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In this paper, we show that each of the adjacency tensor, the Laplacian tensor
and the signless Laplacian tensor of a uniform directed hypergraph has n linearly
independent H -eigenvectors. Some lower and upper bounds for the largest and
smallest adjacency, Laplacian and signless Laplacian H -eigenvalues of a uniform
directed hypergraph are given. For a uniform directed hypergraph, the smallest
Laplacian H -eigenvalue is 0. On the other hand, the upper bound of the largest
adjacency and signless Laplacian H -eigenvalues are achieved if and only if it is
a complete directed hypergraph. For a uniform directed hyperstar, all adjacency
H -eigenvalues are 0. At the same time, we make some conjectures about the
nonnegativity of one H -eigenvector corresponding to the largest H -eigenvalue,
and raise some questions about whether the Laplacian and signless Laplacian
tensors are positive semi-definite for a uniform directed hypergraph.

Keywords: Spectrum; directed hypergraph; H -eigenvalue; adjacency tensor;
Laplacian tensor; signless Laplacian tensor

AMS Subject Classifications: 05C65; 15A18

1. Introduction

In 2005, Lim [1] and Qi [2] independently defined eigenvalues and eigenvectors of a real
tensor. Qi [2] explored the application of eigenvalues of tensors in determining positive
definiteness of an even degree multivariate form. Lim [1,3] pointed out that a potential
application of eigenvalues of tensors is on the spectral (undirected) hypergraph theory.
Qi [2,4] proposed several kinds of eigenvalues for a tensor, such as H -eigenvalues,
Z -eigenvalues, N -eigenvalues, E-eigenvalues, H+-eigenvalues and H++-eigenvalues.
Recently, a number of papers appeared on various kinds of structured tensors [5–14]
and spectral hypergraph theory via the adjacency tensors, Laplacian tensors and signless
Laplacian tensors of undirected uniform hypergraphs.[15–31,37] Recently, Chen and Qi
[32] studied spectral properties of circulant tensors and found their applications in spectral
directed hypergraph theory. However, unlike spectral theory of undirected hypergraphs,
there is almost blank for spectral directed hypergraph theory via tensors so far. On the other
hand, directed hypergraphs extend directed graphs, and have found applications in imaging
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Linear and Multilinear Algebra 781

processing,[33] optical network communications,[34] computer science and combinatorial
optimization.[35] Thus, in this paper, we studied spectral directed hypergraph theory via
tensors.

In the next section, definitions of H -eigenvalues of tensors and directed hypergraphs
with their adjacency tensors, Laplacian tensors and signless Laplacian tensors are given.
We, respectively, present in Sections 3, 4 and 5 some basic results about H -eigenvalues of
the adjacency tensor, Laplacian tensor and signless Laplacian tensor of a uniform directed
hypergraph. In the last section, some results about H -eigenvalues of the adjacency tensor,
Laplacian tensor and signless Laplacian tensor of a uniform directed hyperstar are presented.

2. Preliminaries

Some definitions of H -eigenvalues of tensors and directed hypergraphs with their adjacency
tensors, Laplacian tensors and signless Laplacian tensors are presented in this section.

2.1. H-Eigenvalues of tensors

In this subsection, some basic definitions on H -eigenvalues of tensors are reviewed. For
comprehensive references, see [2,10] and references therein. Especially, for spectral hyper-
graph theory oriented facts on H -eigenvalues of tensors, please see [4,17].

Let R be the field of real numbers and R
n be the n-dimensional real space. R

n+ denotes
the nonnegative orthant of R

n . For integers k ≥ 3 and n ≥ 2, a real tensor T = (ti1...ik ) of
order k and dimension n refers to a multiway array (also called hypermatrix) with entries
ti1...ik such that ti1...ik ∈ R for all i j ∈ [n] := {1, . . . , n} and j ∈ [k]. Tensors are always
referred to k-order real tensors in this paper, and the dimensions will be clear from the
context. Given a vector x ∈ R

n , T xk−1 is defined as an n-dimensional vector such that its
i-th element being

∑
i2,...,ik∈[n] tii2...ik xi2 . . . xik for all i ∈ [n]. Let I be the identity tensor

of appropriate dimension, e.g. ii1...ik = 1 if and only if i1 = · · · = ik ∈ [n], and zero
otherwise when the dimension is n. The following definition was introduced by Qi [2].

