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In this paper, we show that the largest Laplacian H-eigen-
value of a k-uniform nontrivial hypergraph is strictly larger 
than the maximum degree when k is even. A tight lower 
bound for this eigenvalue is given. For a connected even-
uniform hypergraph, this lower bound is achieved if and 
only if it is a hyperstar. However, when k is odd, in certain 
cases the largest Laplacian H-eigenvalue is equal to the 
maximum degree, which is a tight lower bound. On the 
other hand, tight upper and lower bounds for the largest 
signless Laplacian H-eigenvalue of a k-uniform connected 
hypergraph are given. For connected k-uniform hypergraphs 
of fixed number of vertices (respectively fixed maximum 
degree), the upper (respectively lower) bound of their largest 
signless Laplacian H-eigenvalues is achieved exactly for the 
complete hypergraph (respectively the hyperstar). The largest 
Laplacian H-eigenvalue is always less than or equal to the 
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largest signless Laplacian H-eigenvalue. When the hypergraph 
is connected, the equality holds here if and only if k is even 
and the hypergraph is odd-bipartite.

© 2014 Published by Elsevier Inc.

1. Introduction

In this paper, we study the largest Laplacian and signless Laplacian H-eigenvalues 
of a uniform hypergraph. The largest Laplacian and signless Laplacian H-eigenvalues 
refer to respectively the largest H-eigenvalue of the Laplacian tensor and the largest 
H-eigenvalue of the signless Laplacian tensor. This work is motivated by some classical 
results for graphs [4,2,6,28,27]. Please refer to [15,9,5,18,16,13,22,21,24,25,10,3,8,14,17,
19,23,26] for recent developments on spectral hypergraph theory and the essential tools 
from spectral theory of nonnegative tensors.

This work is a companion of the recent study on the eigenvectors of the zero Laplacian 
and signless Laplacian eigenvalues of a uniform hypergraph by Hu and Qi [11]. For 
the literature on the Laplacian-type tensors for a uniform hypergraph, which becomes 
an active research frontier in spectral hypergraph theory, please refer to [9,13,24,18,10,
26,11] and references therein. Among others, Qi [18], and Hu and Qi [10] respectively 
systematically studied the Laplacian and signless Laplacian tensors, and the Laplacian 
of a uniform hypergraph. These three notions of Laplacian-type tensors are more natural 
and simpler than those in the literature.

The rest of this paper is organized as follows. Some definitions on eigenvalues of tensors 
and uniform hypergraphs are presented in the next section. The class of hyperstars is 
introduced. We discuss in Section 3 the largest Laplacian H-eigenvalue of a k-uniform 
hypergraph. We show that when k is even, the largest Laplacian H-eigenvalue has a tight 
lower bound that is strictly larger than the maximum degree. Extreme hypergraphs in 
this case are characterized, which are the hyperstars. When k is odd, a tight lower bound 
is exactly the maximum degree. However, we are not able to characterize the extreme 
hypergraphs in this case. Then we discuss the largest signless Laplacian H-eigenvalue in 
Section 4. Tight lower and upper bounds for the largest signless Laplacian H-eigenvalue 
of a connected hypergraph are given. Extreme hypergraphs are characterized as well. For 
the lower bound, the extreme hypergraphs are hyperstars; and for the upper bound, the 
extreme hypergraphs are complete hypergraphs. The relationship between the largest 
Laplacian H-eigenvalue and the largest signless Laplacian H-eigenvalue is discussed in 
Section 5. The largest Laplacian H-eigenvalue is always less than or equal to the largest 
signless Laplacian H-eigenvalue. When the hypergraph is connected, the equality holds 
here if and only if k is even and the hypergraph is odd-bipartite. This result can help 
us to find the largest Laplacian H-eigenvalue of an even-uniform hypercycle. Some final 
remarks are made in the last section.
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2. Preliminaries

Some definitions of eigenvalues of tensors and uniform hypergraphs are presented in 
this section.

2.1. Eigenvalues of tensors

In this subsection, some basic definitions on eigenvalues of tensors are reviewed. For 
comprehensive references, see [17,8] and references therein. Especially, for spectral hy-
pergraph theory oriented facts on eigenvalues of tensors, please see [18,10].

Let R be the field of real numbers and Rn the n-dimensional real vector space. Rn
+

denotes the nonnegative orthant of Rn. For integers k ≥ 3 and n ≥ 2, a real tensor 
T = (ti1...ik) of order k and dimension n refers to a multidimensional array (also called 
hypermatrix) with entries ti1...ik such that ti1...ik ∈ R for all ij ∈ [n] := {1, . . . , n} and 
j ∈ [k]. Tensors are always referred to k-th order real tensors in this paper, and the 
dimensions will be clear from the content. Given a vector x ∈ Rn, T xk−1 is defined as 
an n-dimensional vector such that its i-th element being 

∑
i2,...,ik∈[n]

tii2...ikxi2 · · ·xik for 

all i ∈ [n]. Let I be the identity tensor of appropriate dimension, e.g., ii1...ik = 1 if and 
only if i1 = · · · = ik ∈ [n], and zero otherwise when the dimension is n. The following 
definition was introduced by Qi [17].

Definition 2.1. Let T be a k-th order n-dimensional real tensor. For some λ ∈ R, if 
polynomial system (λI − T )xk−1 = 0 has a solution x ∈ Rn \ {0}, then λ is called an 
H-eigenvalue and x an H-eigenvector.

It is seen that H-eigenvalues are real numbers [17]. By [8,17], we have that the number 
of H-eigenvalues of a real tensor is finite. By [18], we have that all the tensors considered 
in this paper have at least one H-eigenvalue. Hence, we can denote by λ(T ) (respectively 
μ(T )) as the largest (respectively smallest) H-eigenvalue of a real tensor T .

For a subset S ⊆ [n], we denoted by |S| its cardinality, and sup(x) := {i ∈ [n] | xi �= 0}
its support.

2.2. Uniform hypergraphs

In this subsection, we present some essential concepts of uniform hypergraphs which 
will be used in the sequel. Please refer to [1,4,2,10,18] for comprehensive references.

In this paper, unless stated otherwise, a hypergraph means an undirected simple 
k-uniform hypergraph G with vertex set V , which is labeled as [n] = {1, . . . , n}, and 
edge set E. By k-uniformity, we mean that for every edge e ∈ E, the cardinality |e| of 
e is equal to k. Throughout this paper, k ≥ 3 and n ≥ k. Moreover, since the trivial 
hypergraph (i.e., E = ∅) is of less interest, we consider only hypergraphs having at least 
one edge (i.e., nontrivial) in this paper.
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For a subset S ⊂ [n], we denoted by ES the set of edges {e ∈ E | S ∩ e �= ∅}. For a 
vertex i ∈ V , we simplify E{i} as Ei. It is the set of edges containing the vertex i, i.e., 
Ei := {e ∈ E | i ∈ e}. The cardinality |Ei| of the set Ei is defined as the degree of the 
vertex i, which is denoted by di. Two different vertices i and j are connected to each other 
(or the pair i and j is connected), if there is a sequence of edges (e1, . . . , em) such that 
i ∈ e1, j ∈ em and er ∩ er+1 �= ∅ for all r ∈ [m − 1]. A hypergraph is called connected, if 
every pair of different vertices of G is connected. Let S ⊆ V , the hypergraph with vertex 
set S and edge set {e ∈ E | e ⊆ S} is called the sub-hypergraph of G induced by S. 
We will denote it by GS . A hypergraph is regular if d1 = · · · = dn = d. A hypergraph 
G = (V, E) is complete if E consists of all the possible edges. In this case, G is regular, 
and moreover d1 = · · · = dn = d =

(
n−1
k−1

)
. In the sequel, unless stated otherwise, all the 

notations introduced above are reserved for the specific meanings.
For the sake of simplicity, we mainly consider connected hypergraphs in the subsequent 

analysis. By the techniques in [18,10], the conclusions on connected hypergraphs can be 
easily generalized to general hypergraphs.

