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A new magnetic resonance imaging (MRI) model, called diffusion kurtosis imaging (DKI), was recently
proposed, to characterize the non-Gaussian diffusion behaviour in tissues. DKI involves a fourth-order
three-dimensional tensor and a second-order three-dimensional tensor. Similar to those in the diffusion
tensor imaging (DTI) model, the extreme diffusion values and extreme directions associated to this
tensor pair play important roles in DKI. In this paper, we study the properties of the extreme values
and directions associated to such tensor pairs. We also present a numerical method and its preliminary
computational results.

Keywords: diffusion kurtosis tensors; extreme diffusion values; extreme diffusion directions; anisotropy

1. Introduction

Magnetic resonance imaging (MRI) in tissues has been used to infer anatomical structure and to
aid in the diagnosis of many pathologies [11,14]. Nowadays, the most successful and popular MR
technique is the diffusion tensor imaging (DTI), which uses a second-order tensor D to quantify
a diffusion anisotropy [3,8]. When the diffusion process is Gaussian, the MR signal attenuates
exponentially as a function of b-value, i.e.

ln(S(b)) = ln(S(0)) − bDapp, (1)

where

Dapp = Dx2 =
3∑

i,j=1

Dijxixj (2)
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704 D. Han et al.

is the apparent diffusion coefficient (ADC) along the gradient direction x = (x1, x2, x3) with
components xi , i = 1, 2, 3 and

∑3
i=1 x2

i = 1,

b = (γ δg)2

(
� − δ

3

)
,

and g is the gradient strength, γ is the proton gyromagnetic ratio, δ is a pulse duration, � is a
time interval between the centres of the diffusion sensitizing gradient pulse, and D is a symmetric
second-order tensor with elements Dij , i, j = 1, 2, 3.

The success of DTI is based on the assumption that water molecules obey Gaussian diffusion
in biological tissues. In reality, we often meet diffusions that are non-Gaussian in the confining
environment of biological tissues, causing the DTI model to break down [1,3]. For example, when
DTI is used in regions where the fibres cross or merge, difficulty is often encountered since with
current MR resolution, voxel averaging of different fibre tracts is frequent and unavoidable.

To overcome this problem, new MRI models [2,9,13] have been proposed, which use higher-
order tensors, rather than just a second-order tensor used in DTI, to characterize the process of
diffusion. One of such new MRI models is diffusion kurtosis imaging (DKI) [6,10]. In that model,
a fourth-order three-dimensional fully symmetric tensor, called the DK tensor, is proposed to
describe the non-Gaussian behaviour of water molecules in tissues. That is, it is assumed that the
MR signal attenuates as a function of b-value in the following way:

ln(S(b)) = ln(S(0)) − bDapp + 1

6
b2D2

appKapp, (3)

where Kapp is the apparent kurtosis coefficient (AKC) along x,

Kapp = M2
D

D2
app

Wx4, (4)

Wx4 ≡
3∑

i,j,k,l=1

Wijklxixjxkxl

and

MD = D11 + D22 + D33

3

is the mean diffusivity.
For the DTI model, Pierpaoli and Basser [15] pointed out:

The most intuitive and simplest rotationally invariant indices are ratios of the principal diffusivities, such as the
dimensionless anisotropy ratio λ1/λ3 that measures the relative magnitudes of the diffusivities along the fibre-tract
direction and one transverse direction.

In DKI, the D-eigenvalues of W and the D-eigenvector associated with these eigenvalues also play
important roles. They describe the extremeAKC values and the extreme deviations of the diffusion
from Gaussian diffusion, and are invariant under rotations of the coordinate systems [19,21].
However, some important properties in the DKI model need to be studied further. For example,
which direction is the fastest/slowest diffusion direction in the DKI model? How can we measure
the anisotropy of the tissue? To answer these questions, we have to find the extreme points
associated to the diffusion tensor D and the DK tensor W together. In this paper, we study these
problems and propose a numerical method to find such extreme points. We also present some
numerical examples to illustrate the method.
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Optimization Methods & Software 705