Definition 2.1 Let T be a k-order n-dimensional real tensor. For some λ ∈ R, if polynomial
system (λI − T ) xk−1 = 0 has a solution x ∈ R

n \ {0}, then λ is called an H -eigenvalue
and x an H -eigenvector corresponding to λ.

For a subset S ⊆ [n], we denoted by |S| its cardinality, and sup(x) := {i ∈ [n] | xi �= 0}
its support. A tensor T is called symmetric if its entries ti1i2...ik = ti ′1i ′2...i ′k for arbitrary
permutation

(
i ′1, i ′2, . . . , i ′k

)
of (i1, i2, . . . , ik). A tensor T is called positive semi-definite if

for any vector x ∈ R
n , T xk ≥ 0, and is called positive definite if for any nonzero vector

x ∈ R
n , T xk > 0. Let tensor T = (ti1...ik ). If for i ∈ [n], 2ti ...i ≥ ∑

i2,...,ik∈[n] |tii2...ik |, then
T is called a diagonally dominated tensor. Denote 1 j ∈ R

n as the j th unit vector (i.e. the
j th element is 1, otherwise 0 ) for j ∈ [n], 0 the zero vector in R

n , 1 the all 1 vector in R
n .

2.2. Directed hypergraphs

In this subsection, we present some essential concepts of directed hypergraphs with their
adjacency tensors, Laplacian tensors and signless Laplacian tensors, which will be used in
the sequel. Our definition for a directed hypergraph is the same as in [34], which is a special
case of the definition in [33], i.e. we discuss the case that each arc has only one tail.
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782 J. Xie and L. Qi

In this paper, unless stated otherwise, a directed hypergraph means a simple k-uniform
directed hypergraph G with vertex set V , which is labelled as [n] = {1, . . . , n}, and arc set
E . E is a set of ordered subsets of V . The elements of E are called arcs. An arc e ∈ E
has the form e = ( j1, . . . , jk), where jl ∈ V for l ∈ [k] and jl �= jm if l �= m. The order
of j2, . . . , jk is irrelevant. But the order of j1 is special. The vertex j1 is called the tail
(or out-vertex) of the arc e. It must be in the first position of the arc. Each other vertex
j2, . . . , jk is called a head (or in-vertex) of the arc e. The out-degree of a vertex j ∈ V is
defined as d+

j = |E+
j |, where E+

j = {e ∈ E : j is the tail of e}. The in-degree of a vertex

j ∈ V is defined as d−
j = 1

k−1 |E−
j |, where E−

j = {e ∈ E : j is a head of e}. The degree (or
all-degree) of a vertex j ∈ V is defined as d j = d+

j + d−
j . If for each j ∈ V , the degree d+

j
(or d+

j or d j , respectively) has the same value d , then G is called a directed d-out-regular
(or d-in-regular or d-regular, respectively) hypergraph.

By k-uniformity, we mean that for every arc e ∈ E , the cardinality |e| of e is equal to k.
Throughout this paper, k ≥ 3 and n ≥ k. Moreover, since the trivial hypergraph (i.e. E = ∅)
is of less interest, we consider only hypergraphs having at least one arc (i.e. nontrivial) in
this paper.

For a subset S ⊂ [n], we denoted by ES the set of arcs {e ∈ E | S ∩ e �= ∅}. For
a vertex i ∈ V , we simplify E{i} as Ei . It is the set of arcs containing the vertex i , i.e.
Ei := {e ∈ E | i ∈ e}. Two different vertices i and j are weak-connected, if there is a
sequence of arcs (e1, . . . , em) such that i ∈ e1, j ∈ em and er ∩er+1 �= ∅ for all r ∈ [m −1].
Two different vertices i to j is strong-connected, denoted by i → j , if there is a sequence
of arcs (e1, . . . , em) such that i is the tail of e1, j is a head of em and a head of er is the
tail of er+1 for all r ∈ [m − 1]. A directed hypergraph is called weak-connected, if every
pair of different vertices of G is weak-connected. A directed hypergraph is called strong-
connected, if every pair of different vertices i and j of G satifying i → j and j → i . Let
S ⊆ V , the directed hypergraph with vertex set S and arc set {e ∈ E | e ⊆ S} is called the
directed sub-hypergraph of G induced by S. We will denote it by GS . A weak-connected
component GS is a sub-hypergraph of G such that any two vertices in S are weak-connected
and no other vertex in V \ S is weak-connected to any vertex in S. A directed hypergraph
G = (V, E) is complete if E consists of all the possible arcs. In the sequel, unless stated
otherwise, all the notations introduced above are reserved for the specific meanings. For
others definitions and notations not mentioned here, please see [36].

