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a b s t r a c t

In this paper, we show that the eigenvectors associated with the zero eigenvalues of the
Laplacian and signless Laplacian tensors of a k-uniform hypergraph are closely related
to some configured components of that hypergraph. We show that the components of
an eigenvector associated with the zero eigenvalue of the Laplacian or signless Laplacian
tensor have the same modulus. Moreover, under a canonical regularization, the phases
of the components of these eigenvectors only can take some uniformly distributed val-
ues in {exp( 2jπ

k ) | j ∈ [k]}. These eigenvectors are divided into H-eigenvectors and
N-eigenvectors. Eigenvectors with maximal support are called maximal. The maximal
canonical H-eigenvectors characterize the even (odd)-bipartite connected components of
the hypergraph and vice versa, and maximal canonical N-eigenvectors characterize some
multi-partite connected components of the hypergraph and vice versa.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study the eigenvectors associated with the zero eigenvalues of the Laplacian tensor and the signless
Laplacian tensor proposed by Qi [23]. It turns out that these eigenvectors are characterized by some configured components
of the underlying hypergraph and vice versa. This work is motivated by the classical results about bipartite graphs [5,2]. Our
analysis makes use of the recent rapid developments on both spectral hypergraph theory [17,10,6,23,19,15,27,26,32,31,30,
16,12] and spectral theory of tensors [3,4,8,9,16,17,15,11,18,20–22,24,28,33,34].

The study of Laplacian-type tensors for a uniform hypergraph has become an active research frontier in spectral hyper-
graph theory recently [10,15,32,30,23,12]. Notably, Qi [23] proposed a simple and natural definitionD −A for the Laplacian
tensor and D + A for the signless Laplacian tensor. Here A = (ai1...ik) is the adjacency tensor of a k-uniform hypergraph
and D = (di1...ik) the diagonal tensor with its diagonal elements being the degrees of the vertices. Following this, Hu and
Qi proposed the normalized Laplacian tensor (or simply Laplacian) and made some explorations on it [12], which is the
analogue of the spectral graph theory investigated by Chung [5].

In spectral graph theory, it iswell known that themultiplicity of the zero eigenvalue of the Laplacianmatrix is equal to the
number of connected components of the graph, and the multiplicity of the zero eigenvalue of the signless Laplacian matrix
is equal to the number of bipartite connected components of the graph [2]. In this paper, we investigate these matrices’
analogues in spectral hypergraph theory. It turns out that, on the one hand, the situation is much more complicated, and,
on the other hand, the results are more abundant. We show the following (please see Section 2 for basic definitions):
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(i) Let k be even and G be a k-uniform hypergraph.
– (Proposition 5.1) The number ofmaximal canonical H-eigenvectors associatedwith the zero eigenvalue of the signless

Laplacian tensor equals the number of odd-bipartite connected components of G.
– (Proposition 5.2) The number of maximal canonical H-eigenvectors associated with the zero eigenvalue of the

Laplacian tensor equals the sum of the number of even-bipartite connected components of G and the number of
connected components of G, minus the number of singletons of G.

(ii) Let k be odd and G be a k-uniform hypergraph.
– (Proposition 5.3) The number of maximal canonical H-eigenvectors associated with the zero eigenvalue of the

Laplacian tensor equals the number of connected components of G.
– (Corollary 5.1) The number of maximal canonical H-eigenvectors associated with the zero eigenvalue of the signless

Laplacian tensor is equal to the number of singletons of G.

Whenwe turn toN-eigenvectors, we have the following (the definitions for the variousmulti-partite connected components
are given in Section 6):
(i) (Proposition 6.1) Let G = (V , E) be a 3-uniform hypergraph. Then the number of maximal canonical conjugate N-

eigenvector pairs associated with the zero eigenvalue of the Laplacian tensor equals the number of tripartite connected
components of G.

(ii) Let G = (V , E) be a 4-uniform hypergraph.
– (Proposition 6.2) The number of maximal canonical conjugate N-eigenvector pairs associated with the zero

eigenvalue of the Laplacian tensor equals the number of L-quadripartite connected components of G.
– (Proposition 6.3) The number of maximal canonical conjugate N-eigenvector pairs of the zero eigenvalue of the

signless Laplacian tensor equals the number of sL-quadripartite connected components of G.
(iii) (Proposition 6.4) Let G = (V , E) be a 5-uniform hypergraph. Then the number of maximal canonical conjugate

N-eigenvector pairs of the zero eigenvalue of the Laplacian tensor equals the number of pentapartite connected
components of G.

