (7)

Then, 1 ≥ λ ≥ 0 and 1 − λ is an H+-eigenvalue of L. Moreover, the optimal solu-
tions of 7 and the nonnegative eigenvectors of L with support being contained in S
corresponding to the H+-eigenvalue 1 − λ are in one to one correspondence.

123



J Comb Optim (2015) 29:331–366 349

Proof If S = V , then λ = ρ(A) = 1 by Theorem 2.1 and Lemma 3.2. By Corollary
3.2 (i), 1 − λ = 0 is an H+-eigenvalue of L. The eigenvector correspondence follows
from Theorem 2.1 (iii).

In the sequel, suppose that S �= V is proper. Let B be the k-th order |S|-dimensional
sub-tensor of A corresponding to the set S. Then, we have that

λ = max

⎧
⎨

⎩
Ayk | y ∈ R

n+,
∑

i∈[n]
yk

i = 1, yi = 0,∀i ∈ Sc

⎫
⎬

⎭

= max

⎧
⎨

⎩
Bzk | z ∈ R

|S|
+ ,

∑

i∈[|S|]
zk

i = 1

⎫
⎬

⎭
.

By Theorem 2.1, λ = ρ(B). Suppose that y is an optimal solution to 7 with the
optimal value λ. Then, the sub-vector z of y corresponding to S is an eigenvector of
B corresponding to λ by Theorem 2.1 (iii). Hence, we have

Bzk−1 = λz[k−1],

where z[k−1] is a vector with its i-th entry being zk−1
i . For i ∈ Sc, we have that

(Ayk−1)i =
∑

{i,i2,...,ik }∈Ei

1
k
√

di

k∏

j=2

yi j

k
√

di j

=
∑

{i,i2,...,ik }∈Ei ∩E(S,Sc)

1
k
√

di

k∏

j=2

yi j

k
√

di j

= 0,

since S is spectral component which implies that {i2, . . . , ik} ∩ Sc �= ∅ for every
{i, i2, . . . , ik} ∈ E(S, Sc). For i ∈ S, we have

(Ayk−1)i =
∑

{i,i2,...,ik }∈Ei

1
k
√

di

k∏

j=2

yi j

k
√

di j

=
∑

{i,i2,...,ik }∈Ei ∩E(S)

1
k
√

di

k∏

j=2

yi j

k
√

di j

= (Bzk−1)i = λyk−1
i .

Thus, λ is an H+-eigenvalue of A with eigenvector y. Then, 1 − λ being an H+-
eigenvalue of L with the eigenvector y with support being contained in S follows
immediately .

The conclusion that a nonnegative eigenvector with support being contained in
S of L corresponding to the eigenvalue 1 − λ is an optimal solution of 7 follows
immediately. ��

The next lemma says that the converse of Lemma 4.2 is also true.

Lemma 4.3 Let G be a k-uniform connected hypergraph. If x ∈ R
n+ is an eigenvector

of L corresponding to an H+-eigenvalue λ, then sup(x) is a spectral component of G
and 1 − λ is the spectral radius of the sub-tensor of A corresponding to sup(x).
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Proof Let S := sup(x) and Sc be its complement. If S = V , then by Lemma 4.1 (i),
λ = 0 and 1 = 1−λ is the spectral radius of A. Obviously, V is a spectral component
of G by Definition 2.5.

If S is a proper subset of V , then {e ∈ E | e ∩ Sc �= ∅} is nonempty, since G
is connected. By Corollary 3.2, we have that 1 ≥ λ ≥ 0. By the hypothesis that
(Lxk−1)i = 0 for all i ∈ Sc, we have

∑

{i,i2,...,ik }∈Ei

1
k
√

di

k∏

j=2

xi j

k
√

di j

=
∑

{i,i2,...,ik }∈Ei ∩E(S,Sc)

1
k
√

di

k∏

j=2

xi j

k
√

di j

= 0.

Thus, we must have that |e ∩ Sc| ≥ 2 for every e ∈ E(S, Sc). Hence, S is a spectral
component of G. Let B be the sub-tensor of A corresponding to S, and y be the
sub-vector of x corresponding to S. Then, for all i ∈ S, we have

(1 − λ)yk−1
i = (1 − λ)xk−1

i = (Axk−1)i =
∑

{i,i2,...,ik }∈Ei

1
k
√

di

k∏

j=2

xi j

k
√

di j

=
∑

{i,i2,...,ik }∈Ei ∩E(S)

1
k
√

di

k∏

j=2

xi j

k
√

di j

= (Byk−1)i .

Hence, y is a positive eigenvector of B. Then, 1 − λ is an H++-eigenvalue of B. By
Lemma 2.2 (ii), and Theorem 2.1 (i) and (ii) (see also Qi 2012, Theorem 4) a symmetric
nonnegative tensor has at most one H++-eigenvalue. If it has one, then it should be
the spectral radius of this tensor. Hence, we have that 1 − λ = ρ(B). ��

By Lemmas 4.1, 4.2 and 4.3, we have the following theorem which characterizes
all the nonnegative eigenvectors of L.

Theorem 4.1 Let G be a k-uniform hypergraph. Suppose that G has r ≥ 1 connected
components V1, . . . , Vr . Let Li and Ai be respectively the Laplacian and the adjacency
tensor of the sub-hypergraph Gi of G induced by Vi . Then x ∈ R

n+ is an eigenvector
of L corresponding to an H+-eigenvalue λ if and only if

(i) when λ = 0, then x(Vi ) is the unique positive eigenvector of Li whenever x(Vi ) �=
0;

(ii) when 1 > λ > 0, then x(Vi ) = 0 whenever |Vi | = 1, and sup(x(Vi )) is a
spectral component of Gi and 1 − λ is the spectral radius of the sub-tensor of Ai

corresponding to sup(x(Vi )) whenever x(Vi ) �= 0 and |Vi | > 1;
(iii) when λ = 1, then x(Vi ) = 0 whenever |Vi | = 1, and [sup(x(Vi ))]c is a flower

heart of Gi whenever x(Vi ) �= 0 and |Vi | > 1.

