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Abstract Determining whether a quantum state is separable or inseparable
(entangled) is a problem of fundamental importance in quantum science and
has attracted much attention since its first recognition by Einstein, Podolsky
and Rosen [Phys. Rev., 1935, 47: 777] and Schrödinger [Naturwissenschaften,
1935, 23: 807–812, 823–828, 844–849]. In this paper, we propose a successive
approximation method (SAM) for this problem, which approximates a given
quantum state by a so-called separable state: if the given states is separable,
this method finds its rank-one components and the associated weights;
otherwise, this method finds the distance between the given state to the set
of separable states, which gives information about the degree of entanglement
in the system. The key task per iteration is to find a feasible descent direction,
which is equivalent to finding the largest M-eigenvalue of a fourth-order tensor.
We give a direct method for this problem when the dimension of the tensor is 2
and a heuristic cross-hill method for cases of high dimension. Some numerical
results and experiences are presented.

Keywords Quantum system, entanglement, tensor, successive approximation,
M-eigenvalue, cross-hill
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1 Introduction

Quantum entanglement, first recognized by Einstein et al. [5] and Schrödinger
[22], plays a key role in many of the most interesting applications of quantum
computation and quantum information. Entangled states are useful in
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quantum cryptography, quantum teleportation, and quantum key distribution
[13]. These applications rely on the fact that the quantum entanglement implies
the existence of pure entangled states which produce nonclassical phenomena.
Thus, it is of fundamental importance to know which states, usually mixed
rather than pure ones in laboratory due to the uncontrolled interaction with
the environment, are separable or entangled. Here, we say that a given state
� acting on a finite-dimensional product Hilbert space H1 ⊗ H2 is separable if
it can be written as a convex linear combination of product density operators,
i.e.,

� =
∑
n

pn�(1)
n ⊗ �(2)

n , (1)

where, for all n, pn are nonnegative coefficients satisfying the condition
∑

n pn =
1 and �

(i)
n are pure states on Hi, i = 1, 2.

Despite its wide-spread importance, it is a very complicated problem to
determine whether a quantum state is separable or entangled. Recently, Gurvits
proved that this problem is NP-hard [6], and there does not exist an efficient,
general solution method. The efficient tests for separability, which based on the
partial transposition and was first introduced by Peres [14], are ‘one-sided’ in
the sense that they are either necessary conditions, or sufficient conditions for
separability, but not both. They are sufficient and necessary only for some
special cases [9]. There have also been some attempts to more general
approaches to the identification of separability by use of the natural
geometrical structure of the problem, where the Euclidean metric (Hilbert-
Schmidt or Frobenius norm) of the Hermitian matrices can be used to give a
geometrical characterization of the set of separable matrices [15,23].

Some schemes to test separability numerically have also been suggested,
using modern technique from convex optimization. Specially, using the relation
between positive partial transpose of the state and the semidefintie programs,
Doherty et al. [4] proposed to distinguish separable and entangled states via
solving a series of semidefinite programs, which can be solved efficiently via
interior point methods. If a state � on H1 ⊗ H2 is separable, then there is
an extension �̃ on H1 ⊗ H2 ⊗ H1, such that π�̃π = � (π is a projector onto
the symmetric subspace), and the partial transpose of �̃ is positive. Thus, it
generates a hierarchy of necessary conditions for separability. First, it tests the
positivity of the partial transpose for a bipartite density matrix �. If the test
fails, the state is entangled; otherwise, the state could be separable or entangled
and the test goes on to the next step, testing the positivity of an extension of
the current state. Since each test in the sequence is at least as powerful as the
previous one, the results become more and more accurate.

Recently, Ioannou et al. [10] proposed another numerical method, i.e.,
analytical cutting-plane method, to detect quantum separability and
entanglement. Their method is based on the fact that a state � is entangled
if and only if there exists an entanglement witness detecting it. An
entanglement witness is a traceless operator A ∈ HM,N , for which there
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exists a state � ∈ DM,N , such that

tr(Aσ) < tr(A�), ∀ σ ∈ SM,N ,

where HM,N denotes the vector space of all Hermitian operators acting on
H1 ⊗ H2, M and N are dimensions of H1 and H2, respectively, SM,N is the
set of all separable states in HM,N , and DM,N denotes the set of all states in
HM,N . Initially, the potential witnesses are contained in the ball

W := {A ∈ HM,N : tr(A) = 0, tr(A2) � 1}.
Then, they find the entanglement witness by reducing W step by step: if �
is entangled, then any element in the set of the last step is an entanglement
witness; otherwise, the set will be too small to contain an entanglement witness
and the state is separable.

In some applications, it is also important to find the closest separable state.
In fact, if a given state is separable, then the closest separable state is itself;
otherwise, if the given state is entangled, then the distance between it and the
closest separable state can be used as a measure of the degree of entanglement.
In [3], Dahl et al. firstly considered this problem. After giving some geometrical
description of separability, they proposed a Frank-Wolfe method for solving such
a problem.