The following definition for the Laplacian tensor and signless Laplacian tensor was 
proposed by Qi [18].

Definition 2.2. Let G = (V, E) be a k-uniform hypergraph. The adjacency tensor of G is 
defined as the k-th order n-dimensional tensor A whose (i1 . . . ik)-entry is:

ai1...ik :=
{

1
(k−1)! if {i1, . . . , ik} ∈ E,

0 otherwise.

Let D be a k-th order n-dimensional diagonal tensor with its diagonal element di...i
being di, the degree of vertex i, for all i ∈ [n]. Then L := D − A is the Laplacian 
tensor of the hypergraph G, and Q := D + A is the signless Laplacian tensor of the 
hypergraph G.

In the following, we introduce the class of hyperstars.

Definition 2.3. Let G = (V, E) be a k-uniform hypergraph. If there is a disjoint partition 
of the vertex set V as V = V0∪V1∪· · ·∪Vd such that |V0| = 1 and |V1| = · · · = |Vd| = k−1, 
and E = {V0 ∪ Vi | i ∈ [d]}, then G is called a hyperstar. The degree d of the vertex 
in V0, which is called the heart, is the size of the hyperstar. The edges of G are leaves, 
and the vertices other than the heart are vertices of leaves.

It is an immediate fact that, with a possible renumbering of the vertices, all the 
hyperstars with the same size are identical. Moreover, by Definition 2.1, we see that 
the process of renumbering does not change the H-eigenvalues of either the Laplacian 
tensor or the signless Laplacian tensor of a hyperstar. The trivial hyperstar is the one 
edge hypergraph, its spectrum is very clear [5]. In the sequel, unless stated otherwise, 
a hyperstar is referred to a hyperstar having size d > 1. For a vertex i other than the 
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Fig. 1. An example of a 3-uniform hyperstar of size 3. An edge is pictured as a closed curve with the 
containing solid disks the vertices in that edge. Different edges are in different curves with different colors. 
The red (also in dashed margin) disk represents the heart. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

Fig. 2. An example of an odd-bipartite 4-uniform hypergraph. The bipartition is clear from the different 
colors (also the dashed margins from the solid ones) of the disks.

heart, the leaf containing i is denoted by le(i). An example of a hyperstar is given in 
Fig. 1.

The notions of odd-bipartite and even-bipartite even-uniform hypergraphs are intro-
duced in [11].

Definition 2.4. Let k be even and G = (V, E) be a k-uniform hypergraph. It is called 
odd-bipartite if either it is trivial (i.e., E = ∅) or there is a disjoint partition of the vertex 
set V as V = V1∪V2 such that V1, V2 �= ∅ and every edge in E intersects V1 with exactly 
an odd number of vertices.

An example of an odd-bipartite hypergraph is given in Fig. 2.

3. The largest Laplacian H-eigenvalue

This section presents some basic facts about the largest Laplacian H-eigenvalue of a 
uniform hypergraph. We start the discussion on the class of hyperstars.
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3.1. Hyperstars

Some properties of hyperstars are given in this subsection.
The next proposition is a direct consequence of Definition 2.3.

Proposition 3.1. Let G = (V, E) be a hyperstar of size d > 0. Then except for one vertex 
i ∈ [n] with di = d, we have dj = 1 for the others.

By Theorem 4 of [18], we have the following lemma.

Lemma 3.1. Let G = (V, E) be a k-uniform hypergraph with its maximum degree d > 0
and L = D −A be its Laplacian tensor. Then λ(L) ≥ d.

When k is even and G is a hyperstar, Lemma 3.1 can be strengthened as in the next 
proposition.

Proposition 3.2. Let k be even and G = (V, E) be a hyperstar of size d > 0 and L = D−A
be its Laplacian tensor. Then λ(L) > d.

Proof. Suppose, without loss of generality, that d1 = d. Let x ∈ Rn be a nonzero vector 
such that x1 = α ∈ R, and x2 = · · · = xn = 1. Then, we see that

(
Lxk−1)

1 = dαk−1 − d,

and for i ∈ {2, . . . , n}

(
Lxk−1)

i
= 1 − α.

Thus, if x is an H-eigenvector of L corresponding to an H-eigenvalue λ, then we must 
have

dαk−1 − d = λαk−1, and 1 − α = λ.

Hence,

(1 − λ)k−1(λ− d) + d = 0.

Let f(λ) := (1 − λ)k−1(λ − d) + d. We have that

f(d) = d > 0, and f(d + 1) = (−d)k−1 + d < 0.

Consequently, f(λ) = 0 does have a root in the interval (d, d + 1). Hence L has an 
H-eigenvalue λ > d. The result follows. �
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The next lemma characterizes H-eigenvectors of the Laplacian tensor of a hyperstar 
corresponding to an H-eigenvalue which is not one.

Lemma 3.2. Let G = (V, E) be a hyperstar of size d > 0 and x ∈ Rn be an H-eigenvector 
of the Laplacian tensor of G corresponding to a nonzero H-eigenvalue other than one. If 
xi = 0 for some vertex i of a leaf (other than the heart), then xj = 0 for all the vertices 
j in the leaf containing i and other than the heart. Moreover, in this situation, if h is 
the heart, then xh �= 0.

Proof. Suppose that the H-eigenvalue is λ �= 1. By the definition of eigenvalues, we have 
that for the vertex j ∈ le(i) other than the heart and the vertex i,

(
Lxk−1)

j
= xk−1

j −
∏

s∈le(j)\{j}
xs = xk−1

j − 0 = λxk−1
j .

Since λ �= 1, we must have that xj = 0.
With a similar proof, we get the other conclusion by contradiction, since h ∈ le(i) for 

all vertices i of leaves and x �= 0. �
The next lemma characterizes the H-eigenvectors of the Laplacian tensor of a hyper-

star corresponding to the largest Laplacian H-eigenvalue.

Lemma 3.3. Let G = (V, E) be a hyperstar of size d > 1. Then there is an H-eigenvector 
z ∈ Rn of the Laplacian tensor L of G corresponding to λ(L) satisfying that |zi| is a 
constant for i ∈ sup(z) and i being not the heart.

Proof. Suppose that y ∈ Rn is an H-eigenvector of L corresponding to λ(L). Without 
loss of generality, let 1 be the heart and hence d1 = d. Note that, by Lemma 3.1, we 
have that λ(L) ≥ d > 1. We first show the case when sup(y) = [n]. Without loss of 
generality, we can assume that y1 > 0. In the following, we construct an H-eigenvector 
z ∈ Rn corresponding to λ(L) from y such that |z2| = · · · = |zn|.

(I). We first prove that for every leaf e ∈ E, |yt| is a constant for all t ∈ e \ {1}.
For an arbitrary but fixed leaf e ∈ E, suppose that |yi| = max{|yj | | j ∈ e \ {1}} and 

|ys| = min{|yj | | j ∈ e \ {1}}. If |yi| = |ys|, then we are done. In the following, suppose 
on the contrary that |yi| > |ys|. Then, we have

(
λ(L) − 1

)
|yi|k−1 = y1

∏
j∈e\{1,i}

|yj |, and
(
λ(L) − 1

)
|ys|k−1 = y1

∏
j∈e\{1,s}

|yj |.