By Theorem 4.1, all the H+-eigenvalues can be computed out, since they correspond
to the spectral radii of certain nonnegative tensors. The algorithm proposed in Hu et
al. (2011) can be applied. It is globally R-linearly convergent.
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By Theorem 4.1, when G has no isolated vertices, if μ is the spectral radius of the
sub-tensor of A corresponding to a spectral component S, then

1 − max

⎧
⎨

⎩
Ayk | y ∈ R

n+,
∑

i∈[n]
yk

i = 1, yi = 0,∀i ∈ Sc

⎫
⎬

⎭
= 1 − μ ∈ σ+(L).

Equivalently, we have

1 − μ = 1 + min

⎧
⎨

⎩
−Ayk | y ∈ R

n+,
∑

i∈[n]
yk

i = 1, yi = 0,∀i ∈ Sc

⎫
⎬

⎭

= min

⎧
⎨

⎩
Lyk | y ∈ R

n+,
∑

i∈[n]
yk

i = 1, yi = 0,∀i ∈ Sc

⎫
⎬

⎭
. (8)

Define

σs(L) :=
⎧
⎨

⎩
λ|λ = min

⎧
⎨

⎩
Lyk |

n∑

i=1

yk
i =1, y ∈ R

n+, yi =0, ∀i ∈ Ac

⎫
⎬

⎭
, A ∈ 2V \ {∅}

⎫
⎬

⎭
.

(9)

Then, Theorem 4.1, together with Theorem 3.1, says that σ+(L) ⊆ σs(L). Here a
natural question arises. Are the two sets equal to each other? The next proposition
gives a negative answer, it says that the hypothesis in Lemma 4.2 is necessary, i.e., if S
is not a spectral component, then the optimal value of 8 may not be an H+-eigenvalue
of L. More properties on the set σs(L) are discussed in Sect. 5.

A hypergraph G = (V, E) is complete if E contains all the possible edges.

Proposition 4.1 Let G be a k-uniform complete hypergraph with n > k. Then,

σ+(L) �= σs(L). (10)

Proof Since G is complete, it is easy to see that the sub-tensors of A corresponding
to the sets with the same cardinality are the same. Thus, there are at most n values in
σs(L). By Lemmas 2.2 and 2.3 and the fact that G is complete, the values corresponding
to sets with different cardinalities larger than k − 1 are strictly smaller than one and
different. The values corresponding to sets with cardinalities not larger than k − 1
are one, since the sub-tensors are all the identity tensors with appropriate dimensions.
Hence, there are exactly n − k + 2 values in σs(L).

Since G is complete, every set A satisfying |A| ≥ k − 1 cannot be a spectral com-
ponent. Hence, the value corresponding to {i}c for every i cannot be in σ+(L) by
Theorem 4.1. Since otherwise, this value can be expressed by some spectral compo-
nent. It should be one by the preceding discussion. This would contradict the fact that
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ρ(A({i}c)) > 0 (which implies 1−ρ(A({i}c)) < 1) by Lemma 2.3 and Theorem 2.1,
since A({i}c) is nonzero.

Hence, the result 10 follows. The proof is complete. ��
Actually, by Proposition 4.3 and Corollary 4.2 in Sect. 4.2, σ+(L) = {0, 1} for

a complete hypergraph. While, by the proof of Lemma 3.2, it can be calculated that
σs(L) = {1 − d(s)

d(n)
, s ∈ {k − 1, . . . , n}} with d(s) := (s−1

k−1

)
.

4.2 H+-geometric multiplicity

In this subsection, we discuss the second smallest H+-eigenvalue of the Laplacian.
To this end, we need to order the H+-eigenvalues first. Since the eigenvectors of an
eigenvalue of a tensor do not form a linear subspace of C

n like its matrix counterpart
in general, it is subtle to define geometric multiplicity of an eigenvalue of a tensor.
However, by Theorem 4.1 and the fact that the number of the spectral components
of a hypergraph is always finite, we can define the H+-geometric multiplicity of an
H+-eigenvalue of L in the following way.

Definition 4.1 Let G be a k-uniform hypergraph. Let μ be an H+-eigenvalue of L.
The H+-geometric multiplicity of the H+-eigenvalue μ is defined to be the number
of nonnegative eigenvectors (up to scalar multiplication) corresponding to μ.

For a hypergraph G, we denote by n(G) the number of the H+-eigenvalues of L (with
H+-geometric multiplicity). By Corollary 3.2 (i), L always has the H+-eigenvalue
zero and hence n(G) ≥ 1. When |E | > 0, by Lemma 3.1 and Theorem 3.1, 1 is also
an H+-eigenvalue of L. Then, in this case n(G) ≥ 2. By Definition 4.1 and Corollary
3.2 (ii), we can order all the H+-eigenvalues (with H+-geometric multiplicity) of L in
increasing order as:

0 = μ0 ≤ μ1 ≤ . . . ≤ μn(G)−1 ≤ 1. (11)

The next lemma establishes the relation between the number of the connected
components of a hypergraph G and the H+-geometric multiplicity of the eigenvalue
zero.

Lemma 4.4 Let G be a k-uniform hypergraph. Suppose that G has r connected com-
ponents. Then, the H+-geometric multiplicity c(G, 0) of the H+-eigenvalue zero of L
is c(G, 0) = 2r − 1.