In this paper, in the same theme as [3], we propose a feasible descent method
for finding the closest separable state of the given state. At each iteration, we
need to find the largest M-eigenvalues of a fourth-order tensor. If the largest
M-eigenvalue is nonpositive, then the given state is separable; otherwise, the
M-eigenvector corresponding to the largest M-eigenvalue can form a feasible
descent direction. Along such a direction, we can find a closer separable state
than the current one and the method goes on. Eventually, we either find that
the given state is separable or we find the closest separable state.

This paper is organized as follows. In the next section, we give the
mathematical description of the problem formally and summarize some
necessary preliminaries. In Section 3, we propose our feasible descent method
and prove its convergence. The main task per iteration is to find the largest
M-eigenvalue and the associated M-eigenvector of a fourth-order tensor. We
thus pay our attention to solving such problems in Section 4: in Section 4.1,
we describe a direct method for the case of dimension 2; in Section 4.2, we
propose a direct method for the special case with biquadrate coefficient; and in
Section 4.3, a heuristic cross-hill method is described. Some numerical results
are reported in Section 5, where comparison with the method in [3] is made.
Finally, we conclude the paper in Section 6.

2 Problem description and preliminaries

Mathematically, the mixed quantum states are described in terms of density
matrices, which are positive semidefinite with trace one. A density matrix that
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is a projection on a single vector is referred to as representing a pure state,
while other density matrices represent mixed states.

Hereafter, we discuss in detail only the case of real vectors and real
matrices. This will simplify our discussion and will not make our results loss
of any generality due to the close correspondence between transposition of real
matrices and conjugation of complex matrices. In particular, the set of real
symmetric matrices is expanded to the set of Hermitian matrices, which is still
a real vector space with the same positive definite real inner product tr(AB),
where tr(C) denotes the trace of a matrix C, equaling to the sum of its diagonal
elements.

Let R
n denote the Euclidean space of real vectors of length n, which is

equipped with the standard inner product 〈·, ·〉 and the Euclidean norm ‖ · ‖.
Vectors are treated as column vectors, and the transpose of a vector x is denoted
by x�. The convex hull of a set S is the intersection of all convex sets containing
S, and is denoted by conv(S). We use I to denote the identity matrix of order
n and n should be clear from the context.

Let ϕn denote the space of all real symmetric n×n matrices. For any matrix
A ∈ ϕn, we denote its (i, j)-th element with aij, i, j = 1, . . . , n. ϕn is equipped
with the standard inner product

〈A,B〉 = tr(AB) =
n∑

i,j=1

aijbij , A,B ∈ ϕn.

The associated matrix norm is the Frobenius norm

‖A‖F = 〈A,A〉1/2 = (tr(A2))1/2 =
( n∑

i,j=1

a2
ij

)1/2

.

A matrix A ∈ ϕn is positive semidefinite if for any x ∈ R
n, we have x�Ax � 0.

We use A � 0 to denote that A is positive semidefinite. All symmetric positive
semidefinite matrices of order n form the positive semidefinite cone

ϕn
+ = {A ∈ ϕn : A � 0}.

A density matrix is a matrix in ϕn
+ with trace 1. Let J n

+ denote the set of
all density matrices of order n :

J n
+ = {A ∈ ϕn

+ : tr(A) = 1}.
Then the set J n

+ is convex and has the following properties.

Lemma 1 [3, Theorem 2.1] The set J n
+ of density matrices has the following

properties:
(i) J n

+ is the intersection of the positive semidefinite cone ϕn
+ and the

hyperplane
H = {A ∈ ϕn : 〈A, I〉 = 1}.
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(ii) J n
+ is a compact convex set of dimension n(n+1)

2 − 1.
(iii) The extreme points of J n

+ are the symmetric rank one matrices A =
xx�, where x ∈ R

n satisfies ‖x‖ = 1. Therefore,

J n
+ = conv{xx� : x ∈ R

n, ‖x‖ = 1}.
If A ∈ R

p×p and B ∈ R
q×q, then the tensor product A ⊗ B is the square

matrix of order pq given by its (i, j)-th block aijB (1 � i, j � p). A matrix
A ∈ R

n×n is separable if A can be written as a convex combination

A =
N∑

j=1

λjBj ⊗ Cj

for some positive integer N, matrices Bj ∈ J p
+, Cj ∈ J q

+, n = pq, and non-
negative numbers λj satisfying

∑N
j=1 λj = 1. Let J n,⊗

+ denote the set of all
separable matrices of order n = pq. For sets U and W of matrices, we use
U ⊗W to denote the set of matrices that can be written as the tensor product
of a matrix in U and a matrix in W. The following lemma summarizes some
important properties of J n,⊗

+ .