By the definitions of |yi| and |ys|, we have y1
∏

j∈e\{1,i} |yj | < y1
∏

j∈e\{1,s} |yj |. On the 
other hand, we have (λ(L) − 1)|yi|k−1 > (λ(L) − 1)|ys|k−1. Hence, a contradiction is 
derived. Consequently, for every leaf e ∈ E, |yt| is a constant for all t ∈ e \ {1}.
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(II). We next show that all the numbers in this set

{
αs :=

∏
j∈es\{1}

yj , es ∈ E

}

are of the same sign.
When k is even, suppose that yi < 0 for some i. Then

0 >
(
λ(L) − 1

)
yk−1
i = −y1

∏
j∈le(i)\{1,i}

yj . (1)

Thus, an odd number of vertices in le(i) take negative values. By (1), we must have that 
there exists some i ∈ e such that yi < 0 for every e ∈ E. Otherwise, (λ(L) − 1)yk−1

i > 0, 
together with −y1

∏
j∈le(i)\{1,i} yj < 0, would lead to a contradiction. Hence, all the 

numbers in this set
{
αs :=

∏
j∈es\{1}

yj , es ∈ E

}

are negative.
When k is odd, suppose that yi < 0 for some i. Then

0 <
(
λ(L) − 1

)
yk−1
i = −y1

∏
j∈le(i)\{1,i}

yj . (2)

Thus, a positive even number of vertices in le(i) take negative values. Thus, if there is 
some s ∈ le(i) such that ys > 0, then

0 <
(
λ(L) − 1

)
yk−1
s = −y1

∏
j∈le(s)\{1,s}

yj .

Since s ∈ le(i), we have le(i) = le(s) and i ∈ le(s). Hence, y1
∏

j∈le(s)\{1,s} yj > 0. 
A contradiction is derived. By (2), we must have that there exists some i ∈ e such that 
yi < 0 for every e ∈ E. Consequently, yj < 0 for all j �= 1. Hence, all the numbers in this 
set

{
αs :=

∏
j∈es\{1}

yj , es ∈ E

}

are positive.
(III). We construct the desired vector z.
If the product 

∏
j∈e\{1} yj is a constant for every leaf e ∈ E, then take z = y and we 

are done. In the following, we show that the set
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{
αs :=

∏
j∈es\{1}

yj , es ∈ E

}

takes exactly one number.
Let e1 ∈ E. Since λ(L) > 1 and |yi| is a constant for all i ∈ e1 \ {1} (cf. (I)), it follows 

from (λ(L) − 1)|yi|k−1 = y1
∏

j∈e1\{1,i} |yj | that for all i ∈ e1 \ {1}

|yi| = 1
λ(L) − 1y1.

Likewise, we have

|yj | = 1
λ(L) − 1y1,

for all j ∈ es \ {1} and es ∈ E. Therefore, the result follows since αs’s have the same 
sign by (II).

(IV). The general case with sup(y) � [n].
The case when sup(y) = {1} is trivial. In the sequel, by Lemma 3.2, without loss of 

generality, we can assume that sup(y) = {e1, . . . , ep} for the leaves e1, . . . , ep for some 
1 ≤ p < d. Analogies for (I), (II) and (III) can be proved similarly in this case. The 
result follows. �

The next corollary follows directly from the proof of Lemma 3.3.

Corollary 3.1. Let k be odd and G = (V, E) be a hyperstar of size d > 1. There exists an 
H-eigenvector z ∈ Rn of the Laplacian tensor L of G corresponding to λ(L) such that 
zi is a constant for i ∈ sup(z) and i being not the heart. Moreover, whenever sup(z)
contains a vertex other than the heart, the signs of the heart and the vertices of leaves 
in sup(z) are opposite.

However, in Section 3.3, we will show that sup(z) is a singleton which is the heart.
The next lemma is useful, which follows from a similar proof of [17, Theorem 5].

Lemma 3.4. Let k be even and G = (V, E) be a k-uniform hypergraph. Let L be the 
Laplacian tensor of G. Then

λ(L) = max
{
Lxk := xT

(
Lxk−1) ∣∣∣ ∑

i∈[n]

xk
i = 1, x ∈ Rn

}
. (3)

The next lemma is an analogue of Corollary 3.1 for k being even.

Lemma 3.5. Let k be even and G = (V, E) be a hyperstar of size d > 0. Then there is an 
H-eigenvector z ∈ Rn of the Laplacian tensor L of G satisfying that zi is a constant for 
i ∈ sup(z) and i being not the heart.
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Proof. In the proof of Lemma 3.3, d > 1 is required only to guarantee λ(L) > 1. While, 
when k is even, by Proposition 3.2, λ(L) > 1 whenever d > 0. Hence, there is an 
H-eigenvector x ∈ Rn of the Laplacian tensor L of G corresponding to λ(L) satisfying 
that |xi| is a constant for i ∈ sup(x) and i being not the heart.

Suppose, without loss of generality, that 1 is the heart. By Lemma 3.2, without loss 
of generality, suppose that sup(x) = [n]. If x1 > 0, then let y = −x, and otherwise let 
y = x.

Suppose that yi < 0 for some i other than y1. Then

0 >
(
λ(L) − 1

)
yk−1
i = −y1

∏
j∈le(i)\{1,i}

yj .

Thus, a positive even number of vertices in le(i) other than 1 take negative values. Hence, 
all the values in this set

{ ∏
j∈es\{1}

yj , es ∈ E

}

are positive. Let z ∈ Rn such that z1 = y1 and zi = |yi| for the others. We have that if 
yi > 0, then

(
λ(L) − 1

)
zk−1
i =

(
λ(L) − 1

)
yk−1
i = −y1

∏
j∈le(i)\{1,i}

yj = −z1
∏

j∈le(i)\{1,i}
zj ;

and if yi < 0, then
(
λ(L) − 1

)
zk−1
i =

(
λ(L) − 1

)
|yi|k−1 = y1

∏
j∈le(i)\{1,i}

yj = −z1
∏

j∈le(i)\{1,i}
zj .

Here, the second equality follows from the fact that 
∏

j∈le(i)\{1,i} yj < 0 in this situation. 
Moreover,

(
λ(L) − d

)
zk−1
1 =

(
λ(L) − d

)
yk−1
1 = −

∑
es∈E

∏
j∈es\{1}

yj

= −
∑
es∈E

∣∣∣∣
∏

j∈es\{1}
yj

∣∣∣∣ = −
∑
es∈E

∏
j∈es\{1}

zj .

Consequently, z is the desired H-eigenvector. �
The next theorem gives the largest Laplacian H-eigenvalue of a hyperstar for k being 

even.

Theorem 3.1. Let k be even and G = (V, E) be a hyperstar of size d > 0. Let L be the 
Laplacian tensor of G. Then λ(L) is the unique real root of the equation (1 − λ)k−1(λ −
d) + d = 0 in the interval (d, d + 1).
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Proof. By Lemma 3.5, there is an H-eigenvector x ∈ Rn of the Laplacian tensor L of 
G satisfying that xi is a constant for i ∈ sup(x) and i being not the heart. Similar to 
the proof for Proposition 3.2, we have that λ(L) is the largest real root of the equation 
(1 − λ)k−1(λ − d) + w = 0. Here w is the size of the sub-hyperstar Gsup(x) of G.

Let f(λ) := (1 −λ)k−1(λ −d) +w. Then, f ′(λ) = (1 −λ)k−2((k−1)(d −λ) +1 −λ). Hence, 
f is strictly decreasing in the interval (d, +∞). Moreover, f(d + 1) < 0. Consequently, 
f has a unique real root in the interval (d, d + 1) which is the maximum real root for 
every w. Thus, by Proposition 3.2, we must have sup(x) = [n] which corresponds to 
w = d. The result follows. �

The next corollary is a direct consequence of Theorem 3.1.

Corollary 3.2. Let G1 = (V1, E1) and G2 = (V2, E2) be two hyperstars of size d1 and 
d2 > 0, respectively. Let L1 and L2 be the Laplacian tensors of G1 and G2 respectively. 
If d1 > d2, then λ(L1) > λ(L2).