Proof Suppose that {V1, . . . , Vr } are the connected components of G. For all i ∈ [r ],
let Li be the Laplacian of the sub-hypergraph Gi of G induced by Vi . For any choice
of s (1 ≤ s ≤ r ) connected components {Vi1 , . . . , Vis } of G, let x(Vi j ) be the unique
positive eigenvector of Li j by Theorem 4.1 (i). Let x(Vi ) = 0 for the other Vi .
By Theorem 4.1 (i), the vector x formed by the components x(Vi ) is a nonnegative
eigenvector of L corresponding to the eigenvalue zero. By Theorem 4.1 (i) again,
the correspondence between the choices of the connected components of G and the
nonnegative eigenvectors of L corresponding to the eigenvalue zero in the above sense
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is one to one. Thus, by Definition 4.1, the H+-geometric multiplicity c(G, 0) of the
H+-eigenvalue zero of L is

∑
s∈[r ]

(r
s

) = 2r − 1. ��
The next corollary is a direct consequence of Lemma 4.4.

Corollary 4.1 Let G be a k-uniform hypergraph. Then, μi−2 = 0 and μi−1 > 0 if
and only if log2i is a positive integer and G has exactly log2i connected components.
In particular, μ1 > 0 if and only if G is connected.

The next proposition gives the H+-geometric multiplicity of the H+-eigenvalue one
of L.

Proposition 4.2 Let G be a k-uniform hypergraph and |E | > 0. Suppose that G
has r ≥ 0 connected components {V1, . . . , Vr } with |Vi | > 1. Let Gi be the sub-
hypergraph of G induced by Vi . Suppose that Gi has ti ≥ 0 flower hearts for all
i ∈ [r ]. Then the H+-geometric multiplicity c(G, 1) of the H+-eigenvalue one of L is

c(G, 1) =
∑

i∈[r ]
si (t1, . . . , tr ),

where si (t1, . . . , tr ) is the elementary symmetric polynomial on the variables
{t1, . . . , tr } of degree i , and the vacuous summation is understood as zero.

Proof Note that si (t1, . . . , tr ) = ∑
1≤ j1<...< ji ≤r t j1 · · · t ji . By Theorem 4.1 (iii), the

result follows from a similar proof to that for Lemma 4.4. ��
Proposition 4.2 says that c(G, 1) is independent of the number of isolated vertices of

the hypergraph G. For the other H+-eigenvalues, by Theorem 4.1, their H+-geometric
multiplicities are determined by the number of the connected components, and the
spectral components of every connected component. Similarly, these H+-geometric
multiplicities are independent of the number of isolated vertices of the hypergraph.

The next proposition gives necessary and sufficient conditions for μ1 = μn(G)−1 =
1. By Corollary 4.1, the underlying hypergraph should be connected.

Proposition 4.3 Let G be a k-uniform connected hypergraph. Then, μ1 = 1 if and
only if the complements of all the proper spectral components are the flower hearts.
In this situation, we have σ+(L) = {0, 1}.
Proof The first half follows from Theorem 4.1 immediately. The result σ+(L) =
{0, 1} in this situation follows from the fact that μn(G)−1 = 1 when |E | > 0. ��

The next corollary completes Proposition 4.1.

Corollary 4.2 Let G be a k-uniform complete hypergraph. Then, σ+(L) = {0, 1}.
Proof Suppose that A �= V is a nonempty subset of {1, . . . , n}. Since G is complete,
A is a spectral component if and only if |A| ≤ k − 2. On the other side, we also have
that E(A) = ∅ whenever |A| ≤ k − 2. Hence, Ac is a flower heart by Definition 2.6.
Then, the result follows from Proposition 4.3. ��

We will give lower bounds for μ1 in Sect. 5.1.
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5 The smallest H+-eigenvalues of the sub-tensors of the Laplacian

Suppose that G is a k-uniform hypergraph without isolated vertices. By Theorem 4.1, if
λ is an H+-eigenvalue of the Laplacian L, there exists a spectral component of G such
that λ has the characterization 8. However, Proposition 4.1 says that σ+(L) �= σs(L) in
general. In this section, we show that every λ ∈ σs(L) is the smallest H+-eigenvalue
of some sub-tensor of L. This is the mean of the subscript “s” of σs(L). Then, we
discuss the relations between these H+-eigenvalues and μ1, the edge connectivity and
the edge expansion.

5.1 Characterization

We establish the equivalence between the smallest H+-eigenvalues of the sub-tensors
of L and σs(L). Let S ⊆ [n] be nonempty and κ(S) the smallest H+-eigenvalue of
L(S).

The next lemma says that {κ(S) | S ∈ 2V \ {∅}} = σs(L).

Lemma 5.1 Let G be a k-uniform hypergraph without isolated vertices and S ⊆ [n]
be nonempty. We have that κ(S) = 1 − ρ(A(S)) ∈ [0, 1], and

κ(S) = min

⎧
⎨

⎩
Lyk | y ∈ R

n+,
∑

i∈[n]
yk

i = 1, yi = 0,∀i ∈ Sc

⎫
⎬

⎭
. (12)

Proof Note that L(S) = I − A(S). Hence, λ is an H+-eigenvalue of L(S) if and
only if 1 − λ is an H+-eigenvalue of A(S). Thus, by Lemmas 2.2, 2.3 and 3.2, we
have that κ(S) = 1 − ρ(A(S)) ∈ [0, 1]. This, together with Theorem 2.1, further
implies that