Lemma 2 [3, Theorem 2.2] The set J n,⊗
+ of separable matrices have the

following properties:
(i) J n,⊗

+ ⊆ J n
+ .

(ii) J n,⊗
+ is a compact convex set and

J n,⊗
+ = conv(J p

+ ⊗ J q
+).

(iii) The extreme points of J n,⊗
+ are the symmetric rank one matrices

A = (x ⊗ y)(x ⊗ y)�,

where x ∈ R
p and y ∈ R

q both have Euclidean length one and

J n,⊗
+ = conv{(x ⊗ y)(x ⊗ y)� : ‖x‖ = 1, ‖y‖ = 1}.

The problem under consideration thus can be formulated as follows. For
a given density matrix A ∈ J n

+ , find a separable density matrix X ∈ J n,⊗
+

that minimizes the distance ‖X − A‖F . Thus, we need to solve the following
optimization problem:

f(A) := min
1
2
‖X − A‖2

F , (2)

s.t. X ∈ J n,⊗
+ . (3)

Note that A is separable if and only if f(A) = 0. If A is separable, then
by solving (2)-(3), we can find its separable components; otherwise, if A is
entangled, we can find the degree on its entanglement by finding its distance to
the separable set.
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3 A feasible descent direction method

Note that the optimization problem (2)-(3) is a convex optimization problem,
where the objective function (2) is a strictly convex quadratic function of X
and the constraint set J n,⊗

+ is a compact and convex set. Thus, it has a unique
solution [1], denoted as X∗, which is essentially the projection of A onto J n,⊗

+ .
That is,

X∗ = Proj⊗(A).

The projector Proj⊗(X) of a point X ∈ J n
+ onto J n,⊗

+ has the following
properties.

Lemma 3 Let A ∈ J n
+ and X ∈ J n,⊗

+ . Then the following statements are
equivalent:

(i) X = Proj⊗(A);

(ii) 〈A − X,Y − X〉 � 0, ∀ Y ∈ J n,⊗
+ ;

(iii) the following inequality holds:

〈A − X,Y − X〉 � 0, ∀ Y ∈ Ext(J n,⊗
+ ), (4)

where
Ext(J n,⊗

+ ) := {(x ⊗ y)(x ⊗ y)� : ‖x‖ = 1, ‖y‖ = 1}
denotes the set of extreme points of J n,⊗

+ .

The optimization problem (2)-(3), although it is a convex optimization
problem, is very difficult to solve, due to the difficulty in description the
constraint set J n,⊗

+ . Lemma 3 (iii) states that to solve (2)-(3), we need only to
consider the linear variational inequality problem of finding X ∈ J n,⊗

+ , such
that (4) holds. Note that the first term in the inner product in (4), A − X,
is nothing else but the minus gradient of the objective function of the
optimization problem (2)-(3), and Y − X forms a feasible descent direction
provided that it violates (4). Thus, we have the following algorithm.

Algorithm 3.1 A Feasible Descent Direction Method
Step 1 Set an initial point X0 ∈ J n,⊗

+ and set the number of iteration k = 0.

Step 2 Check if Xk is the optimal solution, that is, check if (4) holds: if it
holds, then the current iterative point Xk is the optimal solution of (2)-(3);
otherwise, any Y k ∈ Ext(J n,⊗

+ ) that violates it provides a feasible descent
direction Y k − Xk at Xk.

Step 3 Let
g(α) := ‖A − Xk + α(Y k − Xk)‖2

F ,

and let αk be the optimal solution of the problem

min g(α), s.t. 0 � α � 1. (5)
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Then, update the iterative point

Xk+1 = Xk + αk(Y k − Xk).

Step 4 Set k := k + 1 and go to Step 1.

Algorithm 3.1 is in fact a feasible descent direction method for the
optimization problem (2)-(3), or its equivalent problem of linear variational
inequality problem of finding X∗ ∈ J n,⊗

+ , such that

〈A − X∗, Y − X∗〉 � 0, ∀ Y ∈ J n,⊗
+ ,

or (4). Since the function g is a quadratic function in variable α, the solution
of (5) can be found analytically. Thus, the method is in fact a feasible descent
direction method with exact line search. As we have observed, the optimization
problem (2)-(3) is a convex optimization problem, where the objective function
(2) is strictly convex and the feasible set J n,⊗

+ is compact and convex,
guaranteeing the existence and uniqueness of the optimal solution X∗. Thus,
according to the convergence theorem in [1, Chapter 2], the sequence of
iterative points generated by the feasible descent direction method converges
to X∗ globally, i.e., we have the following result.

Theorem 1 Algorithm 3.1 generates a sequence of matrices {Xk} that
converges to the optimal solution of (2)-(3).