When k is even, the proofs of Lemmas 3.3 and 3.5, and Theorem 3.1 actually imply 
the next corollary.

Corollary 3.3. Let k be even and G = (V, E) be a hyperstar of size d > 0. If x ∈ Rn is an 
H-eigenvector of the Laplacian tensor L of G corresponding to λ(L), then sup(x) = [n]. 
Hence, there is an H-eigenvector z ∈ Rn of the Laplacian tensor L of G corresponding 
to λ(L) satisfying that zi is a constant for all the vertices other than the heart.

3.2. Even-uniform hypergraphs

In this subsection, we present a tight lower bound for the largest Laplacian H-
eigenvalue and characterize the extreme hypergraphs when k is even.

The next theorem gives the lower bound, which is tight by Theorem 3.1.

Theorem 3.2. Let k be even and G = (V, E) be a k-uniform hypergraph with the maximum 
degree being d > 0. Let L be the Laplacian tensor of G. Then λ(L) is not smaller than 
the unique real root of the equation (1 − λ)k−1(λ − d) + d = 0 in the interval (d, d + 1).

Proof. Suppose that ds = d, the maximum degree. Let G′ = (V ′, E′) be a k-uniform 
hypergraph such that E′ = Es and V ′ consisting of the vertex s and the vertices which 
share an edge with s. Let L′ be the Laplacian tensor of G′. We claim that λ(L) ≥ λ(L′).

Suppose that |V ′| = m ≤ n and y ∈ Rm is an H-eigenvector of L′ corresponding to 
the H-eigenvalue λ(L′) such that 

∑
j∈[m] y

k
j = 1. Suppose, without loss of generality, 

that V ′ = [m], and the degree of vertex j ∈ [m] in the hypergraph G′ is d′j . Let x ∈ Rn

such that

xi = yi, ∀i ∈ [m], and xi = 0, ∀i > m. (4)
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Obviously, 
∑

i∈[n] x
k
i =

∑
j∈[m] y

k
j = 1. Moreover,

Lxk =
∑
i∈[n]

dix
k
i − k

∑
e∈E

∏
j∈e

xj

= dsx
k
s +

∑
j∈[m]\{s}

d′jx
k
j − k

∑
e∈Es

∏
t∈e

xt

+
∑

j∈[m]\{s}

(
dj − d′j

)
xk
j +

∑
j∈[n]\[m]

djx
k
j − k

∑
e∈E\Es

∏
t∈e

xt

= dsx
k
s +

∑
j∈[m]\{s}

d′jx
k
j − k

∑
e∈Es

∏
j∈e

xj +
∑

e∈E\Es

(∑
t∈e

xk
t − k

∏
w∈e

xw

)

= L′yk +
∑

e∈E\Es

(∑
t∈e

xk
t − k

∏
w∈e

xw

)
≥ L′yk = λ

(
L′). (5)

Here the inequality follows from the fact that 
∑

t∈e x
k
t − k

∏
w∈e |xw| ≥ 0 by the 

arithmetic-geometric mean inequality. Thus, by the characterization (3) (Lemma 3.4), 
we get the conclusion since λ(L) ≥ Lxk.

For the hypergraph G′, we define a new hypergraph in the following way: fix the 
vertex s, and for every edge e ∈ Es, number the rest k− 1 vertices as {(e, 2), . . . , (e, k)}. 
Let Ḡ = (V̄ , Ē) be the k-uniform hypergraph with V̄ := {s, (e, 2), . . . , (e, k), ∀e ∈ Es}
and Ē := {{s, (e, 2), . . . , (e, k)} | e ∈ Es}. It is easy to see that Ḡ is a hyperstar with 
size d > 0 and the heart being s (Definition 2.3). Let z ∈ Rkd−d+1 be an H-eigenvector 
of the Laplacian tensor L̄ of Ḡ corresponding to λ(L̄). Suppose that 

∑
t∈V̄ zkt = 1. By 

Corollary 3.3, we can choose a z such that zi is a constant other than zs which corresponds 
to the heart. Let y ∈ Rm be defined as yi being the constant for all i ∈ [m] \ {s} and 
ys = zs. Then, by a direct computation, we see that

L′yk = L̄zk = λ(L̄).

Moreover, 
∑

j∈[m] y
k
j ≤

∑
t∈V̄ zkt = 1. By (3) and the fact that λ(L̄) > 0 (Theorem 3.1), 

we see that

λ
(
L′) ≥ λ(L̄). (6)

Consequently, λ(L) ≥ λ(L̄). By Theorem 3.1, λ(L̄) is the unique real root of the equation 
(1 −λ)k−1(λ −d) +d = 0 in the interval (d, d +1). Consequently, λ(L) is no smaller than 
the unique real root of the equation (1 −λ)k−1(λ −d) +d = 0 in the interval (d, d +1). �
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By the proof of Theorem 3.2, the next theorem follows immediately.

Theorem 3.3. Let k be even, and G = (V, E) and G′ = (V ′, E′) be two k-uniform 
hypergraphs. Suppose that L and L′ be the Laplacian tensors of G and G′ respectively. 
If V ⊆ V ′ and E ⊆ E′, then λ(L) ≤ λ(L′).

The next lemma helps us to characterize the extreme hypergraphs with respect to the 
lower bound of the largest Laplacian H-eigenvalue.

Lemma 3.6. Let k ≥ 4 be even and G = (V, E) be a hyperstar of size d > 0. Then there 
is an H-eigenvector z ∈ Rn of the Laplacian tensor L of G satisfying that exactly two 
vertices other than the heart in every edge take negative values.

Proof. Suppose, without loss of generality, that 1 is the heart. By Corollary 3.3, there is 
an H-eigenvector x ∈ Rn of L corresponding to λ(L) such that xi is a constant for the 
vertices other than the heart. By Theorem 3.1, we have that this constant is nonzero. If 
x2 < 0, then let y = −x, and otherwise let y = x. We have that y is an H-eigenvector 
of L corresponding to λ(L).

Let z ∈ Rn. We set z1 = y1, and for every edge e ∈ E arbitrarily two chosen ie,1, ie,2 ∈
e \ {1} we set zie,1 = −yie,1 < 0, zie,2 = −yi2 < 0 and zj = yj > 0 for the others j ∈
e \{1, ie,1, ie,2}. Then, by a direct calculation, we can conclude that z is an H-eigenvector 
of L corresponding to λ(L). �

The next theorem is the main result of this subsection, which characterizes the extreme 
hypergraphs with respect to the lower bound of the largest Laplacian H-eigenvalue.

Theorem 3.4. Let k ≥ 4 be even and G = (V, E) be a k-uniform connected hypergraph 
with the maximum degree being d > 0. Let L be the Laplacian tensor of G. Then λ(L)
is equal to the unique real root of the equation (1 − λ)k−1(λ − d) + d = 0 in the interval 
(d, d + 1) if and only if G is a hyperstar.

Proof. By Theorem 3.1, only necessity needs a proof. In the following, suppose that λ(L)
is equal to the unique real root of the equation (1 − λ)k−1(λ − d) + d = 0 in the interval 
(d, d + 1). Suppose that ds = d as before.

Define G′ and Ḡ as those in Theorem 3.2. Actually, let G′ = (V ′, E′) be the k-uniform 
hypergraph such that E′ = Es and V ′ consisting of the vertex s and the vertices which 
share an edge with s. Let L′ be the Laplacian tensor of G′. Fix the vertex s, and for 
every edge e ∈ Es, number the rest k − 1 vertices as {(e, 2), . . . , (e, k)}. Let Ḡ = (V̄ , Ē)
be the k-uniform hypergraph such that V̄ := {s, (e, 2), . . . , (e, k), ∀e ∈ Es} and Ē :=
{{s, (e, 2), . . . , (e, k)} | e ∈ Es}.