κ(S) = 1 − max

⎧
⎨

⎩
A(S)yk | y ∈ R

|S|
+ ,

∑

i∈[|S|]
yk

i = 1

⎫
⎬

⎭

= 1 − max

⎧
⎨

⎩
Ayk | y ∈ R

n+,
∑

i∈[n]
yk

i = 1, yi = 0,∀i ∈ Sc

⎫
⎬

⎭

= 1 + min

⎧
⎨

⎩
−Ayk | y ∈ R

n+,
∑

i∈[n]
yk

i = 1, yi = 0,∀i ∈ Sc

⎫
⎬

⎭

= min

⎧
⎨

⎩
1 − Ayk | y ∈ R

n+,
∑

i∈[n]
yk

i = 1, yi = 0,∀i ∈ Sc

⎫
⎬

⎭

= min

⎧
⎨

⎩
Lyk | y ∈ R

n+,
∑

i∈[n]
yk

i = 1, yi = 0,∀i ∈ Sc

⎫
⎬

⎭
.
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Thus, 12 follows. The proof is complete. ��
The next corollary is a direct consequence of Lemma 5.1.

Corollary 5.1 Let G be a k-uniform hypergraph without isolated vertices and S, T ⊆
[n] be nonempty such that S ⊂ T . Then, κ(T ) ≤ κ(S).

Corollary 5.2 Let G be a k-uniform hypergraph without isolated vertices. Then, μ1 =
min{κ(S) | S is a proper spectral component}.
Proof We first prove that there is a proper spectral component S of G such that
μ1 = κ(S). Then, the minimality follows immediately from Theorem 4.1 and 11.

By Theorem 4.1 and Lemma 5.1, there is a spectral component of G such that
κ(S) = μ1. If G is connected, then μ1 > 0 by Corollary 4.1. While, κ(V ) = 0 by
Lemmas 3.2 and 5.1. Thus, S �= V . If G has at least two connected components V1
and V2, then V1 is a proper spectral component and κ(V1) = 0 by Lemmas 5.1 and
3.2. Since μ1 = 0 by Corollary 4.1, V1 can be chosen as S. ��

Recall that di is the degree of the vertex i . In the following, we define dmin :=
mini∈[n] di and dmax := maxi∈[n] di . For a nonempty subset S ⊂ V , define vol(S) :=∑

i∈S di as the volume of S. The volume vol([n]) of the hypergraph is simply denoted
as dvol .

Proposition 5.1 Let G be a k-uniform hypergraph without isolated vertices. For any
nonempty subset S ⊆ V , we have

κ(S) ≤ (k − 1)vol(Sc)

vol(S)
(13)

with the convention that vol(∅) = 0. In particular, for any i ∈ [n], we have that

κ({i}c) ≤ (k − 1)dmax

dvol − dmax
. (14)

Proof When S = V , then κ(S) = κ(V ) = 0 by 12 and Lemma 3.2. Thus, the result
follows. In the following, we assume that S �= V . Let d̃ ∈ R

n be the n-vector with its
i-th element being k

√
di for all i ∈ [n]. Let y be the vector with its j-th element being

d̃ j
k
√

vol(S)
for j ∈ S and y j = 0 for j ∈ Sc. Then, by Lemma 5.1, we have that

κ(S) ≤ Lyk = 1 − k
∑

e∈E\ESc

ye

d̃e
= 1 − k

∑

e∈E\ESc

1

vol(S)
= 1 − k|E | − k|ESc |

vol(S)

= vol(S) + k|ESc | − dvol

vol(S)
= k|ESc | − vol(Sc)

vol(S)
≤ (k − 1)vol(Sc)

vol(S)
.

Here, the fourth equality follows from the fact that k|E | = dvol , and the last inequality
from the fact that: for every e ∈ ESc , e contributes to vol(Sc) at least one. Thus, the
number of edges in ESc is at most vol(Sc). Thus, k|ESc | ≤ kvol(Sc).

14 follows from the fact that di ≤ dmax for any i ∈ [n]. ��
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Note that 13 is nontrivial only if vol(S) > (k − 1)vol(Sc); and the bound is tight.
A hypergraph is d-regular, if di = d ≥ 0 for all i ∈ [n]. The following corollary is

a direct consequence of Proposition 5.1.

Corollary 5.3 Let G be a k-uniform hypergraph and d-regular for some d > 0. For
any i ∈ [n], we have that

κ({i}c) ≤ k − 1

n − 1
.

By the proof of Proposition 5.1, if di = dmin, then κ({i}c) ≤ k−1
n−1 , since dvol

− dmin ≥ (n − 1)dmin . Hence, the next corollary follows.

Corollary 5.4 Let G be a k-uniform hypergraph without isolated vertices. We have
that

min
i∈[n] κ({i}c) ≤ k − 1

n − 1
.

The next proposition gives lower bounds on μ1 in terms of κ({i}c).

Proposition 5.2 Let G be a k-uniform hypergraph without isolated vertices. Then,
for any proper spectral component S of G such that μ1 = κ(S),

μ1 ≥ max
i∈Sc

κ({i}c) ≥ min
i∈[n] κ({i}c). (15)

Proof The result follows from Theorem 4.1, Lemma 5.1 and Corollaries 5.1 and 5.2.
��

In the next subsection, mini∈[n] κ({i}c) is related to the edge connectivity of the
hypergraph. This value is similar to the algebraic connectivity defined in (Qi 2012,
Sect. 8).

5.2 Edge connectivity

In this short subsection, we discuss the relation between the smallest H+-eigenvalues
of the sub-tensors of L and the edge connectivity. Recall that the minimum of the
cardinalities of the edge cuts corresponding to nonempty proper subsets is called the
edge connectivity of G. We denote it by e(G). Note that G is disconnected if and
only if e(G) = 0. It is also easy to see that e(G) ≤ dmin.