4 Finding a feasible descent direction

The most important task per iteration of the feasible descent direction method,
Algorithm 3.1, is to find the feasible descent direction Y k − Xk. Let

γ(X) := max{〈A − X, Y − X〉 : Y ∈ Ext(J n,⊗
+ )}. (6)

At iteration k, we evaluate γ(Xk) to find if it is negative. If it is negative, then
(4) holds and according to Lemma 3.1, Xk is already the optimal solution of
(2)-(3) and the algorithm stops; otherwise, we find Y k and γ(Xk) > 0, and
Y k − Xk is a descent direction of the objective function (2). The optimization
problem in evaluating γ is a polynomial optimization problem, which is
generally nonconvex and difficult to solve. In the rest of this section, we propose
a direct method for solving it in Section 4.1, for the special case that p = q = 2.
Then, in Section 4.2, we propose a direct method for the special case with
biquadrate coefficient. Finally, in Section 4.3, we propose a heuristic cross-hill
method, based on the algorithms in Section 4.1 and Section 4.2 for the special
cases, to solve the general problem.

Let B := A − Xk and omit the constant term. Then evaluating γ is
equivalent to solving the following optimization problem:

max 〈B, Y 〉, (7)
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s.t. Y ∈ Ext(J n,⊗
+ ). (8)

Partition Y to the following p × p blocks:

Y = (x ⊗ y)(x ⊗ y)� = (x ⊗ x�)(y ⊗ y�) =

⎡
⎢⎣

Y11 · · · Y1p
...

...
Yp1 · · · Ypp

⎤
⎥⎦ ,

where
Yij = xixj(yy�) ∈ R

q×q (i, j � p).

Then, partition B conformably as

B =

⎡
⎢⎣

B11 · · · B1p
...

...
Bp1 · · · Bpp

⎤
⎥⎦ ,

and denote Bkl
ij (1 � i, j � p, 1 � k, l � q) as the (k, l)-th element of block Bij .

Let C be a fourth-order tensor, whose elements are

Cijkl = Bkl
ij .

From the symmetry of the matrix B, C has the following symmetric property:

Cijkl = Cjikl = Cijlk, 1 � i, j � p, 1 � k, l � q.

The optimization problem (7)-(8) can be rewritten as

max g(x, y) :=
p∑

i,j=1

q∑
k,l=1

Cijklxixjykyl, (9)

s.t. ‖x‖2 = ‖y‖2 = 1. (10)

Let λ and μ be Lagrange multiplier to the constraint

‖x‖2 = 1, ‖y‖2 = 1,

respectively. The optimality condition of (9)-(10) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p∑
j=1

q∑
k,l=1

Cijklxjykyl = λxi, i = 1, . . . , p,

p∑
i,j=1

q∑
k=1

Cijklxixjyk = μyl, l = 1, . . . , q,

x�x = 1,

y�y = 1.

(11)
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Suppose that λ, μ, x, and y satisfy (11). It is easy to see that

λ =
p∑

i,j=1

q∑
k,l=1

Bkl
ij xixjykyl = μ.

Thus, we may rewrite (11) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p∑
j=1

q∑
k,l=1

Cijklxjykyl = λxi, i = 1, . . . , p,

p∑
i,j=1

q∑
k=1

Cijklxixjyk = λyl, l = 1, . . . , q,

x�x = 1,

y�y = 1.

(12)

If λ ∈ R, x ∈ R
p, and y ∈ R

q satisfy (12), we call λ an M-eigenvalue of
C , and call x and y left and right M-eigenvectors of C , associated with the
M-eigenvalue λ, respectively. It is easy to see that M-eigenvalues always exist
and by comparing all the M-eigenvalues, we can check the negativity of γ; the
M-eigenvectors corresponding to the largest M-eigenvalue can form a Y k, and
consequently, a feasible descent direction can be constructed.

The concept of M-eigenvalues and M-eigenvectors was introduced in [18]
to study the strong ellipticity of a given tensor, see [7,11] for its recent
developments. It has close relations to the concepts of Z-eigenvalues [16,17]
and D-eigenvalues [21]. The Z-eigenvalues have found applications in global
optimization problems of polynomials [12,19,20] and the D-eigenvalues have
applications in diffusion kurtosis imaging (DKI) in biomedical [8].

4.1 A direct method for dimension 2

In this subsection, we present a direct method to find all the M-eigenvalues and
the associated M-eigenvectors. The global optimal objective value of (9) can be
obtained by comparing these M-eigenvalues. The key idea here is to reduce the
five variables system (12) to a system involving only two variables. Then, for
this system of two variables, we may use the Sylvester formula of the resultant
to find the solutions.

We have the following result.

Theorem 2 We have the following results on the M-eigenvalues and their
corresponding M-eigenvector pairs.

(a) If C1112 = C1121 = 0, then λ = C1111 is an M-eigenvalue of A and the
corresponding M-eigenvector pair is x = y = (1, 0)�.