With the same proof as in Theorem 3.2, by Lemma 3.4, we have that inequality in (6)
is an equality if and only if |V̄ | = m. Since otherwise 

∑
j∈[m] y

k
j <

∑
t∈V̄ zkt = 1, which 

together with λ(L̄) > 0 and (3) implies that λ(L′) > λ(L̄). Hence, if λ(L) is equal to the 
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unique real root of the equation (1 −λ)k−1(λ − d) + d = 0 in the interval (d, d + 1), then 
G′ is a hyperstar. In this situation, we claim that the inequality in (5) is an equality if 
and only if G′ = G. The sufficiency is clear.

For the necessity, suppose that G′ �= G. Then there is an edge ē ∈ E

(i) either containing both vertices in [m] and vertices in [n] \ [m], since G is connected,
(ii) or containing only vertices in [m] \ {s}.

For the case (i), it is easy to get a contradiction since 
∑

t∈e x
k
t − k

∏
w∈e xw =∑

t∈e∩[m] x
k
t > 0. Note that this situation happens if and only if m < n. Then, in 

the following we assume that m = n. For the case (ii), we must have that there are 
q ≥ 2 edges ea ∈ Es, a ∈ [q] in G′ such that ea ∩ ē �= ∅ for all a ∈ [q]. By Lemma 3.6, 
let y ∈ Rn be an H-eigenvector of the Laplacian tensor L′ of G′ satisfying that exactly 
two vertices other than the heart in every leaf take negative values. Moreover, we can 
normalize y such that 

∑
i∈[n] y

k
i = 1. Since m = n, by (4), we have x = y. Consequently, 

by Lemma 3.4, we have

λ(L) ≥ Lxk = L′xk +
∑

e∈E\Es

(∑
t∈e

xk
t − k

∏
w∈e

xw

)

= λ
(
L′) +

∑
e∈E\Es

(∑
t∈e

xk
t − k

∏
w∈e

xw

)

≥ λ
(
L′) +

∑
t∈ē

xk
t − k

∏
w∈ē

xw.

If 
∏

w∈ē xw < 0, then we get a contradiction since λ(L′) is equal to the unique real root 
of the equation (1 − λ)k−1(λ − d) + d = 0 in the interval (d, d + 1). In the following, we 
assume that 

∏
w∈ē xw > 0. We have two cases:

(1) xw > 0 or xw < 0 for all w ∈ ē,
(2) xb > 0 for some b ∈ ē and xc < 0 for some c ∈ ē.

Note that there exists some a ∈ [q] such that |ea ∩ ē| ≤ k− 2. For an arbitrary but fixed 
such a ∈ [q], define {f1, f2} := {f ∈ ea \ {s} | xf < 0}.

(I). If f1, f2 ∈ ē, then we choose an h ∈ ea such that h �= s, h /∈ ē and xh > 0. Since 
k ≥ 4 is even, such an h exists. It is a direct computation to see that z ∈ Rn such that 
zf1 = −xf1 > 0, zh = −xh < 0, and zi = xi for the others is still an H-eigenvector of 
L′ corresponding to λ(L′). More importantly, 

∏
w∈ē zw < 0. Hence, replacing y by z, we 

get a contradiction.
(II). If f1 ∈ ē and f2 /∈ ē, then either there is an h ∈ ē ∩ ea such that h �= s and 

xh > 0, or there is an h ∈ ea such that h �= s, h /∈ ē and xh > 0. Since k ≥ 4 is even, such 
an h exists. For the former case, set z ∈ Rn such that zh = −xh < 0, zf2 = −xf2 > 0, 
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and zi = xi for the others; and for the latter case, set z ∈ Rn such that zf1 = −xf1 > 0, 
zh = −xh < 0, and zi = xi for the others. Then, it is a direct computation to see that z
is still an H-eigenvector of L′ corresponding to λ(L′). We also have that 

∏
w∈ē zw < 0. 

Hence, replacing y by z, we get a contradiction.
(III). The proof for the case f2 ∈ ē and f1 /∈ ē is similar.
(IV). If f1, f2 /∈ ē, then there is some b ∈ ē ∩ ea such that xb > 0, then similarly it 

is a direct computation to see that z ∈ Rn such that zb = −xb < 0, zf1 = −xf1 > 0, 
and zi = xi for the others is still an H-eigenvector of L′ corresponding to λ(L′). We also 
have that 

∏
w∈ē zw < 0. Consequently, a contradiction can be derived.

Thus, G = G′ is a hyperstar. �
Theorems 3.2 and 3.4 generalize the classical result for graphs [7,28].

3.3. Odd-uniform hypergraphs

In this subsection, we discuss odd-uniform hypergraphs. Note that there does not 
exist an analogue of Lemma 3.4 for k being odd. Hence it is difficult to characterize the 
extreme hypergraphs for the lower bound of the largest H-eigenvalue of the Laplacian 
tensor.

Theorem 3.5. Let k be odd and G = (V, E) be a hyperstar of size d > 0. Let L be the 
Laplacian tensor of G. Then λ(L) = d.

Proof. The case for d = 1 follows by direct computation, since in this case, for all i ∈ [k]

(
λ(L) − 1

)
xk
i = −

∏
j∈[k]

xj .

If λ(L) > 1, then xk
i = xk

j for all i, j ∈ [k]. Since k is odd and x �= 0, we have xi = xj �= 0
for all i, j ∈ [k]. This implies that 0 < λ(L) − 1 = −1 < 0, a contradiction.

In the following, we consider cases when d > 1. Suppose, without loss of general-
ity, that 1 is the heart. It is easy to see that the H-eigenvector x := (1, 0, . . . , 0) ∈ Rn

corresponds to the H-eigenvalue d. Suppose that x ∈ Rn is an H-eigenvector of L cor-
responding to λ(L). In the following, we show that sup(x) = {1}, which implies that 
λ(L) = d.

Suppose on the contrary that sup(x) �= {1}. By Lemma 3.2 and Corollary 3.1, without 
loss of generality, we assume that sup(x) = [n] and x is of the following form

α := x1 > 0, and x2 = · · · = xn = −1.

Then, we see that

(
Lxk−1) = dαk−1 − d = λ(L)αk−1,
1
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and for i ∈ {2, . . . , n}

(
Lxk−1)

i
= 1 + α = λ(L).

Consequently,

(
d− λ(L)

)(
λ(L) − 1

)k−1 = d.

Hence, we must have λ(L) < d. This is a contradiction. Hence, λ(L) = d. �
When k is odd, Theorem 3.5, together with Lemma 3.1, implies that the maximum 

degree is a tight lower bound for the largest Laplacian H-eigenvalue.
We now give a lower bound for the largest Laplacian H-eigenvalue of a 3-uniform 

complete hypergraph.

Proposition 3.3. Let G = (V, E) be a 3-uniform complete hypergraph. Let L be the Lapla-
cian tensor of G and n = 2m for some positive integer m. Then λ(L) ≥

(
n−1

2
)

+ m − 1, 
which is strictly larger than d =

(
n−1

2
)
, the maximum degree of G.

Proof. Let x ∈ Rn be defined as x1 = · · · = xm = 1 and xm+1 = · · · = x2m = −1. We 
have that

(
Lx2)

1 =
(
n− 1

2

)
x2

1 −
∑

1<i<j∈[n]

xixj

=
(
n− 1

2

)
−

∑
1<i<j∈[m]

xixj −
∑

m+1≤i<j∈[2m]

xixj −
∑

1<i∈[m], m+1≤j≤2m

xixj

=
(
n− 1

2

)
−

∑
1<i<j∈[m]

xixj −
∑

m+1≤i<j∈[2m]

xixj +
∑

1<i∈[m], m+1≤j≤2m

|xixj |

=
(
n− 1

2

)
−
(
m− 1

2

)
−

(
m

2

)
+ (m− 1)m

=
[(

n− 1
2

)
+ m− 1

]
x2

1.