The results related with N-eigenvectors can be generalized to any order k ≥ 6. But it is somewhat complicated to describe
the corresponding configured components. Hence, only k = 3, 4, 5 are presented in this paper.

On top of the above results, we show in Proposition 3.1 that an hm-bipartite hypergraph has a symmetric spectrum, and
in Proposition 3.2 that when k is even the spectrum of the Laplacian tensor and the spectrum of the signless Laplacian tensor
of an hm-bipartite hypergraph are equal. We also show that zero is not an eigenvalue of the signless Laplacian tensor of a
connected k-uniform hypergraph with odd k (Proposition 4.1).

The rest of this paper is organized as follows. Some definitions on eigenvalues of tensors and hypergraphs are presented
in the next section. We discuss in Section 3 some spectral properties of hm-bipartite hypergraphs. Then we characterize the
eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph
in Section 4. In Section 5, we establish the connection between maximal canonical H-eigenvectors associated with the
eigenvalue zero and some configured components of the hypergraph. The discussion is extended to N-eigenvectors in
Section 6. Some final remarks are made in the last section.

2. Preliminaries

Some preliminary definitions of eigenvalues of tensors and uniform hypergraphs are presented in this section.

2.1. Eigenvalues of tensors

In this subsection, some basic facts about eigenvalues and eigenvectors of tensors are reviewed. For comprehensive
references, see [20–22,8] and references therein.

Let C (R) be the field of complex (real) numbers and Cn (Rn) the n-dimensional complex (real) space. For integers k ≥ 3
and n ≥ 2, a real tensor T = (ti1...ik) of order k and dimension n refers to a multiway array (also called hypermatrix)
with entries ti1...ik such that ti1...ik ∈ R for all ij ∈ [n] := {1, . . . , n} and j ∈ [k]. Tensors referred to are always k-th order
real tensors in this paper, and the dimensions will be clear from context. Given a vector x ∈ Cn, define an n-dimensional
vector T xk−1 with its ith element being


i2,...,ik∈[n] tii2...ikxi2 · · · xik for all i ∈ [n]. Let I be the identity tensor of appropriate

dimension, e.g., ii1...ik = 1 if and only if i1 = · · · = ik ∈ [n], and zero otherwise when the dimension is n. The following
definition was introduced by Qi [20].

Definition 2.1. Let T be a k-th order n-dimensional real tensor. For some λ ∈ C, if the polynomial system (λI − T ) xk−1
=

0 has a solution x ∈ Cn
\ {0}, then λ is called an eigenvalue of the tensor T and x an eigenvector of T associated with λ. If an

eigenvalue λ has an eigenvector x ∈ Rn, then λ is called an H-eigenvalue and x an H-eigenvector. If an eigenvector x ∈ Cn

cannot be scaled to be real,1then it is called an N-eigenvector.

1 We see that when x is an eigenvector, then αx is still an eigenvector for all nonzero α ∈ C. An eigenvector x can be scaled to be real means that
there is a nonzero α ∈ C such that αx ∈ Rn . In this situation, we prefer to study this αx, which is an H-eigenvector, rather than the others in the orbit
{γ x | γ ∈ C \ {0}}.
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It is easy to see that an H-eigenvalue is real. However, an H-eigenvalue may still be associated with some N-eigenvectors.
We may rescale the eigenvector such that the components have maximum modulus one. We call such an eigenvector

canonical. In the following, unless stated otherwise, all eigenvectors referred to are canonical eigenvectors. This convention
does not introduce any restrictions, since the eigenvector defining equations are homogeneous. An eigenvector x of the
eigenvalue zero is called maximal if there does not exist another eigenvector of the eigenvalue zero such that its support is
strictly contained in that of x.

The algebraic multiplicity of an eigenvalue is defined as the multiplicity of this eigenvalue as a root of the characteristic
polynomial χT (λ). To give the definition of the characteristic polynomial, determinant theory is needed. For determinant
theory of a tensor, see [8].

Definition 2.2. Let T be a k-th order n-dimensional real tensor and λ be an indeterminate variable. The determinant
Det(λI − T ) of λI − T , which is a polynomial in C[λ] and denoted by χT (λ), is called the characteristic polynomial of
the tensor T .
It is known that the set of eigenvalues of T equals the set of roots of χT (λ); see [8, Theorem 2.3]. If λ is a root of χT (λ) of
multiplicity s, then we call s the algebraic multiplicity of the eigenvalue λ. Let c(n, k) = n(k − 1)n−1. By [8, Theorem 2.3],
χT (λ) is a monic polynomial of degree c(n, k). The set of all the eigenvalues of T (with algebraic multiplicities) is the
spectrum of T .