Proposition 5.3 Let G be a k-uniform hypergraph without isolated vertices. We have
that

min
i∈[n] κ({i}c) ≤ k

dvol
e(G). (16)
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Proof Let d̃ ∈ R
n be the n-vector with its i-th element being k

√
di for all i ∈ [n]. Let

S be a nonempty proper subset of [n]. Let y be the vector with its j-th element being
d̃ j

k
√∑

i∈S di
for j ∈ S and y j = 0 for j ∈ Sc. Then, by Lemma 5.1,

κ(S) ≤ Lyk = 1 − k
∑

e∈E(S)

ye

d̃e
= 1 − k

∑

e∈E(S)

1

vol(S)
= 1 − k|E(S)|

vol(S)
.

Similarly, we have that κ(Sc) ≤ 1 − k|E(Sc)|
vol(Sc)

. Thus,

vol(S)κ(S) + vol(Sc)κ(Sc) ≤ vol(S) + vol(Sc) − k(|E(S)| + |E(Sc)|)
= dvol − k(|E | − |E(S, Sc)|)
= k|E(S, Sc)|.

Since both S and Sc are nonempty, we have that S ⊆ {r}c and Sc ⊆ {s}c for some r
and s respectively. By Corollary 5.1, we have that

dvol min
i∈[n] κ({i}c) ≤ dvol min{κ({r}c), κ({s}c)} ≤

∑

i∈S

diκ(S) +
∑

i∈Sc

diκ(Sc)

≤ k|E(S, Sc)|.

Thus, 16 follows. ��

5.3 Edge expansion

In this subsection, we define and discuss the edge expansion of a hypergraph.
The next definition is a generalization of the edge expansion of a graph.

Definition 5.1 Let G be a k-uniform hypergraph without isolated vertices and r ∈
[k − 1]. The r -th depth edge expansion, denoted by hr (G), of G is defined as

hr (G) = min
S⊂V, vol(S)≤� dvol

2 �
|E(S, Sc)|

vol(S)
, (17)

where the minimum takes additionally over all nonempty subsets S such that either
E(S, Sc) is empty or it cuts Sc with depth at least r .

When r = 1 and G reduces to a usual graph, this definition is the same as that in
(Chung 1997, Sect. 2.2). Moreover, in this situation, it is easy to see that

h1(G) = min
S⊂V

|E(S, Sc)|
min{vol(S), vol(Sc)} ,

since in this case, E(S, Sc), whenever nonempty, cuts both S and Sc with depth exactly
one. For a hypergraph, the situation is more complicated. Thus, we need the generalized
definition 17.
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Definition 5.1 is well defined for all r ∈ [k − 1], since E({i}, {i}c), whenever
nonempty, always cuts {i}c with depth k − 1 ≥ r for all i ∈ [n].

The next proposition gives bound on h2(G) in terms of μ1.

Proposition 5.4 Let G be a k-uniform hypergraph without isolated vertices and r ∈
[k − 1]. We have that κ(S) ≤ (k−2)|E(S,Sc)|

vol(S)
for any spectral component S. Thus,

μ1 ≤ (k − 2)h2(G).

Proof Let d̃ ∈ R
n be the n-vector with its i-th element being k

√
di for all i ∈ [n].

Let S be a spectral component, then either E(S, Sc) is empty or it cuts Sc with depth
at least two. The empty case is trivial, in the following, we assume that E(S, Sc) is

nonempty. Let y be the vector with its j-th entry being
d̃ j

k
√

vol(S)
for j ∈ S and y j = 0

for j ∈ Sc. By Lemma 5.1, we have

κ(S) = min

⎧
⎨

⎩
Lzk | z ∈ R

n+,
∑

i∈[n]
zk

i = 1, zi = 0,∀i ∈ Sc

⎫
⎬

⎭

≤ Lyk = 1 − k
∑

e∈E(S)

ye

d̃e
= 1 − k

∑

e∈E(S)

1

vol(S)

= 1 − k|E(S)|
vol(S)

≤ (k − 2)|E(S, Sc)|
vol(S)

.

The last inequality follows from the fact that k|E(S)| ≥ vol(S) − (k − 2)|E(S, Sc)|,
since E(S, Sc) cuts Sc with depth at least two. Then, the first conclusion follows. This,
together with Definition 5.1 and Corollary 5.2, implies that

μ1 ≤ (k − 2)h2(G),

since dvol > � dvol
2 � which implies that the minimum 17 involves only proper subsets.

��
By Proposition 5.2 and a similar proof of Proposition 5.4 and the fact that

min
i∈[n] κ({i}c) ≤ κ(S) for any nonempty proper subset S, we have the following propo-

sition.

Proposition 5.5 Let G be a k-uniform hypergraph without isolated vertices. We have
that for all r ∈ [k − 1], κ(S) ≤ (k−r)|E(S,Sc)|

vol(S)
for any nonempty subset S such that

either E(S, Sc) is empty or it cuts Sc with depth at least r . In particular,

min
i∈[n] κ({i}c) ≤ (k − r)hr (G). (18)

Note that any nonempty subset S such that either E(S, Sc) is empty or it cuts Sc with
depth at least r with r ≥ 2 is a spectral component by Definition 2.5. This, together
with Corollary 5.2 and Proposition 5.5, implies the following corollary immediately.
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Corollary 5.5 Let G be a k-uniform hypergraph without isolated vertices. For all r
such that 2 ≤ r ≤ k − 1, we have that μ1 ≤ (k − r)hr (G).

6 The largest H-eigenvalue of the Laplacian

By Theorem 3.1, if λ is an H-eigenvalue of L, then λ ≤ 2. Does L has an eigenvalue
2? If it does, is it an H-eigenvalue of L? In this section, we discuss these questions. By
Lemma 3.3, it is sufficient to consider connected hypergraphs. Note that when λ = 2,
we have that −1 is an eigenvalue of the adjacency tensor A.