Thus, for any p = 2, · · · , m, we have that

(
Lx2)

p
=

(
Lx2)

1 = [
(
n− 1

2

)
+ m− 1]x2

p.

Similarly, for any p ∈ {m + 1, . . . , 2m}, we have that

(
Lx2) =

(
Lx2)
p n
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=
(
n− 1

2

)
x2
n −

∑
1≤i<j∈[n−1]

xixj

=
(
n− 1

2

)
−

∑
1≤i<j∈[m]

xixj −
∑

m+1≤i<j∈[2m−1]

xixj −
∑

1≤i∈[m], m+1≤j≤2m−1

xixj

=
(
n− 1

2

)
−

∑
1≤i<j∈[m]

xixj −
∑

m+1≤i<j∈[2m−1]

xixj +
∑

1≤i∈[m], m+1≤j≤2m−1

|xixj |

=
(
n− 1

2

)
−

(
m

2

)
−
(
m− 1

2

)
+ m(m− 1)

=
[(

n− 1
2

)
+ m− 1

]
x2
p.

Thus, x is an H-eigenvector of L corresponding to the H-eigenvalue 
(
n−1

2
)

+ m − 1. �
We have the following conjecture.4

Conjecture 3.1. Let k ≥ 3 be odd and G = (V, E) be a k-uniform connected hypergraph 
with the maximum degree being d > 0. Let L be the Laplacian tensor of G. Then λ(L) is 
equal to d if and only if G is a hyperstar.

4. The largest signless Laplacian H-eigenvalue

In this section, we discuss the largest signless Laplacian H-eigenvalue of a k-uniform 
hypergraph. Since the signless Laplacian tensor Q is nonnegative, the situation is much 
more clearer than the largest Laplacian H-eigenvalue.

The next proposition gives bounds on λ(Q).

Proposition 4.4. Let G = (V, E) be a k-uniform hypergraph with maximum degree being 
d > 0, and A and Q be the adjacency tensor and the signless Laplacian tensor of G
respectively. Then

max
{
d,

2
∑

i∈[n] di

n

}
≤ λ(Q) ≤ λ(A) + d.

Proof. The first inequality follows from [18, Corollary 12]. For the second, by [18, The-
orem 11], we have that

λ(Q) = max∑
i∈[n] x

k
i =1, x∈R

n
+

Qxk = max∑
i∈[n] x

k
i =1, x∈R

n
+

(A + D)xk

4 After the first version of this article, this conjecture is proved in [12, Propositions 3.5, 4.1 and 4.2] to be 
false for squids, loose cycles and loose paths. However, we keep this conjecture for the literature reference.
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≤ max∑
i∈[n] x

k
i =1, x∈R

n
+

Axk + max∑
i∈[n] x

k
i =1, x∈R

n
+

Dxk = λ(A) + d.

Consequently, the second inequality follows. �
Lemma 4.1. Let G = (V, E) be a k-uniform regular connected hypergraph with degree 
d > 0, and Q be its signless Laplacian tensor. Then, λ(Q) = 2d.

Proof. Note that the vector of all ones is an H-eigenvector of Q corresponding to the 
H-eigenvalue 2d. Since Q is weakly irreducible [16, Lemma 3.1], the result follows from 
[9, Lemmas 2.2 and 2.3]. �

The next proposition gives a tight upper bound of the largest signless Laplacian 
H-eigenvalues and characterizes the extreme hypergraphs.

Proposition 4.5. Let G = (V, E) be a k-uniform hypergraph and G′ be a sub-hypergraph 
of G. Let Q and Q′ be the signless Laplacian tensor of G and G′, respectively. Then,

λ
(
Q′) ≤ λ(Q).

Furthermore, if G′ and G are both connected, then λ(Q′) = λ(Q) if and only if G′ = G. 
Consequently,

λ(Q) ≤ 2
(
n− 1
k − 1

)
,

and equality holds if and only if G is a k-uniform complete hypergraph.

Proof. The first conclusion follows from [23, Theorem 3.19]. The remaining follows from 
[23, Theorem 3.20], [19, Theorem 4] and [16, Lemma 3.1] (see also [10, Lemmas 2.2 
and 2.3]) which imply that there is a unique positive H-eigenvector of Q and the cor-
responding H-eigenvalue must be λ(Q) whenever G is connected, and the fact that the 
vector of all ones is an H-eigenvector of Q corresponding to the H-eigenvalue 2

(
n−1
k−1

)
when G is a complete hypergraph (Lemma 4.1). �

When k = 2 (i.e., the usual graph), Propositions 4.4 and 4.5 reduce to the classical 
results in graph theory [6].

The next theorem gives a tight lower bound for λ(Q) and characterizes the extreme 
hypergraphs.

Theorem 4.6. Let G = (V, E) be a k-uniform connected hypergraph with the maximum 
degree being d > 0 and Q be the signless Laplacian tensor of G. Then

λ(Q) ≥ d + d

(
1
)k−1

,

α∗
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where α∗ ∈ (d − 1, d] is the largest real root of αk + (1 − d)αk−1 − d = 0, with equality 
holding if and only if G is a hyperstar.

Proof. Suppose that ds = d. Let G′ be the hypergraph GS with S being the vertices 
in the set Es. As in the proof of Theorem 3.2, for the hypergraph G′, we define a new 
hypergraph in the following way: fix the vertex s, and for every edge e ∈ Es, number the 
rest k−1 vertices as {(e, 2), . . . , (e, k)}. Let Ḡ = (V̄ , Ē) be the k-uniform hypergraph such 
that V̄ := {s, (e, 2), . . . , (e, k), ∀e ∈ Es} and Ē := {{s, (e, 2), . . . , (e, k)} | e ∈ Es}. It is 
easy to see that Ḡ is a hyperstar with size d > 0 and the heart being s. Let z ∈ Rkd−d+1

be a vector such that zs = α > 0 and zj = 1 for all j ∈ V̄ \ {s}. By a similar proof of 
Proposition 3.2, we see that z is an H-eigenvector of the signless Laplacian tensor Q̄ of 
Ḡ if and only if α is a real root of the following equation

αk + (1 − d)αk−1 − d = 0. (7)

In this situation, the H-eigenvalue is λ = 1 + α.
We claim that λ(Q) ≥ λ(Q̄) with equality holding if and only if G = Ḡ. Actually, 

let α > 0 be a root of the equation (7). Then, z is an H-eigenvector of λ(Q̄) by [10, 
Lemmas 2.2 and 2.4] which says that Q̄ has a unique positive eigenvector and this 
eigenvector corresponds to λ(Q̄). Let y ∈ R|S| be the vector such that

ys = zs = α, yj = 1 for the others.

Let x ∈ Rn be the vector such that the sub-vector xS = y and zero anywhere else. 
Obviously, we have that

n∑
i=1

xk
i =

|S|∑
j=1

ykj ≤
kd−d+1∑

p=1
zkp ,

and

Qxk ≥ Q′yk = Q̄zk = λ(Q̄)
kd−d+1∑

p=1
zkp .

Here Q′ is the signless Laplacian tensor of the hypergraph G′. Whenever G �= Ḡ, at least 
one of the above two inequalities becomes a strict inequality. By [18, Theorem 11] and 
[10, Lemmas 2.2 and 2.3], which give a similar characterization for nonnegative tensors 
as Lemma 3.4, we can get that λ(Q) > λ(Q̄). Therefore, we get the desired claim.

Moreover, let α∗ be the largest real root of Eq. (7), by (7) we have

λ∗ = 1 + α∗ = d + d

(
1
)k−1

.