The following definition for the adjacency tensor, Laplacian tensor and signless Lapla-
cian tensor of a directed hypergraph was proposed by Chen and Qi [32].

Definition 2.2 Let G = (V, E) be a k-uniform directed hypergraph. The adjacency tensor
of the directed hypergraph G is defined as the k-order n-dimensional tensor A whose
(i1 . . . ik)-entry is:

ai1...ik :=
{ 1

(k−1)! if (i1, . . . , ik) = e ∈ E and i1 is the tail ofe,
0 otherwise.

Let D be a k-order n-dimensional diagonal tensor with its diagonal element di ...i being d+
i ,

the out-degree of vertex i , for all i ∈ [n]. Then L := D − A is the Laplacian tensor of the
directed hypergraph G, and Q := D + A is the signless Laplacian tensor of the directed
hypergraph G.
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Linear and Multilinear Algebra 783

By the definition above, the adjacency tensor, the Laplacian tensor and the signless
Laplacian tensors of a uniform directed hypergraph are not symmetric in general. The
adjacency tensor and the signless Laplacian tensor are still nonnegative. In general, we
do not know if the Laplacian tensor and the signless Laplacian tensor of an even-uniform
directed hypergraph are positive semi-definite or not. We may still show that the smallest
H -eigenvalue of the Laplacian tensor of an k-uniform directed hypergraph is zero with an
H -eigenvector 1, and the largest H -eigenvalues of the adjacency tensor and the signless
Laplacian tensor of a directed d-out-regular hypergraph are d and 2d , respectively.

3. H-Eigenvalues of the adjacency tensor for a uniform directed hypergraph

This section presents some basic results about the H -eigenvalues of the adjacency tensor
of a uniform directed hypergraph. We start the discussion on the H -eigenvalue 0 of the
adjacency tensor of a uniform directed hypergraph.

The next proposition is a direct consequence of Definition 2.1.

Proposition 3.1 Given an n-vertex k-uniform directed hypergraph G, let A be its ad-
jacency tensor and 1 j (1 ≤ j ≤ n) be the j th unit vector. Then any vector x, which is
linear combination of at most k − 2 different 1 j , is an H-eigenvector of A corresponding
to H-eigenvalue 0.

Proof For any vector x which is linear combination of at most k − 2 different 1 j , one can
get that the multiplication of any k − 1 entries in vector x is equal to 0. Then

Axk−1 = 0 = 0x.

By Definition 2.1, the proposition follows. �

Corollary 3.1 Given an n-vertex k-uniform directed hypergraph G, let A be its adja-
cency tensor and 1 j (1 ≤ j ≤ n) be the j th unit vector. Then A has n linearly independent
H-eigenvectors.

Proof Note that k ≥ 3 throughout this paper. Hence, from Proposition 3.1, there exist n lin-
early independent unit vectors 1 j ( j = 1, . . . , n) as H -eigenvectors of A all corresponding
to H -eigenvalue 0. �

By Proposition 3.1, the adjacency tensor A of uniform directed hypergraph G has at
least one H -eigenvalue. Now, we study the largest and smallest H -eigenvalues of uniform
directed hypergraph G via its adjacency tensor A. Denote by λ(A) (respectively, μ(A)) as
the largest (respectively, smallest) H -eigenvalue of uniform directed hypergraph G via its
adjacency tensor A.