6.1 Eigenvectors of eigenvalues on the spectral circle of the adjacency tensor

As ρ(A) = 1, the set of complex numbers with module one is called the spectral circle
of the adjacency tensor A. By (Yang and Yang 2011, Theorem 3.9) if there are r ≥ 1
eigenvalues of A with module one, then they are uniformly distributed on the spectral

circle, i.e., they appear in the form exp( 2sπ
√−1
r ) for s ∈ [r ]. In this subsection, we

establish necessary and sufficient conditions for a nonzero vector being an eigenvector
of an eigenvalue on the spectral circle.

The next technical lemma is useful.

Lemma 6.1 Let G be a k-uniform connected hypergraph. If x ∈ C
n is an eigenvector

of A with eigenvalue exp(
√−1θ), then there exist θi ∈ R such that

xi = exp(
√−1θi )

k
√

di
k
√

dvol
, ∀i ∈ [n], (19)

and for all i ∈ [n], there exists γi ∈ C such that

exp(
√−1θi2) · · · exp(

√−1θik ) = γi , ∀e = {i, i2, . . . , ik} ∈ Ei . (20)

Proof Let d̃ ∈ R
n be the n-vector with its i-th element being k

√
di for all i ∈ [n]. Then

we have the following

∑

i∈[n]
|xi ||(Axk−1)i | =

∑

i∈[n]
|xi |

∣
∣
∣
∣
∣
∣

∑

e∈Ei

1
k
√

di

∏

j∈e\{i}

x j
k
√

d j

∣
∣
∣
∣
∣
∣

≤
∑

e∈E

k
∏

i∈e

|xi |
k
√

di
≤

∑

e∈E

k

(
1

k

∑

i∈e

(
|xi |
k
√

di
)k

)

=
∑

e∈E

∑

i∈e

|xi |k
di

=
∑

i∈[n]

∑

e∈Ei

|xi |k
di

=
∑

i∈[n]
|xi |k .

This, together with the hypothesis
∑

i∈[n] |xi ||(Axk−1)i | = ∑
i∈[n] |xi |k , implies that

all of the inequalities should be equalities.
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By the fact that the second (the arithmetic-geometric mean) inequality is an equality,
we have that |xi | = α| k

√
di | for some α > 0 for all i ∈ [n], since G is connected.

When normalizing the vectors x and d̃, we get 19.
By the fact that first inequality is an equality, we have 20. ��
Let Z be the ring of integers. For a positive integer k, let 〈k〉 be the ideal in Z

generated by k. Let � := {0̄, 1̄, . . . , k − 1} be the quotient ring Z/〈k〉. The image of
α ∈ Z under the natural homomorphism Z → � is denoted by ᾱ. For basic definitions,
see (Lang 2002; Cox 1998, 2006).

The next theorem gives necessary and sufficient conditions for exp(
√−1θ) being

an eigenvalue of A.

Theorem 6.1 Let G be a k-uniform connected hypergraph. Then, exp(
√−1θ) is an

eigenvalue of A if and only if θ = 2απ
k for some integer α, and there exist integers αi

for i ∈ [n] such that

∑

j∈e

ᾱ j = ᾱ, ∀e ∈ E . (21)

Proof Suppose that exp(
√−1θ) is an eigenvalue of A with an eigenvector x. By

Lemma 6.1, for all i ∈ [n], there exist θi ∈ R such that xi = exp(
√−1θi )

k√di
k√dvol

, and

exp(
√−1θi2) · · · exp(

√−1θik ) = γi , ∀e = {i, i2, . . . , ik} ∈ Ei

for some γi ∈ C. Let d̃ ∈ R
n be the n-vector with its i-th element being k

√
di for all

i ∈ [n]. Since

exp(
√−1θ)xk−1

i = (Axk−1)i = γi
(Ad̃k−1)i

( k
√

dvol)k−1
= γi

(
k
√

di
k
√

dvol

)k−1

,

we have that for all i ∈ [n],

exp(
√−1θi2) · · · exp(

√−1θik ) = exp(
√−1θ)[exp(

√−1θi )]k−1,

∀e = {i, i2, . . . , ik} ∈ Ei .

Thus, likewise, we must have

∑

j∈e

θ j = θ + kθi + 2αi,eπ, ∀i ∈ e, ∀e ∈ E, (22)

for some integer αi,e. Since the eigenvalue equations are homogeneous, we can scale
x such that θ1 = 0 without loss of generality. Consequently,

θ + kθi + 2αi,eπ =
∑

j∈e

θ j = θ + 2α1,eπ, ∀i ∈ e,∀e ∈ E1.
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Hence, θi = αi
2π
k for some integer αi for all i ∈ V (1) (the set of vertices that share

an edge with the vertex 1). Since G is connected, by a similar proof, we can show that
θi = αi

2π
k for some integer αi for all i ∈ [n]. Then, we have

θ + 2α1,eπ =
∑

j∈e

θ j =
⎛

⎝
∑

j∈e

α j

⎞

⎠ 2π

k
, ∀e ∈ E1.

Hence, θ = α 2π
k for some integer α. With these, we have that 22 becomes

⎛

⎝
∑

j∈e

α j

⎞

⎠ 2π

k
= α

2π

k
+ 2(αi + αi,e)π, ∀i ∈ e, ∀e ∈ E .

Equivalently,

∑

j∈e

ᾱ j = ᾱ, ∀e ∈ E .