Sub-tensors are involved in this paper. For more discussions on this, see [8].

Definition 2.3. Let T be a k-th order n-dimensional real tensor and s ∈ [n]. Consider a subset S = {j1, . . . , js} of [n] with
jk ∈ [n] for k ∈ [s]. The k-th order s-dimensional tensor U with entries ui1...ik = tji1 ...jik

for all i1, . . . , ik ∈ [s] is called the
sub-tensor of T associated to the subset S. We usually denote U as T (S).

For a subset S ⊆ [n], we denote by |S| its cardinality. For x ∈ Cn, x(S) is defined as an |S|-dimensional sub-vector of x
with its entries being xi for i ∈ S, and supp(x) := {i ∈ [n] | xi ≠ 0} is its support.

2.2. Uniform hypergraphs

In this subsection, we present some basic concepts concerning uniform hypergraphswhichwill be used presently. Please
refer to [1,5,2,12,23] for comprehensive references.

In this paper, unless stated otherwise, a hypergraphmeans an undirected simple k-uniform hypergraph Gwith vertex set
V , which is labeled as [n] = {1, . . . , n}, and edge set E. By k-uniformity, we mean that for every edge e ∈ E, the cardinality
|e| of e is equal to k. Throughout this paper, k ≥ 3 and n ≥ k. Moreover, since the trivial hypergraph (i.e., E = ∅) is of little
interest, we consider only hypergraphs having at least one edge in this paper.

For a subset S ⊂ [n], we denoted by ES the set of edges {e ∈ E | S ∩ e ≠ ∅}. For a vertex i ∈ V , we simplify E{i} as Ei.
This is the set of edges containing the vertex i, i.e., Ei := {e ∈ E | i ∈ e}. The cardinality |Ei| of the set Ei is defined as the
degree of the vertex i, which is denoted by di. Then we have that k|E| =


i∈[n] di. If di = 0, then we say that the vertex i is

isolated or it is a singleton. Two different vertices i and j are connected to each other (or the pair i and j is connected), if there
is a sequence of edges (e1, . . . , em) such that i ∈ e1, j ∈ em and er ∩ er+1 ≠ ∅ for all r ∈ [m − 1]. A hypergraph is called
connected, if every pair of different vertices of G is connected. A set S ⊆ V is a connected component of G, if every two vertices
of S are connected and there is no vertex in V \ S that is connected to any vertex in S. For convenience, an isolated vertex is
regarded as a connected component as well. Then, it is easy to see that for every hypergraph G, there is a partition of V into
pairwise disjoint subsets V = V1 ∪ · · · ∪ Vr such that every Vi is a connected component of G. Let S ⊆ V , the hypergraph
with vertex set S and edge set {e ∈ E | e ⊆ S} is called the sub-hypergraph of G induced by S. We will denoted it by GS .

The following definition for the Laplacian tensor and signless Laplacian tensor was proposed by Qi [23].

Definition 2.4. Let G = (V , E) be a k-uniform hypergraph. The adjacency tensor of G is defined as the k-th order n-
dimensional tensor A whose (i1i2 · · · ik)-entry is:

ai1i2...ik :=


1

(k − 1)!
if {i1, i2, . . . , ik} ∈ E,

0 otherwise.

Let D be a k-th order n-dimensional diagonal tensor with its diagonal element di...i being di, the degree of vertex i, for all
i ∈ [n]. ThenD−A is the Laplacian tensor of the hypergraphG, andD+A is the signless Laplacian tensor of the hypergraphG.

Let G = (V , E) be a hypergraphwith connected components V = V1 ∪· · ·∪Vr for r ≥ 1. By reordering the indices if nec-
essary, A = (ai1···in) can be represented by a block diagonal structure according to V1, . . . , Vr , i.e., ai1···ik ≡ 0 unless ij ∈ Vl
for j ∈ [k] and some l ∈ [r]. By Definition 2.1, the spectrum of A does not change when reordering the indices. Thus, in the
sequel, we assume that A is in the block diagonal structure with its ith block tensor being the sub-tensor of A associated to
Vi for i ∈ [r]. It is easy to see that A(Vi) is the adjacency tensor of the sub-hypergraph GVi for all i ∈ [r]. Similar conventions
are assumed to the signless Laplacian tensor and the Laplacian tensor. By similar discussions as [12, Lemma 3.3], the spectra
of the adjacency tensor, the signless Laplacian tensor, and the Laplacian tensor are the unions of the spectra of its diagonal
blocks respectively, with adequate multiplicity consideration; see [6,8,12,23].
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Fig. 1. Examples of the three kinds of bipartite hypergraphs in Definitions 2.5–2.7. (i) is an hm-bipartite 3-uniform hypergraph; (ii) is an odd-bipartite
4-uniform hypergraph; and (iii) is an even-bipartite 4-uniform hypergraph. An edge is pictured as a closed curvewith the containing solid disks the vertices
in that edge. Different edges are in different curves with different colors. A solid disk in dotted margin is a singleton of the hypergraph. The bipartition is
clear from the different colors (also the dashed margins from the solid ones) of the disks in the connected component.