2. Notation and preliminary results

We use the notation in [4,12,16–19] for the tensors and vectors. We use x = (x1, x2, x3)
T to denote

the direction vector, which is denoted as n = (n1, n2, n3)
T in [6,10]. According to the result of [6],

the ADC and AKC for a single direction should satisfy the relationship (3), i.e.

ln[S(b)] = ln[S(0)] − bDapp + 1

6
b2D2

appKapp. (5)

D is a second-order tensor and W is a fourth-order tensor, whose elements are obtained by filling
experimental data into Equation (5) and solving the resulting system of linear equations by singular
value decomposition or least squares methods. Let the eigenvalues of D be α1 ≥ α2 ≥ α3. Then
the mean diffusivity [3] can be calculated by

MD = α1 + α2 + α3

3
.

In the DTI model, one assumes that the diffusion obeys a Gaussian distribution, and there is no
quadratic term in Equation (5), i.e. theADC for a single direction should satisfy the relationship (1)

ln[S(b)] = ln[S(0)] − bDapp. (6)

In this case, the directions of the fastest and the slowest diffusion are eigenvectors associated to
the largest and the smallest eigenvalues of the second-order tensor D, which can be obtained by
solving the optimization problems

max Dx2

s.t. xTx = 1
(7)

and

min Dx2

s.t. xTx = 1,
(8)

respectively. For the DKI model, the study in [19] was focused on the properties of W which can
be used to measure the deviation of the diffusion from a Gaussian one. For example, the AKC
value is used to measure the average deviation; the largest and smallest D-eigenvalues of the
fourth-order tensor W , defined as

max Wx4

s.t. Dx2 = 1
(9)

and

min Wx4

s.t. Dx2 = 1,
(10)

can be used to measure the largest and the smallest deviations from the Gaussian diffusion, and
the associated eigenvectors are the fastest and the slowest deviation directions.

In a similar way as in the DTI model, we would now find the fastest and the slowest diffusion
values and the associated diffusion directions of water molecules in the tissue, under a non-
Gaussian diffusion that has relationship (5). That is, we need to solve the following optimization
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706 D. Han et al.

problems:

max Dx2 − 1

6
bM2

DWx4

s.t. xTx = 1,

(11)

and

min Dx2 − 1

6
bM2

DWx4

s.t. xTx = 1.

(12)

The solutions of Equations (11) and (12) depend on the second-order tensor D and the fourth-
order tensor W . Thus, our tasks are to find some useful properties of solutions of Equations (11)
and (12), the extreme values and the associated extreme directions of a tensor pair (D, W), and
to design numerical methods for finding such values and directions.

It is known that Dx is a vector in �3 with its ith component as

(Dx)i =
3∑

j=1

Dijxj ,

for i = 1, 2, 3. As in [16–19], we denote Wx3 as a vector in �3 with its ith component as

(Wx3)i =
3∑

j,k,l=1

Wijklxj xkxl,

for i = 1, 2, 3. Without loss of generality, we assume that D is positive definite. Then, α1 ≥ α2 ≥
α3 > 0. In practice, this assumption is natural, as the ADC value should be positive in general.

3. Properties of the extreme values

The critical points of problems (11) and (12) satisfy the following equation for some λ ∈ �:

Dx − 1

3
bM2

DWx3 = λx, xTx = 1. (13)

Let W̄ = 1/3bM2
DW . Then Equation (13) can be rewritten as

Dx − W̄x3 = λx, xTx = 1. (14)

A real number λ satisfying Equation (13) with a real vector x is called an extreme diffusion
value of the non-Gaussian diffusion, and the real vector x associated to λ is called an extreme
diffusion direction.

The following theorem shows the existence of the extreme diffusion values.

THEOREM 3.1 The extreme diffusion values always exist. If x is a solution of Equation (14)

associated with an extreme diffusion value λ, then

λ = Dx2 − W̄x4. (15)

The largest diffusion value is equal to λmax, and the smallest diffusion value is equal to λmin.
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Optimization Methods & Software 707

Proof The feasible regions of Equations (11) and (12) are compact and their objective functions
are continuous. Hence, each of these two optimization problems has at least one solution, which
must satisfy Equation (14) with the corresponding Lagrangian multipliers. Hence, the largest and
smallest diffusion values always exist and Equation (15) follows from Equation (14) directly. This
completes the proof. �

The following theorem shows an important property of the extreme diffusion values.