(b) For any real roots (u, v)� of equations{
C1121u

2 + (C2121 − C1111)uv − C1121v
2 = 0,

C1112u
2 + 2C1122uv + C2122v

2 = 0,
(13)
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λ = C1111u
2 + 2C1121uv + C2121v

2

is an M-eigenvalue with the corresponding eigenvector pair

x =
(u, v)�√
u2 + v2

, y = (±1, 0)�.

(c) For any real roots (u, v)� of equations{
C1121u

2 + 2C1122uv + C1222v
2 = 0,

C1112u
2 + (C1212 − C1111)uv − C1112v

2 = 0,
(14)

λ = C1111u
2 + 2C1112uv + C1212v

2

is an M-eigenvalue with the corresponding eigenvector pair

x = (±1, 0)�, y =
(u, v)�√
u2 + v2

.

(d)

λ =
p∑

i,j=1

q∑
k,l=1

Cijklxixjykyl

is an M-eigenvalue and

x = ± (u, 1)�√
u2 + 1

, y = ± (v, 1)�√
v2 + 1

(15)

constitute an M-eigenvector pair, where u and v are real solutions of the
following system of polynomial equations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C1121u
2v2 + 2C1122u

2v + C1222u
2 + (C2121 − C1111)uv2 − C1121v

2

+ 2(C2122 − C1112)uv + (C2222 − C1212)u − 2C1122v − C1222 = 0,

C1112u
2v2 + (C1212 − C1111)u2v − C1112u

2 + 2(C1222 − C1121)uv

+ 2C1122uv2 − 2C1122u + C2122v
2 + (C2222 − C2121)v − C2122 = 0.

(16)
All the M-eigenvalues and the associated M-eigenvector pairs are given by (a),
(b), (c), and (d) if C1112 = C1121 = 0, and by (b), (c), and (d) otherwise.

Proof (a) If C1112 = C1121 = 0, then it is direct to check that (a) holds.
(b) If y2 = 0, then y1 = ±1 and (12) becomes⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C1111x1 + C1121x2 = λx1,

C1121x1 + C2121x2 = λx2,

C1111x
2
1 + 2C1121x1x2 + C2121x

2
2 = λ,

C1112x
2
1 + 2C1122x1x2 + C2122x

2
2 = 0,

x2
1 + x2

2 = 1.
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Eliminating λ from the first two equations, we get⎧⎪⎨
⎪⎩

C1121x
2
1 + (C2121 − C1111)x1x2 − C1121x

2
2 = 0,

C1112x
2
1 + 2C1122x1x2 + C2122x

2
2 = 0,

x2
1 + x2

2 = 1.

Let
u =

x1√
x2

1 + x2
2

, v =
x2√

x2
1 + x2

2

.

Then the results of (b) follow immediately.
(c) It can be proved in a similar way as (b).
(d) If x2 �= 0 and y2 �= 0, (12) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1111x1y
2
1 + 2C1112x1y1y2 + C1212x1y

2
2

+ C1121x2y
2
1 + 2C1122x2y1y2 + C1222x2y

2
2 = λx1,

C1121x1y
2
1 + 2C1122x1y1y2 + C1222x1y

2
2

+ C2121x2y
2
1 + 2C2122x2y1y2 + C2222x2y

2
2 = λx2,

C1111x
2
1y1 + C1112x

2
1y2 + 2C1121x1x2y1

+ 2C1122x1x2y2 + C2121x
2
2y1 + C2122x

2
2y2 = λy1,

C1112x
2
1y1 + C1212x

2
1y2 + 2C1122x1x2y1

+ 2C1222x1x2y2 + C2122x
2
2y1 + C2222x

2
2y2 = λy2,

x2
1 + x2

2 = 1,

y2
1 + y2

2 = 1.

Let
u =

x1

x2
, v =

y1

y2
.

Then from the first two equalities of the above system, we have

C1121u
2v2 + 2C1122u

2v + C1222u
2 + (C2121 − C1111)uv2 − C1121v

2

+ 2(C2122 − C1112)uv + (C2222 − C1212)u − 2C1122v − C1222 = 0,

and from the third and the fourth equalities, we have

C1112u
2v2 + (C1212 − C1111)u2v − C1112u

2 + 2(C1222 − C1121)uv

+ 2C1122uv2 − 2C1122u + C2122v
2 + (C2222 − C2121)v − C2122 = 0.