Theorem 3.1 Let A be the adjacency tensor of an n-vertex k-uniform directed hyper-
graph G = (V, E). Then we have

−�+ ≤ μ(A) ≤ 0 ≤ λ(A) ≤ �+,

where the maximum out-degree �+ := max1≤i≤n d+
i .
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784 J. Xie and L. Qi

Proof By Proposition 3.1, μ(A) ≤ 0 ≤ λ(A). Hence, we only have to prove −�+ ≤
μ(A) and λ(A) ≤ �+.

For any H -eigenvalue λ of A, let y be its corresponding H -eigenvector of A and yi

(0 < |yi |) be an entry of y with maximum absolute value. Then the i th eigenvalue equation
gives that

λyk−1
i =

∑
i2,...,ik∈[n]

aii2...ik yi2 . . . yik =
∑

(i,i2,...,ik )∈E

yi2 . . . yik .

Then

|λ||yi |k−1 =
∣∣∣∣∣∣

∑
(i,i2,...,ik )∈E

yi2 . . . yik

∣∣∣∣∣∣ ≤
∑

(i,i2,...,ik )∈E

|yi2 | . . . |yik |

≤
∑

(i,i2,...,ik )∈E

|yi |k−1 = d+
i |yi |k−1 ≤ �+|yi |k−1.

That is
−�+ ≤ λ ≤ �+.

Then we have −�+ ≤ μ(A) and λ(A) ≤ �+, since μ(A) ≤ λ ≤ λ(A). �

By Theorem 3.1 together with its proof, we have the following two corollaries.

Corollary 3.2 The H-eigenvalues of adjacency tensor A for n-vertex k-uniform
directed hypergraph G lie in the union of n intervals in R. These n intervals have the
diagonal elements 0 as their centres, and d+

i (i = 1, . . . , n) as their radii. That is, all the
H-eigenvalues of adjacency tensor A for n-vertex k-uniform directed hypergraph G lie in
the interval with centre 0 and radius �+.

Corollary 3.3 The largest H-eigenvalue λ(A) of adjacency tensor A for directed
d-out-regular hypergraph G is d, with a corresponding H-eigenvector 1.

Theorem 3.2 Let A be the adjacency tensor of an n-vertex k-uniform directed hyper-
graph G = (V, E), r be a real number nonzero. Then we have

λ(A) ≤
(

n − 1

k − 1

)
,

and equality holds if and only if G is an n-vertex k-uniform complete directed hypergraph
with H-eigenvector r1 corresponding to H-eigenvalue λ(A).

Proof For the largest H -eigenvalue λ(A) of A, let y be its corresponding H -eigenvector of
A and yi (0 < |yi |) be an entry of y with maximum absolute value. Then the i th eigenvalue
equation gives that

λ(A)yk−1
i =

∑
i2,...,ik∈[n]

aii2...ik yi2 . . . yik =
∑

(i,i2,...,ik )∈E

yi2 . . . yik .

Then

|λ(A)||yi |k−1 =
∣∣∣∣∣∣

∑
(i,i2,...,ik )∈E

yi2 . . . yik

∣∣∣∣∣∣ ≤
∑

(i,i2,...,ik )∈E

|yi2 | . . . |yik |.
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Linear and Multilinear Algebra 785

That is

|λ(A)| ≤
∑

(i,i2,...,ik )∈E

|yi2 |
|yi | . . .

|yik |
|yi | ≤

∑
i2,...,ik∈[n]\{i}

1 =
(

n − 1

k − 1

)
,

where the last inequality follows from the fact that |E | ≤ (n−1
k−1

)
and equality holds if and

only if G is an n-vertex k-uniform complete directed hypergraph, the first two inequalities
follow from the absolute inequalities and two equalities both holding if and only if y1 =
y2 = · · · = yn , i.e. y = r1. This completes the proof. �

In spectral theory of undirected hypergraphs, it is obvious that there exists a nonnegative
H -eigenvector corresponding to the largest H -eigenvalue λ(A). But, unlike spectral theory
of undirected hypergraphs, until now we still cannot prove the following conjecture.

Conjecture 3.1 Given an n-vertex k-uniform directed hypergraph G, let A be its adjacency
tensor and k be even. Then there exists a nonnegative H -eigenvector x corresponding to
the largest H -eigenvalue λ(A) such that λ(A) = Axk

||x||kk
.