THEOREM 3.2 The extreme diffusion values of a non-Gaussian diffusion are invariant under
rotations of coordinate systems.

Proof With a rotation, x, D and W̄ are converted to y = Px, D̂ = DP 2, and Ŵ = W̄P 4,
respectively. Here, P = (pij ) is the rotation matrix and the elements of D̂ and Ŵ are defined by

D̂ij =
3∑

i
′
,j

′ =1

Di
′
j

′ pi
′
ipj

′
j

and

Ŵijkl =
3∑

i
′
,j

′
,k

′
,l

′ =1

W̄i
′
j

′
k

′
l
′ pi

′
ipj

′
jpk

′
kpl

′
l ,

see [16] for the definition of orthogonal similarity. If λ is an extreme diffusion value with an
extreme direction x, then we have

D̂y − Ŵy3 = λy, yTy = 1,

indicating that λ is still an extreme diffusion value in the new coordinate system. Thus, extreme
diffusion values of non-Gaussian diffusion are invariant under the rotations of coordinate systems.

�

4. A method for finding the extreme points

To find the extreme diffusion values in DKI, we need to solve optimization problems (11) and
(12), which are problems with polynomial objective functions and constraints. The first-order
optimal conditions for Equations (11) and (12) are the system of polynomial equations (13).
For solving this system of polynomial equations, we can use Groebner bases and resultants in
elimination theory, see [5,20]. However, using such methods directly in Equation (13) may be
time-consuming. Moreover, the final variable equation derived from Equation (13) may have a
higher degree, which makes it sensitive to the coefficients.

In the following, we propose a direct method to solve Equation (13), which fully uses the
structure of the problem. The first step is to eliminate λ from the system and then use the last
equation to eliminate x3 from the system. Finally, it solves a system of polynomial equations with
two variables, adopting the method of resultants.

Note that Theorem 3.2 indicates that we may rotate the coordinate system such that the three
orthogonal eigenvectors of D are used as the coordinate base vectors. In that coordinate system,

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
o
n
g
 
K
o
n
g
 
P
o
l
y
t
e
c
h
n
i
c
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
4
:
3
3
 
6
 
O
c
t
o
b
e
r
 
2
0
0
9



708 D. Han et al.

the representative matrix of D is a diagonal matrix. Therefore, we may assume that

D =
⎛
⎝α1 0 0

0 α2 0
0 0 α3

⎞
⎠ ,

which implies that Ŵ = W̄ . Consequently, Equation (14) can be written as

Ŵ1111x
3
1 + 3Ŵ1112x

2
1x2 + 3Ŵ1113x

2
1x3 + 3Ŵ1122x1x

2
2 + 6Ŵ1123x1x2x3 + 3Ŵ1133x1x

2
3

+ Ŵ1222x
3
2 + 3Ŵ1223x

2
2x3 + 3Ŵ1233x2x

2
3 + Ŵ1333x

3
3 = (α1 − λ)x1,

Ŵ2111x
3
1 + 3Ŵ1122x

2
1x2 + 3Ŵ1123x

2
1x3 + 3Ŵ1222x1x

2
2 + 6Ŵ1223x1x2x3 + 3Ŵ1233x1x

2
3

+ Ŵ2222x
3
2 + 3Ŵ2223x

2
2x3 + 3Ŵ2233x2x

2
3 + Ŵ2333x

3
3 = (α2 − λ)x2,

Ŵ1113x
3
1 + 3Ŵ1123x

2
1x2 + 3Ŵ1133x

2
1x3 + 3Ŵ1223x1x

2
2 + 6Ŵ1233x1x2x3 + 3Ŵ1333x1x

2
3

+ Ŵ2223x
3
2 + 3Ŵ2233x

2
2x3 + 3Ŵ2333x2x

2
3 + Ŵ3333x

3
3 = (α3 − λ)x3, x

2
1 + x2

2 + x2
3 = 1. (16)

Note that the coefficients in the above equations come from the fact that the tensor Ŵ is
symmetric, i.e. its entries Ŵijkl are invariant under any permutation of their indices i, j, k, and l.