Combining the above two equalities and the assumption that

x2
1 + x2

2 = 1, y2
1 + y2

2 = 1,

we get the assertion immediately. �
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From Theorem 2, we can see that to find all the M-eigenvalues and the
associated M-eigenvector pairs, we need to solve some systems of polynomial
equations with two variables. To solve such systems, we can use the resultant
method from algebraic geometry. For example, to solve (16), we may regard it
as equations of u : {

α0u
2 + α1u + α2 = 0,

β0u
2 + β1u + β2 = 0,

(17)

where

α0 = C1121v
2 + 2C1122v + C1222,

α1 = (C2121 − C1111)v2 + 2(C2122 − C1112)v + (C2222 − C1212),

α2 = −(C1121v
2 + 2C1122v + C1222),

(18)

and
β0 = C1112v

2 + C1212v − C1112,

β1 = 2C1122v
2 + 2(C1222 − C1121)v − 2C1122,

β2 = C2122v
2 + (C2222 − C2121)v − C2122).

(19)

System (17) has solutions if and only if its resultant vanishes [2]. By the
Sylvester theorem [2], its resultant can be calculated as a determinant of the
following 4 × 4 matrix: ⎛

⎜⎜⎝
α0 α1 α2 0
0 α0 α1 α2

β0 β1 β2 0
0 β0 β1 β2

⎞
⎟⎟⎠ ,

which is a polynomial of v. We can use Matlab to find all its complex roots and
select the real roots. After this, we substitute them into (16) to find all the real
solutions of u. And correspondingly, all the M-eigenvalues and the associated
M-eigenvector pairs can be found.

4.2 A direct method for biquadrate case

In this subsection, we consider the case that C is a biquadrate tensor. A fourth-
order tensor A is called a biquadrate tensor if

Aijkl = 0, (i − j)2 + (k − l)2 > 0. (20)

Note that for Cijkl = Bkl
ij , C is a biquadrate tensor if and only if B is a diagonal

matrix.
The following theorem presents a direct method for finding all M-eigenvalues

and the associated M-Eigenvectors of the biquadrate tensor C .

Theorem 3 Suppose that C is a biquadrate tensor. Then, all the
M-eigenvalues and the M-eigenvectors of C can be obtained by solving the
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following linear system of equalities and inequalities:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
k∈Sq

Cijklyk = λ, i ∈ Sp,

∑
i∈Sp

Cijklxi = λ, k ∈ Sq,

xi = 0, i �∈ Sp,

xi � 0, i ∈ Sp,

yk = 0, k �∈ Sq,

yk � 0, k ∈ Sq,

(21)

where Sp ⊆ {1, 2, . . . , p} and Sq ⊆ {1, 2, . . . , q} are nonempty subsets of integers
from 1 to p and 1 to q, respectively. Solving (21) for each subset Sp and Sq

with |Sp| � 1 and |Sq| � 1, we find all the M-eigenvalues and the associated
M-eigenvectors.

Proof Since C is a biquadrate tensor, it follows from (20) that (9)-(10) reduces
to

max
p∑

i=1

q∑
k=1

Ciikkx
2
i y

2
k,

s.t. ‖x‖2 = ‖y‖2 = 1.

Consequently, all M-eigenvectors and M-eigenvalues should satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q∑
k=1

Ciikkxiy
2
k = λxi, i = 1, . . . , p,

p∑
i=1

Ciikkx
2
i yk = λyk, k = 1, . . . , q,

x�x = 1,

y�y = 1.

(22)

Letting
xi = x2

i (i = 1, . . . , p), yk = y2
k (k = 1, . . . , q),

it is easy to see that the system of equations (22) is equivalent to (21) and the
conclusion follows. �
4.3 A heuristic cross-hill method

In this subsection, we give a heuristic cross-hill method for solving the
optimization problem (9)-(10), when p � 3 or q � 3.

Suppose that we have found a local maximizer of (9)-(10):

x = x(1), y = y(1).
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We may find p−1 unit vectors x(i) of R
p and q−1 unit vectors y(j) of R

q such that
{x(i) : i = 1, . . . , p} and {y(j) : j = 1, . . . , q} constitute the orthogonal bases of
R

p and R
q, respectively. Then, for i = 2, . . . , p and j = 2, . . . , q, we can restrict

problem (9)-(10) on the plane spanned by x and x(i) and y and y(j), which is
now a problem with dimension two, and the current local maximizer x and y
of (9)-(10) is also a local maximizer of the restricted problem. By Theorem
2, we can use the direct methods in Section 4.1 and Section 4.2 to find the
other local maximizers of the restricted problem and select one, denoted as s(i),
t(j), with the largest objective function value, for i = 2, . . . , p and j = 2, . . . , q.
Since s(i), t(j) may not be a local maximizer of the original problem (9)-(10),
and x, y and s(i), t(j) are separated by a ‘hill’ of the objective function value in
two-dimensional case, s(i), t(j) is a good starting point for a conventional ascent
optimization method, in the sense that starting from s(i), t(j), we will find a
local maximizer w, u of (9)-(10), which is different from x, y. Continue this
procedure until no new maximizers can be found. The details are summarized
in the following algorithm.