4. H-Eigenvalues of the Laplacian tensor for a uniform directed hypergraph

This section presents some basic results about the H -eigenvalue of the Laplacian tensor
for a uniform directed hypergraph. We start the discussion on the H -eigenvalue 0 of the
Laplacian tensor of a uniform directed hypergraph.

The next proposition is a direct consequence of Definition 2.1.

Proposition 4.1 Given an n-vertex k-uniform directed hypergraph G, let L be its Lapla-
cian tensor. Then vector 1, is an H-eigenvector of L corresponding to H-eigenvalue 0.

Proof For vector 1, one can get that for each i = 1, . . . , n

[L1k−1]i =
∑

i2,...,ik∈[n]
lii2...ik 1 = dii ...i −

∑
(i,i2,...,ik )∈E

1 = d+
i − d+

i = 0[1]k−1
i .

By Definition 2.1, the proposition follows. �

Proposition 4.2 Given an n-vertex k-uniform directed hypergraph G, let L be its Lapla-
cian tensor. Then each vector 1 j ( j = 1, . . . , n) is an H-eigenvector of L corresponding
to H-eigenvalue d+

j .

Proof For vector 1 j , one can get that[
L1k−1

j

]
j
= d j j ... j 1 −

∑
( j, j2,..., jk )∈E

0 = d+
i

and for each i ∈ [n] \ { j}[
L1k−1

j

]
i
= dii ...i 0 −

∑
(i,i2,...,ik )∈E

0 = 0.

By Definition 2.1, the proposition follows. �
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786 J. Xie and L. Qi

The next corollary is a direct consequence of Propositions 4.1 and 4.2.

Corollary 4.1 Given an n-vertex k-uniform directed hypergraph G, let L be its Lapla-
cian tensor. Then L has n linearly independent H-eigenvectors and at least n + 1 H-
eigenvalues (Repeatable).

By Corollary 4.1, the Laplacian tensor L of uniform directed hypergraph G has at least
n + 1 H -eigenvalues. Now, we study the largest and smallest H -eigenvalues of uniform
directed hypergraph G via its Laplacian tensor L. Denote by λ(L) (respectively, μ(L)) as
the largest (respectively, smallest) H -eigenvalue of uniform directed hypergraph G via its
Laplacian tensor L.

Theorem 4.1 Let L be the Laplacian tensor of an n-vertex k-uniform directed hypergraph
G = (V, E). Then we have

0 = μ(L) ≤ δ+ ≤ �+ ≤ λ(L) ≤ 2�+,

where the minimum out-degree δ+ := min1≤i≤n d+
i .

Proof By Propositions 4.1 and 4.2, μ(L) ≤ 0 ≤ δ+ ≤ �+ ≤ λ(L). Hence, we only have
to prove 0 ≤ μ(L) and λ(L) ≤ 2�+.

For any H -eigenvalue λ of L, let y be its corresponding H -eigenvector of L and yi

(0 < |yi |) be an entry of y with maximum absolute value. Then the i-th eigenvalue equation
gives that

λyk−1
i =

∑
i2,...,ik∈[n]

lii2...ik yi2 . . . yik = d+
i yk−1

i −
∑

(i,i2,...,ik )∈E

yi2 . . . yik .

Then

|λ − d+
i ||yi |k−1 =

∣∣∣∣∣∣
∑

(i,i2,...,ik )∈E

yi2 . . . yik

∣∣∣∣∣∣ ≤
∑

(i,i2,...,ik )∈E

|yi2 | . . . |yik |

≤
∑

(i,i2,...,ik )∈E

|yi |k−1 = d+
i |yi |k−1.

That is
|λ − d+

i | ≤ d+
i .

Hence
0 ≤ λ ≤ 2d+

i ≤ 2�+.

Then we have 0 ≤ μ(L) and λ(L) ≤ 2�+. �

By Theorem 4.1 together with its proof, we have the following two corollaries.

Corollary 4.2 The H-eigenvalues of Laplacian tensor L for n-vertex k-uniform di-
rected hypergraph G lie in the union of n intervals in R. These n intervals have the diagonal
elements d+

i (i = 1, . . . , n) as their centres, and d+
i (respectively) as their radii. That is,

all the H-eigenvalues of Laplacian tensor L for n-vertex k-uniform directed hypergraph G
lie in the interval with centre �+ and radius �+.