To find the extreme diffusion values and the associated extreme diffusion directions, we have to
solve the above system of polynomial equations on x1, x2, x3, and λ. For this system of equations,
we have the following result.

THEOREM 4.1 We have the following results on the extreme diffusion values and their associated
extreme diffusion directions.

(a) If Ŵ1112 = Ŵ1113 = 0, then λ = α1 − Ŵ1111 is an extreme diffusion value of the non-Gaussian
diffusion with the extreme diffusion direction x = (1, 0, 0)T.

(b) For any real root t of the equations

Ŵ1112t
4 − (Ŵ1111 − 3Ŵ1122 − α1 + α2)t

3 − 3(Ŵ1112 − Ŵ1222)t
2

− (3Ŵ1122 − Ŵ2222 − α1 + α2)t − Ŵ1222 = 0,

Ŵ1113t
3 + 3Ŵ1123t

2 + 3Ŵ1223t + Ŵ2223 = 0,

λ = Dx2 − Ŵx4 (17)

is an extreme diffusion value with the corresponding extreme diffusion direction

x = ± 1√
1 + t2

(t, 1, 0)T. (18)

(c) λ = Dx2 − Ŵx4 and

x = ± 1√
u2 + v2 + 1

(u, v, 1)T (19)
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Optimization Methods & Software 709

constitutes an extreme diffusion value and extreme diffusion direction pair, where u and v are
real solutions of the following system of polynomial equations:

Ŵ1113u
4 + 3Ŵ1123u

3v − (Ŵ1111 − 3Ŵ1133 − α1 + α3)u
3 + 3Ŵ1223u

2v2

− (3Ŵ1112 − 6Ŵ1233)u
2v − 3(Ŵ1113 − Ŵ1333)u

2 + (3Ŵ2233 − 3Ŵ1122 − α3 + α1)uv2

+ Ŵ2223uv3 − (6Ŵ1123 − 3Ŵ2333)uv − (3Ŵ1133 − Ŵ3333 − α1 + α3)u − Ŵ1222v
3

− 3Ŵ1223v
2 − 3Ŵ1233v − Ŵ1333 = 0,

Ŵ1113u
3v − Ŵ1112u

3 + 3Ŵ1123u
2v2 − (3Ŵ1122 − 3Ŵ1133 − α2 + α3)u

2v − 3Ŵ1123u
2

+ 3Ŵ1123uv3 − (3Ŵ1222 − 6Ŵ1233)uv2 − (6Ŵ1223 − 3Ŵ1333)uv − 3Ŵ1233u

− 3(Ŵ2223 − Ŵ2333)v
2 + Ŵ2223v

4 − (Ŵ2222 − 3Ŵ2233 − α2 + α3)v
3

− (3W2233 − α2 − Ŵ3333 + α3)v − Ŵ2333 = 0. (20)

All the extreme diffusion values and the associated directions are given by (a), (b), and (c) if
Ŵ1112 = Ŵ1113 = 0, and by (b) and (c) otherwise.

Proof It is direct to check that (a) holds.
Setting x3 = 0, x2 �= 0 and using the third equation in (16), we have

(Ŵ1111 + α1)x
3
1 + 3Ŵ1112x

2
1x2 + (3W̄1122 + α1)x1x

2
2 + Ŵ1222x

3
2 = λx1,

Ŵ2111x
3
1 + (3Ŵ1122 + α2)x

2
1x2 + 3W̄1222x1x

2
2 + (Ŵ2222 + α2)x

3
2 = λx2,

Ŵ1113x
3
1 + 3Ŵ1123x

2
1x2 + 3Ŵ1223x1x

2
2 + Ŵ2223x

3
2 = 0,

x2
1 + x2

2 = 1.

Let t = x1/x2. Then from the first three equations, we have Equation (17) and from the last
one we have Equation (18). This proves (b).