Algorithm 4.1 A Cross-Hill Algorithm.
Step 1 Set an initial point x0 ∈ R

p, y0 ∈ R
q with ‖x0‖ = ‖y0‖ = 1 and set

the number of iteration k = 0.
Step 2 Use an ascent optimization method M to find a local maximizer x =
x(1), y = y(1) such that g(x, y) � g(x0, y0). Let P = {x(1)} and Q = {y(1)}.
Step 3 Find p − 1 unit vectors x(i) ∈ R

p, i = 2, . . . , p, and q − 1 unit vectors
y(i) ∈ R

q, i = 2, . . . , q, such that {x(i) : i = 1, . . . , p} and {y(j) : i = 1, . . . , q}
constitute the orthogonal bases of R

p and R
q, respectively.

Step 4 For i = 2, . . . , p, and j = 2, . . . , q, consider the restricted problem of
(9)-(10) on the plane spanned by x and x(i) and y and y(j), which is a problem
with dimension two. Used the direct method in Section 4.1 to find another local
maximizer s(i), t(j). Then, use Algorithm M to find a local maximizer w(i), u(j)

of (9)-(10) such that g(w(i), u(j)) � g(s(i), t(j)).
Step 5 For each local maximizer {w(i), u(j)} found in Step 4, if it is not in
P, Q, then add it to P, Q, and put it as x(1), y(1), and repeat Steps 3 and 4,
until no new maximizers can be found.
Step 6 Compare the function value of g for all local maximizers found in
P, Q. The point with largest value of g is the solution found by this algorithm.

Clearly, Algorithm 4.1 terminates in a finite number of iterations provided
the local maximizers of (9)-(10) is finite.

5 Numerical results

In this section, we present some numerical results for the feasible descent
method. The purpose of the first two examples is to compare the effectiveness
of our direct method in Section 4.1 and the heuristic method in Section 4.3 to



A successive approximation method for quantum separability 1289

the alternating maximum eigenvalue method in [3]. Thus, the first example is
with dimension 2 and the second example is with dimension 3. In Section 5.3,
we test the whole feasible descent direction method, where we use the direct
method described in Section 4.1 to solve subproblem (9)-(10) for the case of
dimension 2 and use the heuristic cross-hill method for general case, to find a
feasible descent direction, when the current iteration is not a solution of the
problem.

5.1 Example for p = q = 2
In this section, we consider the case of dimension 2, i.e., p = q = 2. For such a
case, we can use the direct method described in Section 4.1 to solve subproblem
(9)-(10). The purpose of this example is to show that, for such a case, we can
always find the global solution and the optimum objective value of (9)-(10),
while the alternating maximum eigenvalues method in [3] usually traps into
local critical points.

Let

A =

⎡
⎢⎢⎣

0.4691 0.1203 −0.1203 0.4691
0.1203 0.0309 −0.0309 0.1203

−0.1203 −0.0309 0.0309 −0.1203
0.4691 0.1203 −0.1203 0.4691

⎤
⎥⎥⎦ ,

and let

X0 =

⎡
⎢⎢⎣

0.4633 0.3097 0.1532 0.1276
0.3097 0.2168 0.1276 0.0363
0.1532 0.1276 0.1002 −0.0534
0.1276 0.0363 −0.0534 0.2197

⎤
⎥⎥⎦

be an arbitrarily selected initial point. Then,

B =

⎡
⎢⎢⎣

0.0058 −0.1894 −0.2736 0.3415
−0.1894 −0.1859 −0.1585 0.0841
−0.2736 −0.1585 −0.0693 −0.0669

0.3415 0.0841 −0.0669 0.2494

⎤
⎥⎥⎦ .

Using the alternating maximum eigenvalues method in [3], we find that

x∗ = (0.1470, 0.9891)� , y∗ = (−0.1026, 0.9947)�

with the objective function value 0.2689.
Using our direct method described in Section 4.1, we find all the

M-eigenvalues and the corresponding M-eigenvectors associated to the fourth-
order 2-dimensional tensor, which are listed in Table 1.

From Table 1, we can see that the true global optimum should be

x∗ = (−0.7494, 0.6621)� , y∗ = (−0.8889, 0.4581)�

with the objective function value 0.3610 and the critical point got by the
alternating maximum eigenvalue method in [3] is not a global one, which is
exactly the eighth M-eigenvector and the corresponding M-eigenvalues in Table
1.
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Table 1 M-eigenvalues and eigenvectors of C

x1 x2 y1 y2 λ

1 0.6680 0.7441 0.9977 0.0681 −0.3098

2 −0.7494 0.6621 −0.8889 0.4581 0.3610
3 0.9390 0.3438 0.8350 0.5503 −0.2560
4 −0.2789 0.9603 0.8152 0.5792 −0.0061
5 −0.9830 0.1834 0.4633 0.8862 −0.3157
6 0.9307 0.3657 −0.5118 0.8591 −0.0045
7 −0.1783 0.9840 −0.4170 0.9089 0.2533
8 0.1470 0.9891 −0.1026 0.9947 0.2689

5.2 Results for p = q = 3
In this section, we consider the case of dimension 3, i.e., p = q = 3. For such
a case, we can use the heuristic cross-hill method described in Section 4.3 to
find a feasible descent direction per iteration. The purpose of this example is
to show that, for such a case, we can often find the global solution and the
optimum objective function value of (9)-(10), while the alternating maximum
eigenvalues method in [3] usually traps into local critical points. In other words,
the objective function value found by our heuristic method is usually larger than
that by the method in [3]. We illustrate this by 20 randomly generated examples
and plot the objective function values of both methods in Figure 1.