Reversing the above proof, we see that the converse statement is true as well. ��
As we remarked at the beginning of this subsection, θ = 2απ

k with some integer α is
not by accident. The eigenvalues of A with module ρ(A) = 1 distribute uniformly on
the spectral circle {λ | |λ| = 1} (Yang and Yang 2011). The number of the eigenvalues
on this circle is called the primitive index of the tensor A.

If exp( 2απ
k

√−1) is an eigenvalue of A, then there exist integers αi for i ∈ [n]
such that for all e ∈ E ,

∑
j∈e ᾱ j = ᾱ. It is then easy to see that for all s ∈ [k],

∑
j∈e sα j = sα for all e ∈ E . Thus, exp( 2sαπ

k

√−1) is an eigenvalue of A for all
s ∈ [k] by Theorem 6.1. Thus, the primitive index must be a factor of k. We include
it in the next corollary. Recall that (r, s) denotes the greatest common divisor of the
integers r and s.

Corollary 6.1 Let G be a k-uniform connected hypergraph. If α ∈ [k] is the smallest
positive integer such that exp( 2απ

k

√−1) is an eigenvalue of A, then the primitive

index of A is k
(k,α)

. Thus, the primitive index of A is a factor of k; when k is a prime

number, either 1 is the unique eigenvalue of A on the spectral circle or exp( j 2π
k

√−1)

is an eigenvalue of A for all j ∈ [k].
The next corollary, together with Theorem 3.1, says that when k is odd, L does not

have an eigenvalue being 2.

Corollary 6.2 Let G be a k-uniform connected hypergraph and k be odd. Then for
any λ ∈ σ(L), we have Re(λ) < 2.

Proof Note that by Theorem 3.1 (ii), Re(λ) ≤ 2 with equality holding if and only if
λ = 2. In this case −1 is an eigenvalue of A. While, Theorem 6.1 says that −1 cannot
be an eigenvalue of A, since k is odd. Thus, the result follows. ��
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The next corollary says that the spectrum of the adjacency tensor is invariant under
the multiplication by exp(

2 jπ
s

√−1) for all j ∈ [s] with s ≥ 1 being the primitive
index of A.

Corollary 6.3 Let G be a k-uniform connected hypergraph and the primitive index
of A be s ≥ 1. Let (α1, . . . , αn) be a set of integers satisfying the equations 21 for
α = k

s . If λ is an eigenvalue of A with an eigenvector x, then exp( 2π
s

√−1)λ is also

an eigenvalue of A with an eigenvector z with zi := exp(
2αi π

k

√−1)xi for all i ∈ [n].
Proof Suppose that λ is an eigenvalue of A with an eigenvector x ∈ C

n . Then, we
have that �xk−1 = λx[k−1]. By the hypothesis, we have that

∑

j∈e

ᾱ j =
(

k

s

)

, ∀e ∈ E . (23)

Let z ∈ C
n be an n-vector with zi := exp(

2αi π
k

√−1)xi for all i ∈ [n]. Then, for
all i ∈ [n],

(Azk−1)i =
∑

e∈Ei

1
k
√

di

∏

j∈e\{i}

z j
k
√

d j
=

∑

e∈Ei

exp( 2π
s

√−1)

exp(
2αi π

k

√−1)

1
k
√

di

∏

j∈e\{i}

x j
k
√

d j

= exp( 2π
s

√−1)

exp(
2αi π

k

√−1)
λxk−1

i = exp( 2π
s

√−1)

exp
([

2αi π
k + (k − 1)

2αi π
k

] √−1
)λzk−1

i

= exp

(
2π

s

√−1

)

λzk−1
i ,

where the second equality follows from 23. Thus, exp( 2π
s

√−1)λ is an eigenvalue of
A with the eigenvector z. The proof is complete. ��

The invariant of the eigenvalues under the multiplication by exp(
2 jπ

s

√−1) in Corol-
lary 6.3 follows from (Yang and Yang 2011, Theorem 3.17) as well. While, our proof
is more constructive, and it reveals the relations between the eigenvectors of the eigen-
values on the same orbit.

By the proof of Theorem 6.1, we actually get the following theorem, which char-
acterizes all the eigenvectors of A corresponding to the eigenvalues on the spectral
circle.

Theorem 6.2 Let G be a k-uniform connected hypergraph and α ∈ [k]. Then,
a nonzero vector x is an eigenvector of A corresponding to the eigenvalue
exp( 2απ

k

√−1) if and only if there exist θ and integers αi such that xi =
exp(

√−1θ) exp(
2αi π

k

√−1)
k√di

k√dvol
for i ∈ [n], and

∑

j∈e

ᾱ j = ᾱ, ∀e ∈ E .
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The next corollary says that when k is odd, the H-eigenvector of A corresponding
to the spectral radius is unique up to scalar multiplication.

Corollary 6.4 Let G be a k-uniform connected hypergraph and k be odd. If x ∈ R
n is

an eigenvector of A corresponding to the eigenvalue one, then x or −x is the unique
positive eigenvector.

Proof By Theorem 6.2, the real vector x that is an eigenvector of A corresponding to
the eigenvalue one should satisfy

exp(
√−1θ) exp

(
2αiπ

k

√−1

)

= ±1, ∀i ∈ [n].

These constraints say that θ + 2αi π
k = βiπ for some integers βi for all i ∈ [n].

Hence,
2(αi −α j )π

k = (βi − β j )π for all i, j ∈ [n]. Since k is odd, we must have

that βi − β j ∈ 〈2〉 ⊂ Z. Thus, exp(
√−1θ) exp(

2αi π
k

√−1) = 1 for all i ∈ [n] or

exp(
√−1θ) exp(

2αi π
k

√−1) = −1 for all i ∈ [n], since exp(βiπ) = exp(β jπ) for all
i, j ∈ [n]. The result now follows. ��

The next corollary gives necessary and sufficient conditions for 2 being an H-
eigenvalue of L.