α∗
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With a similar proof as Theorem 3.1, we can show that the equation in (7) has a unique 
real root in the interval (d − 1, d] which is the maximum. Since Ḡ is connected, by [10, 
Lemmas 2.2 and 2.3] and [16, Lemma 3.1], we have that λ(Q̄) = 1 + α∗. Consequently, 
the results follow. �

When G is a 2-uniform hypergraph, we know that α∗ = d, hence Theorem 4.6 reduces 
to λ(Q) ≥ d + 1 [6].

A word on Theorem 4.6 is necessary. Given a connected hypergraph, we then have 
its maximum degree d which is a parameter of the given hypergraph and should not be 
viewed as an independent hypothesis of Theorem 4.6. Theorem 4.6 indicates the lower 
bound of the largest signless Laplacian H-eigenvalue of this hypergraph. Whenever it 
reaches this lower bound, we conclude that it is a hyperstar of size d.

We promised that all the results in this article which are stated for connected hy-
pergraphs can be established for general hypergraphs in a straightforward way. Here we 
give an example. For a general hypergraph which is not necessary connected, we can 
partition it into connected components with each one a connected sub-hypergraph. By 
[10, Theorem 2.1], the largest signless Laplacian H-eigenvalue is the maximum among 
those of the sub-hypergraphs. Therefore, Theorem 4.6 applies to the sub-hypergraphs, 
and we have the next theorem.

Theorem 4.7. Let G = (V, E) be a k-uniform hypergraph with the maximum degree being 
d > 0 and Q be the signless Laplacian tensor of G. Then

λ(Q) ≥ d + d

(
1
α∗

)k−1

,

where α∗ ∈ (d − 1, d] is the largest real root of αk + (1 − d)αk−1 − d = 0, with equality 
holding if and only if all the connected components of G with maximum degree d are 
hyperstars.

5. The relation between the largest Laplacian and signless Laplacian H-eigenvalues

In this section, we discuss the relationship between the largest Laplacian H-eigenvalue 
and the largest signless Laplacian H-eigenvalue.

The following theorem characterizes this relationship. This theorem generalizes the 
classical result in spectral graph theory [28,27].

Theorem 5.8. Let G = (V, E) be a k-uniform hypergraph. Let L, Q be the Laplacian and 
signless Laplacian tensors of G respectively. Then

λ(L) ≤ λ(Q).

If furthermore G is connected and k is even, then
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λ(L) = λ(Q)

if and only if G is odd-bipartite.

Proof. The first conclusion follows from Definition 2.1 and [18, Proposition 14].
We now prove the second conclusion. We first prove the sufficiency. We assume that G

is odd-bipartite. Suppose that x ∈ Rn is a nonnegative H-eigenvector of Q corresponding 
to λ(Q). Then, [9, Lemma 2.2] implies that x is a positive vector, i.e., all its entries are 
positive. Suppose that V = V1 ∪ V2 is an odd-bipartition of V such that V1, V2 �= ∅ and 
every edge in E intersects V1 with exactly an odd number of vertices. Let y ∈ Rn be 
defined such that yi = xi whenever i ∈ V1 and yi = −xi for the others. Then, for i ∈ V1, 
we have

[
(D −A)yk−1]

i
= diy

k−1
i −

∑
e∈Ei

∏
j∈e\{i}

yj

= dix
k−1
i +

∑
e∈Ei

∏
j∈e\{i}

xj

=
[
(D + A)xk−1]

i

= λ(Q)xk−1
i

= λ(Q)yk−1
i .

Here the second equality follows from the fact that exactly an odd number of vertices in 
e take negative values for every e ∈ Ei. Similarly, we have for i ∈ V2,

[
(D −A)yk−1]

i
= diy

k−1
i −

∑
e∈Ei

∏
j∈e\{i}

yj

= −dix
k−1
i −

∑
e∈Ei

∏
j∈e\{i}

xj

= −
[
(D + A)xk−1]

i

= −λ(Q)xk−1
i

= λ(Q)yk−1
i .

Here the second equality follows from the fact that exactly an even number of vertices 
in e \ {i} take negative values for every e ∈ Ei, and the last from the fact that yi = −xi. 
Thus, λ(Q) is an H-eigenvalue of L. This, together with the first conclusion, implies that 
λ(L) = λ(Q).

In the following, we prove the necessity of the second conclusion. We assume that 
λ(L) = λ(Q). Let x ∈ Rn be an H-eigenvector of L corresponding to the H-eigenvalue 
λ(L) such that 

∑
i∈[n] x

k
i = 1. Then,
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[
(D −A)xk−1]

i
= λ(L)xk−1

i , ∀i ∈ [n].

Let y ∈ Rn be defined such that yi = |xi| for all i ∈ [n]. By (3) and [10, Theorem 2.1], 
we see that

λ(L) =
∑
i∈[n]

xi

[
(D −A)xk−1]

i
=

∑
i∈[n]

|xi|
∣∣[(D −A)xk−1]

i

∣∣

≤
∑
i∈[n]

yi
[
(D + A)yk−1]

i
≤ λ(Q). (8)

Thus, all the inequalities in (8) should be equalities. By [18, Lemma 2.2] and [10, 
Theorem 2.1(iii)], we have that y is an H-eigenvector of Q corresponding to the H-
eigenvalue λ(Q), and it is a positive vector. Let V1 := {i ∈ [n] | xi > 0} and 
V2 := {i ∈ [n] | xi < 0}. Then, V1 ∪ V2 = [n], since y is positive. Since G is connected 
and nontrivial, we must have that V2 �= ∅. Otherwise |[(D−A)xk−1]i| < [(D+A)yk−1]i, 
since (Axk−1)i > 0 in this situation. We also have that V1 �= ∅, since otherwise 
|[(D −A)xk−1]i| = | − diy

k−1
i + (Ayk−1)i| < [(D + A)yk−1]i.

Moreover, since the first inequality in (8) must be an equality, we must get that for 
all i ∈ V1,

λ(Q)yk−1
i =

[
(D + A)yk−1]

i
=

[
(D −A)xk−1]

i

We have that

[
(D + A)yk−1]

i
= diy

k−1
i +

∑
e∈Ei

∏
j∈e\{i}

yj ,

and

[
(D −A)xk−1]

i
= dix

k−1
i −

∑
e∈Ei

∏
j∈e\{i}

xj .

Hence, for every e ∈ Ei with i ∈ V1, we must have that exactly |e ∩V2| is an odd number. 
Similarly, we can show that for every e ∈ Ei with i ∈ V2, we must have that exactly 
|e ∩ V1| is an odd number. Consequently, G is odd-bipartite by Definition 2.4. �

In the following, we give an application of Theorem 5.8.

Definition 5.5. Let G = (V, E) be a k-uniform nontrivial hypergraph. If there are s
subsets V1, . . . , Vs of the vertex set V such that |V1| = · · · = |Vs| = k, and
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Fig. 3. (i) is an example of a 4-uniform hypercycle of size 3. The intersections are in dashed margins. (ii) is 
an illustration of an odd-bipartition of the 4-uniform hypercycle. The partition is clear from the different 
colors of the disks (also the dashed margins from the solid ones).

(i) E = {Vi | i ∈ [s]},
(ii) |V1 ∩ V2| = · · · = |Vs−1 ∩ Vs| = |Vs ∩ V1| = 1, and Vi ∩ Vj = ∅ for the other cases,
(iii) the intersections V1 ∩ V2, . . . , Vs ∩ V1 are mutually different.

then G is called a hypercycle. s is the size of the hypercycle.

It is easy to see that a k-uniform hypercycle of size s > 0 has n = s(k − 1) vertices, 
and is connected. Fig. 3(i) is an example of a 4-uniform hypercycle of size 3.