If x3 �= 0, then from the fourth equation in (16), we have

(Ŵ1111 + α1)x
3
1 + 3Ŵ1112x

2
1x2 + 3Ŵ1113x

2
1x3 + (3Ŵ1122 + α1)x1x

2
2 + 6Ŵ1123x1x2x3

+ (3Ŵ1133 + α1)x1x
2
3 + Ŵ1222x

3
2 + 3Ŵ1223x

2
2x3 + 3Ŵ1233x2x

2
3 + Ŵ1333x

3
3 = λx1,

Ŵ2111x
3
1 + (3Ŵ1122 + α2)x

2
1x2 + 3W̄1123x

2
1x3 + 3Ŵ1222x1x

2
2 + 6Ŵ1223x1x2x3

+ 3Ŵ1233x1x
2
3 + (Ŵ2222 + α2)x

3
2 + 3Ŵ2223x

2
2x3 + (3Ŵ2233 + α2)x2x

2
3 + Ŵ2333x

3
3 = λx2,

Ŵ1113x
3
1 + 3Ŵ1123x

2
1x2 + (3W̄1133 + α3)x

2
1x3 + 3Ŵ1223x1x

2
2 + 6Ŵ1233x1x2x3

+ 3Ŵ1333x1x
2
3 + Ŵ2223x

3
2 + (3Ŵ2233 + α3)x

2
2x3 + 3Ŵ2333x2x

2
3 + (Ŵ3333 + α3)x

3
3 = λx3,

x2
1 + x2

2 + x2
3 = 1. (21)

Let u = x1/x3 and v = x2/x3. Then (c) follows immediately from the above system of
equations. �

To find all the extreme diffusion values and the corresponding diffusion directions for non-
Gaussian diffusion, from Theorem 4.1, we need to solve the systems of Equations (17) and (20).
Equation (17) is a system of polynomial equations of one variable t , which can be solved efficiently.
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710 D. Han et al.

Equation (20) is a system of polynomial equations of two variables u and v. For solving such
equations, we first regard it as a system of polynomial equations of variable u and rewrite it as

γ0u
4 + γ1u

3 + γ2u
2 + γ3u + γ4 = 0,

τ0u
3 + τ1u

2 + τ2u + τ3 = 0,

where γ0, . . . , γ4, τ0, . . . , τ3 are polynomials of v, which can be calculated by Equation (20).
The above system of polynomial equations in u possesses solutions if and only if its resultant
vanishes [5]. The resultant of this system of polynomial equations is the determinant of the 7 × 7
matrix

V :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0 γ1 γ2 γ3 γ4 0 0
0 γ0 γ1 γ2 γ3 γ4 0
0 0 γ0 γ1 γ2 γ3 γ4

τ0 τ1 τ2 τ3 0 0 0
0 τ0 τ1 τ2 τ3 0 0
0 0 τ0 τ1 τ2 τ3 0
0 0 0 τ0 τ1 τ2 τ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is a polynomial equation in variable v. After finding all real roots of this polynomial, we
can substitute them to Equation (20) to find all the real solutions of u. Correspondingly, all the
extreme diffusion values and the associated diffusion directions can be found.

5. Algorithm description

We now give our algorithm for solving Equation (13).

ALGORITHM A direct algorithm for Equation (13).
Input: The second-order diffusion tensor D, the fourth-order kurtosis

tensor W , and the b value.
Output: The extreme diffusion values and the associated diffusion

directions.

S1. Find the decomposition ofD = P�P T, where� is a diagonal matrix whose diagonal elements
are eigenvalues of D, α1 ≥ α2 ≥ α3 > 0, and P is an orthogonal matrix whose columns are
eigenvectors of D.

S2. Let W̄ = 1/3bM2
DW, where

MD = α1 + α2 + α3

3

and Ŵ = W̄P 4, i.e.

Ŵijkl =
3∑

i
′
,j

′
,k

′
,l

′ =1

W̄i
′
j

′
k

′
l
′ pi

′
ipj

′
jpk

′
kpl

′
l .