Corollary 6.5 Let G be a k-uniform connected hypergraph and k be even. Then, 2
is an H-eigenvalue of L if and only if there exists a pairwise disjoint partition of the
vertex set V = V1 ∪ V2 with V1 �= ∅ such that for every edge e ∈ E, |e ∩ V1| is an
odd number.

Proof The sufficiency is obvious: let θ = 0 and αi := k
2 whenever i ∈ V1 and αi = 0

whenever i ∈ V2. Since then
∑

j∈e ᾱ j = k̄
2 for all e ∈ E , by Theorem 6.2, we see that

−1 is an H-eigenvalue of A. Hence, 2 is an H-eigenvalue of L.
For the necessity, suppose that −1 is an H-eigenvalue of A with an H-eigenvector x.

By Theorem 6.2, we have that there exist θ and integers αi satifying

exp(
√−1θ) exp

(
2αiπ

k

√−1

)

= ±1, ∀i ∈ [n],

and

∑

j∈e

ᾱ j = k̄

2
, ∀e ∈ E .

The former constraints say that θ + 2αi π
k = βiπ = βi kπ

k = 2( k
2 βi )π

k for some integers

βi for all i ∈ [n]. Thus, θ = 2βπ
k for some integer β. Since kβ = 0̄, we can absorb θ

into αi for all i ∈ [n]. Without loss of generality, we denote the absorbed integers still
by αi . Then, we have

exp

(
2αiπ

k

√−1

)

= ±1, ∀i ∈ [n] ⇐⇒ ᾱi = 0̄, or ᾱi = k̄

2
, ∀i ∈ [n],
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and still

∑

j∈e

ᾱ j = k̄

2
, ∀e ∈ E .

Since 2αi = 0̄ for all i ∈ [n], the latter constraints imply that there exists a pairwise
disjoint partition of the vertex set V = V1 ∪ V2 with V1 �= ∅ such that for every edge
e ∈ E , |e ∩ V1| is an odd number. Actually, V1 can be chosen as {i ∈ [n] | ᾱi = k̄

2 }.
��

A hypergraph is called k-partite, if there is a pairwise disjoint partition of V =
V1 ∪ · · · ∪ Vk such that every edge e ∈ E intersects Vi nontrivially (i.e., e ∩ Vi �= ∅)
for all i ∈ [k].
Corollary 6.6 Let G be a k-uniform connected hypergraph. If G is k-partite, then the
primitive index of A is k.

Proof Since G is k-partite, let V1, . . . , Vk be one of its k-partition. For any j ∈ [k], let
θ = 0, ᾱi = j̄ for i ∈ V1, and ᾱi = 0̄ for all i /∈ V1. Thus, we fulfill

∑
i∈e ᾱi = j̄ for

all e ∈ E . Hence, for all j ∈ [k], exp( j 2π
k

√−1) is an eigenvalue of A by Theorem
6.2. ��

Corollaries 6.6 and 6.3 imply that the spectrum of the adjacency tensor of a k-
partite hypergraph is invariant under multiplication by any k-th root of unity. Thus, we
recover (Cooper andv Dutle 2012, Theorem 4.2) for the spectrum of the normalized
adjacency tensor of a k-partite hypergraph.

6.2 Algebraic reformulation

In this short subsection, we reformulate Theorems 6.1 and 6.2 into the language of
linear algebra over modules.

For a positive integer k, let the ring K be defined as above. Let A := K
n be the

free K-module of rank n. For every hypergraph G = (V, E), we can associated it a
submodule G ⊆ A with G being generated by G̃ := {z(e) ∈ A | z(e)i = 1̄, i ∈
e, z(e)i = 0̄, i /∈ e, ∀e ∈ E}. Let Ĝ be the |E |×n representation matrix of K

|E | → G

with its rows being given by zT with z ∈ G̃. Denote by 1 ∈ A the vector consisting of
all one. Then we have the following result.

Theorem 6.3 Let G be a k-uniform connected hypergraph. Let θ = 2απ
k with some

nonnegative integer α. Then, exp(
√−1θ) is an eigenvalue of A if and only if there is

a vector y ∈ A such that zT y = ᾱ for all z ∈ G̃. Moreover, when exp(
√−1θ) is an

eigenvalue of A, it has a unique eigenvector (up to scalar multiplication) if and only
if the kernel of Ĝ is 〈1〉.

The merit of Theorem 6.3 is that it states the nonlinear eigenvalue problem of
tensors as a linear algebra problem. In the classic linear algebra over fields, for a
matrix A ∈ R

m×n , we see that dim(ker(A)) + dim(im(AT )) = n (Horn 1985). Here
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ker(A) and im(A) mean respectively the kernel and the image of the linear map
A : R

n → R
m . However, in above case for Ĝ, the situation is more complicated, since

the set of the first syzygies of G could be nontrivial (i.e., other than {0}) (Cox 2006,
1998). The next further work would be necessary.

7 Final remarks

This paper, the Laplacian of a uniform hypergraph is introduced and investigated.
Various basic facts about the spectrum of the Laplacian are explored. These basic
facts are related to the structures of the hypergraph. Among them, the sets of the
H+-eigenvalues and the nonnegative eigenvectors of the Laplacian are characterized
through the spectral components and the flower hearts of the hypergraph. It is shown
that all the H+-eigenvalues of the Laplacian can be computed out efficiently. Thus,
they are applicable. We also characterized the eigenvectors of the eigenvalues on the
spectral circle of the adjacency tensor. It is formulated in the language of linear algebra
over modules. That would be our next topic to investigate.
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