D
ow

nl
oa

de
d 

by
 [

H
on

g 
K

on
g 

Po
ly

te
ch

ni
c 

U
ni

ve
rs

ity
] 

at
 2

1:
29

 3
0 

M
ar

ch
 2

01
6 



Linear and Multilinear Algebra 787

Corollary 4.3 Let L be the Laplacian tensor of an n-vertex k-uniform directed hyper-
graph G = (V, E). Then we have

λ(L) ≤ 2

(
n − 1

k − 1

)
.

In spectral theory of undirected hypergraphs, since the Laplacian tensor L of an even-
uniform undirected hypergraph G is symmetric and diagonally dominated, then L is positive
semi-definite. But, unlike spectral theory of undirected hypergraphs, until now we still
cannot answer the following question.

Question 4.1 Given an even-uniform directed hypergraph G, let L be its Laplacian tensor.
Is L a positive semi-definite tensor?

5. H-Eigenvalues of the signless Laplacian tensor for a uniform directed hypergraph

This section presents some basic results about the H -eigenvalue of the signless Laplacian
tensor of a uniform directed hypergraph.

The next proposition is a direct consequence of Definition 2.1.

Proposition 5.1 Given an n-vertex k-uniform directed hypergraph G, let Q be its sign-
less Laplacian tensor. Then each vector 1 j ( j = 1, . . . , n) is an H-eigenvector of Q
corresponding to H-eigenvalue d+

j .

Proof For vector 1 j , one can get that[
Q1k−1

j

]
j
= d j j ... j 1 +

∑
( j, j2,..., jk )∈E

0 = d+
i

and for each i ∈ [n] \ { j}[
Q1k−1

j

]
i
= dii ...i 0 +

∑
(i,i2,...,ik )∈E

0 = 0.

By Definition 2.1, the proposition follows. �

The next corollary is a direct consequence of Proposition 5.1.

Corollary 5.1 Given an n-vertex k-uniform directed hypergraph G, let Q be its signless
Laplacian tensor. Then Q has n linearly independent H-eigenvectors and at least n H-
eigenvalues (Repeatable).

By Corollary 5.1, the signless Laplacian tensor Q of uniform directed hypergraph G has
at least n H -eigenvalues. Now, we study the largest and smallest H -eigenvalues of uniform
directed hypergraph G via its signless Laplacian tensor Q. Denote by λ(Q) (respectively,
μ(Q)) as the largest (respectively, smallest) H -eigenvalue of uniform directed hypergraph
G via its signless Laplacian tensor Q.
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788 J. Xie and L. Qi

Theorem 5.1 Let Q be the signless Laplacian tensor of an n-vertex k-uniform directed
hypergraph G = (V, E). Then we have

0 ≤ μ(Q) ≤ δ+ ≤ �+ ≤ λ(Q) ≤ 2�+.

Proof By Proposition 5.1, μ(Q) ≤ δ+ ≤ �+ ≤ λ(Q). Hence, we only have to prove
0 ≤ μ(Q) and λ(Q) ≤ 2�+.

For any H -eigenvalue λ of Q, let y be its corresponding H -eigenvector of Q and yi

(0 < |yi |) be an entry of y with maximum absolute value. Then the i-th eigenvalue equation
gives that

λyk−1
i =

∑
i2,...,ik∈[n]

lii2...ik yi2 . . . yik = d+
i yk−1

i +
∑

(i,i2,...,ik )∈E

yi2 . . . yik .

Then

|λ − d+
i ||yi |k−1 =

∣∣∣∣∣∣
∑

(i,i2,...,ik )∈E

yi2 . . . yik

∣∣∣∣∣∣ ≤
∑

(i,i2,...,ik )∈E

|yi2 | . . . |yik |

≤
∑

(i,i2,...,ik )∈E

|yi |k−1 = d+
i |yi |k−1.

That is
|λ − d+

i | ≤ d+
i .

Hence
0 ≤ λ ≤ 2d+

i ≤ 2�+.

Then we have 0 ≤ μ(Q) and λ(Q) ≤ 2�+. �

By the proof of Theorem 5.1, we have the following two corollaries.