S3. Let

g(v) := det V,

where V is the 7 × 7 matrix defined by Equation (4), and find the zeros of g(v).
S4. Substitute every real zero vi found in the previous step, into Equation (17) to find the

solution uj .
S5. From each pair of vi and uj found in the previous two steps, form the extreme diffusion

directions and the extreme diffusion values.
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6. Numerical examples

In this section, we report some computational results on the extreme diffusion values and the
associated diffusion directions of a second-order and a fourth-order tensor pair that was derived
from the data of MRI experiments on rat spinal cord specimen fixed in formalin. The MRI
experiments were conducted on a 7 Tesla MRI scanner at the Laboratory of Biomedical Imaging
and Signal Processing at the University of Hong Kong.

In the MRI experiments, the AKC and ADC values for a given gradient x ∈ R3 can be deter-
mined by acquiring data at three or more b values [6] including b = 0. In our experiments, we
take six b values 0, 800, 1600, 2400, 3200, and 4000, in units of s/mm2. In each example, we
take 30 gradient directions and obtain the corresponding AKC and ADC values as the averages
of the 9 pixels. From these ADC and AKC values, we obtain the elements of the diffusion tensor
D and the DK tensor W by using the least squares method, discussed in [6] and [10].

Example 6.1 Our first example is taken from the white matter. The diffusion tensor D is

D =
⎛
⎝0.1755 0.0035 0.0132

0.0035 0.1390 0.0017
0.0132 0.0017 0.4006

⎞
⎠ ∗ 10−3

in units of mm2/s. The eigen decomposition of the diffusion tensor D is D̂ = DP 2, where D̂ is
a diagonal matrix whose diagonal elements are (α1, α2, α3) = (0.4013, 0.1751, 0.1387) ∗ 10−3

and

P =
⎛
⎝0.0584 0.9939 0.0938

0.0073 0.0935 −0.9956
0.9983 −0.0589 0.0018

⎞
⎠ .

The 15 independent elements of the DK tensor W are W1111 = 0.4982, W2222 = 0, W3333 =
2.6311, W1112 = −0.0582, W1113 = −1.1719, W1222 = 0.4880, W2223 = −0.6162, W1333 =
0.7639, W2333 = 0.7631, W1122 = 0.2236, W1133 = 0.4597, W2233 = 0.1519, W1123 = −0.0171,
W1223 = 0.1852, and W1233 = −0.4087, respectively. It is easy to find that

M2
D =

(
D11 + D22 + D33

3

)2

= 5.6813 × 10−8.

To find the largest and the smallest diffusion values, we need to first obtain the largest and the
smallest D-eigenvalues. For a given b value, we can use the method proposed in Section 4 to
compute all the extreme diffusion values and the associated diffusion directions. Table 1 lists the
results for b = 2400 (s/mm2).

From Table 1, we can see that the largest and the smallest diffusion values for this example are
0.3288 × 10−3 and 0.1278 × 10−3 (mm2/ms), attained at

(−0.9957, −0.0675, 0.0632)T and (0.0466, −0.4651, 0.8840)T,

respectively.
To show the dependence of the extreme diffusion values on the b values, we plot the largest

and the smallest diffusion values as functions of the b values. Figure 1 shows the result, where
the y-axis is scaled to 103.

To give some insight to the difference between the DTI and DKI, we also plot the largest
diffusion values in these two models, as functions of b values, and the result is shown in Figure 2.
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Table 1. Extreme diffusion values and directions of (D, W ).

x1 x2 x3 λ × 103

1 −0.5400 −0.8413 0.0258 0.2483
2 0.1487 −0.9656 0.2135 0.1499
3 −0.2051 0.9251 0.3195 0.1438
4 −0.6674 0.6483 0.3665 0.2212
5 0.7043 −0.5416 0.4589 0.2795
6 −0.9957 −0.0675 0.0632 0.3288
7 0.0319 0.5815 0.8129 0.1531
8 0.0466 −0.4651 0.8840 0.1278
9 −0.5908 −0.3367 0.7332 0.2206

10 0.6435 0.2619 0.7192 0.2170
11 −0.5459 0.1195 0.8293 0.2183

Figure 2 clearly shows that when b is too small, the linear model (6) can model the diffusion
behaviour quite well; while as the b value becomes larger, the difference between the two models
(5) and (6) is more obvious.