The next lemma says that the largest signless Laplacian H-eigenvalue of a hypercycle 
is easy to characterize.5

Lemma 5.8. Let G = (V, E) be a k-uniform hypercycle of size s > 0 and Q be its signless 
Laplacian tensor. Then, λ(Q) = 2 + 2βk−2 with β being the unique positive solution of 
the equation 2βk + β2 − 1 = 0 which is in the interval (1

2 , 1).

Proof. By [23, Theorem 3.20], [19, Theorem 4] and [16, Lemma 3.1] (see also [10, Lem-
mas 2.2 and 2.3]), if we can find a positive H-eigenvector x ∈ Rn of Q corresponding to 
an H-eigenvalue μ, then μ = λ(Q).

Let xi = α whenever i is an intersection of the edges of G and xi = β for the others. 
Without loss of generality, we assume that α = 1. Then, for an intersection vertex i, we 
have that di = 2 and

(
Qxk−1)

i
= 2αk−1 + 2αβk−2 = 2 + 2βk−2;

and for the other vertices j, we have that dj = 1 and

(
Qxk−1)

j
= βk−1 + α2βk−3 = βk−1 + βk−3.

5 The result in this lemma can be generalized to a larger class of hypergraphs [29, Theorem 20].
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If there are some μ > 0 and β > 0 such that

2 + 2βk−2 = μ, and βk−1 + βk−3 = μβk−1, (9)

then μ = λ(Q) by the discussion at the beginning of this proof. We assume that (9) has 
a required solution pair. Then,

2β2k−3 + βk−1 − βk−3 = 0, i.e., 2βk + β2 − 1 = 0.

Let g(β) := 2βk + β2 − 1. Then g(1) > 0 and

g

(
1
2

)
= 1

2k−1 + 1
4 − 1 < 0.

Thus, (9) does have a solution pair with β ∈ (1
2 , 1) and μ = 2 + 2βk−2. Since Q has a 

unique positive H-eigenvector [10, Lemmas 2.2 and 2.3], the equation 2βk + β2 − 1 = 0
has a unique positive solution which is in the interval (1

2 , 1). Hence, the result follows. �
By Theorem 5.8 and Lemma 5.8, we can get the following corollary, which character-

izes the largest Laplacian H-eigenvalue of a hypercycle when k is even.

Corollary 5.4. Let k be even and G = (V, E) be a k-uniform hypercycle of size s > 0. 
Let L be its Laplacian tensor. Then, λ(L) = 2 + 2βk−2 with β being the unique positive 
solution of the equation 2βk + β2 − 1 = 0 which is in the interval (1

2 , 1).

Proof. By Theorem 5.8 and Lemma 5.8, it suffices to show that when k is even, 
a k-uniform hypercycle is odd-bipartite.

Let V = V1 ∪ · · · ∪ Vs such that |V1| = · · · = |Vs| = k be the partition of the 
vertices satisfying the hypotheses in Definition 5.5. Denote Vs ∩ V1 as i1, V1 ∩ V2 as 
i2, . . . , Vs−1∩Vs as is. For every j ∈ [s], choose a vertex rj ∈ Vj such that rj /∈ {i1, . . . , is}. 
Let S1 := {rj | j ∈ [s]} and S2 = V \ S1. Then it is easy to see that S1 ∪ S2 = V is 
an odd-bipartition of G (Definition 2.4). An illustration of such a partition is shown in 
Fig. 3(ii).

Thus, the result follows. �
The next proposition says that when k is odd, the two H-eigenvalues cannot equal for 

a connected nontrivial hypergraph.

Proposition 5.6. Let k be odd and G = (V, E) be a k-uniform connected nontrivial hy-
pergraph. Let L, Q be the Laplacian and signless Laplacian tensors of G respectively. 
Then

λ(L) < λ(Q).
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Proof. Suppose that x ∈ Rn is an H-eigenvector of L corresponding to λ(L) such that ∑
i∈[n] |xi|k = 1. Then, we have that

λ(L)xk−1
i =

(
Lxk−1)

i
=

[
(D −A)xk−1]

i
, ∀i ∈ [n].

Hence,

λ(L) =
∑
i∈[n]

|xi|
∣∣(Lxk−1)

i

∣∣ =
∑
i∈[n]

|xi|
∣∣[(D −A)xk−1]

i

∣∣

≤
∑
i∈[n]

|xi|
[
(D + A)|x|k−1]

i
≤ λ(Q). (10)

If sup(x) �= [n], then λ(L) < λ(Q) by [10, Lemma 2.2]. Hence, in the following we assume 
that sup(x) = [n]. We prove the conclusion by contradiction. Suppose that λ(L) = λ(Q). 
Then all the inequalities in (10) should be equalities. By [18, Theorem 11], y := |x| is an 
H-eigenvector of Q corresponding to the H-eigenvalue λ(Q), and it is a positive vector. 
Similar to the proof of Proposition 5.8, we can get a bipartition of V as V = V1 ∪ V2
with V1, V2 �= ∅. Moreover, for all i ∈ V ,

λ(Q)yk−1
i =

[
(D + A)yk−1]

i
=

∣∣[(D −A)xk−1]
i

∣∣.
Suppose, without loss of generality, that x1 > 0. Then, we have that |e ∩ V2| < k − 1
is an odd number for every e ∈ E1. Since G is connected and nontrivial, we have that 
E1 �= ∅. Suppose that 2 ∈ ē ∩ V2 with ē ∈ E1. We have x2 < 0 and

∣∣[(D −A)xk−1]
2

∣∣ =
∣∣∣∣d2x

k−1
2 −

∑
e∈E2

∏
w∈e

xw

∣∣∣∣

=
∣∣∣∣d2x

k−1
2 −

∑
e∈E2\{ē}

∏
w∈e\{2}

xw −
∏

w∈ē\{2}
xw

∣∣∣∣

=
∣∣∣∣d2|x2|k−1 −

∑
e∈E2\{ē}

∏
w∈e\{2}

xw −
∏

w∈ē\{2}
|xw|

∣∣∣∣

≤
∣∣∣∣
∣∣∣∣d2|x2|k−1 +

∑
e∈E2\{ē}

∏
w∈e\{2}

|xw|
∣∣∣∣−

∏
w∈ē\{2}

|xw|
∣∣∣∣

<

∣∣∣∣d2|x2|k−1 +
∑
e∈E2

∏
w∈e\{2}

|xw|
∣∣∣∣

=
[
(D + A)yk−1]

2.

Thus, we get a contradiction. Consequently, λ(L) < λ(Q). �
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Combining Theorem 5.8 and Proposition 5.6, we have the following theorem.

Theorem 5.9. Let G = (V, E) be a k-uniform hypergraph. Let L, Q be the Laplacian and 
signless Laplacian tensors of G respectively. Then

λ(L) ≤ λ(Q).

If furthermore G is connected, then

λ(L) = λ(Q)

if and only if k is even and G is odd-bipartite.

6. Final remarks

In this paper, the largest Laplacian and signless Laplacian H-eigenvalues of a uniform 
hypergraph are discussed. The largest signless Laplacian H-eigenvalue is the spectral 
radius of the signless Laplacian tensor [3,18,23], since the signless Laplacian tensor 
is a nonnegative tensor. There is a sophisticated theory for the spectral radius of a 
nonnegative tensor. Thus, the corresponding theory for the largest signless Laplacian H-
eigenvalue is clear. On the other hand, the largest Laplacian H-eigenvalue is more subtle. 
It can be seen that there are neat and simple characterizations for the lower bound of 
the largest Laplacian H-eigenvalue of an even-uniform hypergraph (Theorem 3.4). These 
are largely due to Lemma 3.4. While, for odd-uniform hypergraphs, the current theory 
is incomplete. This would be the next topic to investigate.

The preprint of this paper was in arXiv in May, 2013. Since then, three papers [12,
20,29] have appeared with some further results on this topic.
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