Fig. 1 Comparison of optimum objective function values found

by our method and method in [3]

From Fig. 1, we can see that for almost all the randomly generated examples,
the optimum objective function values found by our method are larger than
those by the method in [3].
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5.3 Results of feasible descent direction method

In this subsection, we test the performance of the the feasible descent direction
method proposed in Section 3, where the subproblems are solved via the direct
method for p = q = 2 and the heuristic cross-hill method for general case.
For comparison, we also use the Frank-Wolfe method in [3] to solve the same
problem, where the subproblem of finding the descent direction was solved by
the alternating maximum eigenvalues method in [3]. All codes were written in
Matlab and run on a PC with 2.4 GHz CPU and 2.0 G of RAM. We terminate
the iteration once the γ(Xk) < ε, where ε is set to be 10−5.

As in [3], we take p = q and use the maximally entangled matrices in the
given dimensions, since the distance to the closest separable matrix in these
special cases are known. Here, a maximally entangled matrix means a pure
state A = uu�, where

u =
1√
p

p∑
i=1

ei ⊗ fi,

and {ei} and {fi} are two arbitrary sets of orthonormal basis vectors in R
p.

The closest separable state is

A′ = λA +
1 − λ

p2
I,

where λ = 1/(p + 1) and the distance between A and A′ is

d =
√

p − 1
p + 1

.

For the method in [3], the maximum number of iteration of solving the
subproblem is set to be 30. The stepsize in updating the iteration is calculated
via solving an equation in one variable; that is, we use optimal stepsize. In fact,
we also use some factors such as 1.2, 1.5, etc. to enlarge the stepsize. However,
this can make the algorithm unstable.

The initial point X0 is generated via randomly generated x0 and y0, where

‖x0‖ = ‖y0‖ = 1.

Table 2 listed the computational results for p = q = 2 to p = q = 10. In Table

Table 2 Comparison of proposed method and DLMO’s method

p, q n = pq Algorithm 3.1 DLMO’s method

No. of It. Cpu No. of It. Cpu

2 4 2411 182 3209 301

3 9 2083 206 2984 286
4 16 2124 288 3053 353
5 25 2353 612 3255 823
6 36 2427 1923 3535 3233
7 49 2105 3258 2857 4534
8 64 1888 4785 2491 4636
9 81 1980 5529 2698 5207

10 100 2186 7831 2899 6335
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2, ‘Cpu’ means the cpu time used in seconds, ‘No. of It.’ means number of
iterations.

From Table 2, we can see that the number of iterations of our method is less
than that of the method in [3]. The reason is that, as illustrated in the above
two subsections, our direct method for the case p = q = 2 and the heuristic
cross-hill method for general case, always find ‘better’ solution to subproblem
(7)-(8). Thus, at each iteration, the direction used by our method is ‘better’
than that adopted by DLMO’s method. We can also observe that the cpu
time used by our method is also less than that by DLMO’s method for the
case of small dimensions (from p = q = 2 to p = q = 7), and is more than
DLMO’s method for the case with relatively high dimensions (from p = q = 7
to p = q = 10). The reason is that, on the one hand, to solve the system of
equations (17)–(19), we need symbolic computations to find the determinant
of the Sylvester matrix, which is time consuming; on the other hand, in our
heuristic cross-hill method, we need to solve (p − 1)p−1 subproblems, which
increases rapidly as p increases.

6 Final remarks

We proposed a feasible descent direction method for finding the distance
between a given state to separable state, as well as the closest separable state
to it. The method is globally convergent, provided the subproblem of finding
the feasible descent direction is solved, which is, however, a hard problem due
to its nonconvexity. We presented a direct method for the case of p = q = 2,
which can solve the subproblem exactly, while for the general case, we proposed
a heuristic cross-hill method. The numerical results show the proposed method
is efficient.
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22. Schrödinger E. Die gegenwärtige situation in der quantenmechanik. Naturwissen-
schaften, 1935, 23: 807–812, 823–828, 844–849

23. Verstraete F, Dehaene J, De Moor B. On the geometry of entangled states. J Mod
Opt, 2002, 49: 1277–1287