Corollary 5.2 The H-eigenvalues of signless Laplacian tensorQ for n-vertex k-uniform
directed hypergraph G lie in the union of n intervals in R. These n intervals have the
diagonal elements d+

i (i = 1, . . . , n) as their centres, and d+
i (respectively) as their radii.

That is, all the H-eigenvalues of signless Laplacian tensor Q for n-vertex k-uniform directed
hypergraph G lie in the interval with centre �+ and radius �+.

Corollary 5.3 The largest H-eigenvalue λ(Q) of signless Laplacian tensor Q for
directed d-out-regular hypergraph G is 2d, with a corresponding H-eigenvector 1.

By Theorem 5.1 and the proof of Theorem 3.2, we have the following corollary.

Corollary 5.4 Let Q be the signless Laplacian tensor of an n-vertex k-uniform directed
hypergraph G = (V, E). Then we have

λ(Q) ≤ 2

(
n − 1

k − 1

)
,

and equality holds if and only if G is an n-vertex k-uniform complete directed hypergraph
with H-eigenvector r1 corresponding to H-eigenvalue λ(Q).
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Linear and Multilinear Algebra 789

In spectral theory of undirected hypergraphs, it is obvious that there exists a nonnegative
H -eigenvector corresponding to the largest H -eigenvalue λ(Q). But, unlike spectral theory
of undirected hypergraphs, until now we still cannot prove the following conjecture is true.

Conjecture 5.1 Given an n-vertex k-uniform directed hypergraph G, let Q be its signless
Laplacian tensor and k be even. Then there exists a nonnegative H -eigenvector x corre-
sponding to the largest H -eigenvalue λ(Q) such that λ(Q) = Qxk

||x||kk
.

In spectral theory of undirected hypergraphs, since the signless Laplacian tensor Q of
an even-uniform undirected hypergraph G is symmetric and diagonally dominated, then Q
is positive semi-definite. But, unlike spectral theory of undirected hypergraphs, until now
we still can’t answer the following question.

Question 5.1 Given an even-uniform directed hypergraph G, let Q be its signless Lapla-
cian tensor. Is Q a positive semi-definite tensor?

6. H-Eigenvalues of the uniform directed hyperstar

In the following, we introduce the special class of directed hyperstars.

Definition 6.1 Let G = (V, E) be a k-uniform directed hypergraph. If there is a dis-
joint partition of the vertex set V as V = V0 ∪ V1 ∪ . . . ∪ Vd such that |V0| = 1 and
|V1| = · · · = |Vd | = k − 1, E = {V0 ∪ Vi | i ∈ [d]} and only V0 is tail, then G is called a
directed hyperstar. The degree d of the vertex in V0, which is called the heart, is the size
of the directed hyperstar. The arcs of G are leaves, and the vertices other than the heart are
vertices of leaves.

It is an obvious fact that, with a possible renumbering of the vertices, all the directed
hyperstars with the same size are identical. Moreover, by Definition 2.1, we see that
the process of renumbering does not change the H -eigenvalues of the adjacency tensor,
Laplacian tensor and signless Laplacian tensor of the hyperstar.

An example of a directed hyperstar is given in Figure 1.
The next proposition is a direct consequence of Definition 6.1.

Proposition 6.1 Let G = (V, E) be a k-uniform directed hyperstar of size d > 0. Then
except for one vertex i ∈ [n] with di = d+

i = d, we have d j = d−
j = 1

k−1 for the others.

By Theorems 3.1, 4.1 and 5.1, we have the following lemma.

Corollary 6.1 Let G = (V, E) be a k-uniform directed hyperstar with its maximum
degree d > 0 and A, L, Q, respectively, be its adjacency tensor, Laplacian tensor,signless
Laplacian tensor. Then λ(A) ≤ d ≤ λ(L) and also d ≤ λ(Q).

When G is a k-uniform directed hyperstar, Theorem 3.1 and part of Corollary 6.1 can
be strengthened as in the next theorem.
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790 J. Xie and L. Qi

Figure 1. An example of a 3-uniform directed hyperstar of size 3. An arc is pictured as a closed
curve with the containing solid discs the vertices in that arc. Different arcs are in different curves with
different colours. The red (also in dashed margin) disc represents the heart.