Example 6.2 Our second example is taken from the grey matter. The diffusion tensor D is

D =
⎛
⎝ 1.2455 −0.0169 −0.0012

−0.0169 1.6921 0.0077
−0.0012 0.0077 1.1937

⎞
⎠ ∗ 10−3

Figure 1. Largest and smallest diffusion values as functions of b values.
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Figure 2. Largest bDapp versus bDapp − 1/6b2D2
appKapp as functions of b.

in units of mm2/s. The eigen decomposition of the diffusion tensor D is D̂ = DP 2, where D̂ is
a diagonal matrix whose diagonal elements are (α1, α2, α3) = (1.6928, 1.2448, 1.1936) ∗ 10−3

and

P =
⎛
⎝ 0.0379 −0.9991 0.0174

−0.9992 −0.0381 −0.0148
−0.0154 0.0168 0.9997

⎞
⎠ .

The 15 independent elements of the DK tensor W are W1111 = 0.1171 × 10−5, W2222 = 0.2665 ×
10−5, W3333 = 0.1425 × 10−5, W1112 = −0.0009 × 10−5, W1113 = 0.0031 × 10−5, W1222 =
0.0026 × 10−5, W2223 = 0.0046 × 10−5, W1333 = 0.0044 × 10−5, W2333 = −0.0008 × 10−5,
W1122 = 0.0456 × 10−5, W1133 = 0.0348 × 10−5, W2233 = 0.0681 × 10−5, W1123 = 0.0016 ×
10−5, W1223 = −0.0015 × 10−5, and W1233 = 0.0013 × 10−5, respectively. We can find that

M2
D =

(
D11 + D22 + D33

3

)2

= 1.8964 × 10−6.

For b = 2400 (s/mm2), we can use the method proposed in Section 4 to compute all the extreme
diffusion values and the associated diffusion directions. Table 2 lists the results.

From Table 2, we can see that the largest and the smallest diffusion values for this example are
1.6926 × 10−3 and 1.1934 × 10−3 (mm2/ms), attained at

(−1.0000, −0.0000, 0.0000)T and (0.0000, −0.0001, 1.0000)T,

respectively.
To show the dependence of the extreme diffusion values on the b values, we list the largest and

the smallest diffusion values for different b values in Table 3 (scaled to 103).
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Table 2. Extreme diffusion values and directions of (D, W ).

x1 x2 x3 λ × 103

1 −0.4485 0.8938 0 1.3349
2 0.6697 −0.7426 0.0001 1.4457
3 0.6697 0.7426 0.0001 1.4457
4 −0.0000 1.0000 0.0001 1.2448
5 −1.0000 −0.0000 0.0000 1.6926
6 0.7070 0.0002 0.7072 1.4430
7 −0.7070 −0.0001 0.7072 1.4430
8 0.0000 −0.0001 1.0000 1.1934

Table 3. Extreme diffusion values of (D, W ).

b 800 1600 2400 3200 4000

Largest 1.4425 1.4419 1.4412 1.4406 1.4399
Smallest 1.1932 1.1928 1.1925 1.1921 1.1917

Table 3 shows that both the largest and the smallest diffusion values are decreasing functions
of the b value; however, the speed to decrease is not as clear as the first example. The reason is
that in the second example, the elements of the DK tensor W are too small, compared with those
of the diffusion tensor D. In other words, the diffusion in the second example is more likely to
be Gaussian.

To give some insight to the difference between the DTI and DKI, we also plot the largest
diffusion values in these two models, as functions of b values, and the result is shown in
Figure 3.

Figure 3. Largest bDapp versus bDapp − 1/6b2D2
appKapp as functions of b.
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7. Final remarks

In this paper, we proposed the extreme diffusion values and the associated diffusion directions,
which are the extreme values and the extreme points associated to the diffusion tensor and the DK
tensor. We analysed some properties of the extreme diffusion values and proposed a numerical
method for finding such values and the associated directions. These values and directions are
potentially useful for understanding the tissue microstructure.

It is believed that noise will be of greater effect on the solution because higher diffusion gradients
are used in DKI and the least squares method is used for estimating the fourth-order tensor, W .
The effects of Rician noise will be likely similar to those in the case of DTI, as studied in [7].
A study on such a noise effect will be a future work.
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