Theorem 6.1 Let G = (V, E) be a k-uniform directed hyperstar of size d > 0 and A be
its adjacency tensor. Then μ(A) = 0 = λ(A), that is, all H-eigenvalues of the adjacency
tensor for G are 0.

Proof Let V (G) = {1, 2, . . . , n}. Without loss of generality, suppose that 1 is the heart
vertex of G satisfying d1 = d , and the arcs of G can be supposed as

E(G) = {
e j := (1, j2, j3, . . . , jk) | ji ∈ {2, . . . , n}, 1 ≤ j ≤ d, 2 ≤ i ≤ k

}
Let x ∈ R

n be a nonzero H -eigenvector corresponding to λ(A). Then we have that

(
Axk−1

)
1

=
d∑

j=1

x j2 x j3 . . . x jk = λ(A)xk−1
1 ,

and for each i ∈ {2, . . . , n} (
Axk−1

)
i
= 0 = λ(A)xk−1

i .

Thus, if λ(A) �= 0, then for each i ∈ {2, . . . , n}

xi = 0.
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Linear and Multilinear Algebra 791

Hence, by

λ(A)xk−1
1 =

d∑
j=1

x j2 x j3 . . . x jk = 0,

we have that

x1 = 0.

Thus, x = 0, which contradicts with x �= 0. Consequently, λ(A) = 0. By the same methods,
we can prove that μ(A) = 0. Since λ(A) (respectively, μ(A)) is the largest (respec-
tively, smallest) H -eigenvalue of G, then all H -eigenvalues of the adjacency tensor for G
are 0. �

And we have the following propositions about H -eigenvalues of the Laplacian tensor
and signless Laplacian tensor for a uniform directed hyperstar.

Proposition 6.2 Let G = (V, E) be a k-uniform directed hyperstar of size d > 0 and
L be its Laplacian tensor. Then 1

k−1 is a H-eigenvalues of the Laplacian tensor for G.

Proof Suppose, without loss of generality, that d1 = d . Let x ∈ R
n be a nonzero vector

such that x1 = α ∈ R, and x2 = · · · = xn = 1. Then, we see that(
Lxk−1

)
1

= dαk−1 − d1k−1 = dαk−1 − d,

and for i ∈ {2, . . . , n}
(
Lxk−1

)
i
= 1

k − 1
1k−1 − 0 = 1

k − 1
.

Thus, x is an H -eigenvector of L corresponding to an H -eigenvalue λ if and only if

dαk−1 − d = λαk−1, and
1

k − 1
= λ1k−1 = λ.

It can be calculated that

λ = 1

k − 1
, and α = k−1

√
d

d − 1
k−1

.

Hence, x = ( k−1

√
d

d− 1
k−1

, 1, . . . , 1)T is an H -eigenvector of Laplacian tensor for G corre-

sponding to H -eigenvalue 1
k−1 . The result follows. �

Proposition 6.3 Let k be even and G = (V, E) be a k-uniform directed hyperstar of
size d > 0 and Q be its signless Laplacian tensor. Then 1

k−1 is a H-eigenvalues of the
signless Laplacian tensor for G.
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792 J. Xie and L. Qi

Proof Suppose, without loss of generality, that d1 = d . Let x ∈ R
n be a nonzero vector

such that x1 = α ∈ R, and x2 = · · · = xn = 1. Then, we see that(
Qxk−1

)
1

= dαk−1 + d1k−1 = dαk−1 + d,

and for i ∈ {2, . . . , n} (
Lxk−1

)
i
= 1

k − 1
1k−1 + 0 = 1

k − 1
.

Thus, x is an H -eigenvector of L corresponding to an H -eigenvalue λ if and only if

dαk−1 + d = λαk−1, and
1

k − 1
= λ1k−1 = λ.

When k is even, it can be calculated that

λ = 1

k − 1
, and α = − k−1

√
d

d − 1
k−1

.

Hence, x =
(

− k−1

√
d

d− 1
k−1

, 1, . . . , 1

)T

is an H -eigenvector of signless Laplacian tensor

for G corresponding to H -eigenvalue 1
k−1 . The result follows. �
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