In the following, we introduce three kinds of bipartite hypergraphs. It will be shown that the first class of uniform
hypergraphs has symmetric spectra, and the latter two classes of uniform hypergraphs characterize maximal canonical
H-eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors.

Definition 2.5. Let G = (V , E) be a k-uniform hypergraph. It is called hm-bipartite if there is a disjoint partition of the vertex
setV asV = V1∪V2 such thatV1, V2 ≠ ∅ and every edge in E intersectsV1 in exactly one vertex andV2 the other k−1 vertices.

We use the name hm-bipartite, since a head is selected from every edge and the rest is themass.

Definition 2.6. Let kbe even andG = (V , E)be a k-uniformhypergraph. It is called odd-bipartite if there is a disjoint partition
of the vertex set V as V = V1 ∪ V2 such that V1, V2 ≠ ∅ and every edge in E intersects V1 in an odd number of vertices.

Definition 2.7. Let k ≥ 4 be even and G = (V , E) be a k-uniform hypergraph. It is called even-bipartite if there is a disjoint
partition of the vertex set V as V = V1 ∪ V2 such that V1, V2 ≠ ∅ and every edge in E intersects V1 in an even number of
vertices.

The idea of even-bipartite hypergraphs appeared in [12, Corollary 6.5]. In Fig. 1, we give preliminary examples on the three
kinds of bipartite hypergraphs defined above.

When G is an ordinary graph, i.e., k = 2, Definitions 2.5 and 2.6 reduce to the classic definition for bipartite graphs [2].
When k > 2, ‘‘bipartite’’ has various meaningful generalizations. In this paper, we investigate the proposed three general-
izations.

We note that unlike its graph counterpart, an even (odd)-bipartite connected component of an even-uniform hypergraph
Gmay have several bipartitionswitnessing the bipartiteness. In counting the total number of even (odd)-bipartite connected
components, each connected component is counted with multiplicity equal to the number of decompositions into the ap-
propriate type of bipartition. Likewise, for a connected component V0 of a hypergraph G, if it has two bipartitions of the
same type as S1 ∪ T1 = V0 and S2 ∪ T2 = V0, unless S1 = S2 or S1 = T2, the two bipartitions are regarded different. See the
following example.

Example 2.1. Let G = (V , E) be a 4-uniform hypergraph with vertex set [6] and edge set E = {{1, 2, 3, 4}, {1, 3, 5, 6},
{1, 2, 3, 6}}. Then, G is connected and can be viewed as an even-bipartite hypergraph with bipartition V1 := {1, 2, 5} and
V2 := {3, 4, 6} by Definition 2.7. Meanwhile, G is an even-bipartite hypergraph associated to the bipartitions V1 := {2, 3, 5}
and V2 := {1, 4, 6}; and V1 := {1, 3} and V2 := {2, 4, 5, 6}. Hence the number of even-bipartite connected components of
the hypergraph G is three. The three even-bipartitions of the hypergraph are pictured in Fig. 2.

3. HM-bipartite hypergraphs

This section presents some basic facts about the spectra of hm-bipartite hypergraphs.
The next proposition says that the spectrum of an hm-bipartite hypergraph is symmetric. The meaning of the symmetry

is clear from the statement of this proposition.

Proposition 3.1. Let G be a k-uniform hm-bipartite hypergraph. Then the spectrum of A is invariant under the multiplication
by any k-th root of unity.

Proof. As we assumed at the beginning of the paper, E ≠ ∅. Since G is hm-bipartite, let V1 and V2 be a bipartition of V such
that |e ∩ V1| = 1 for all e ∈ E.
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Fig. 2. The three even-bipartitions for the hypergraph in Example 2.1. The legend of the pictures is similar to that of Fig. 1.

Let α be any k-th root of unity. Suppose that λ ∈ C is an eigenvalue of A with an eigenvector being x ∈ Cn. Then, let
y ∈ Cn be a vector such that yi = αxi whenever i ∈ V1 and yi = xi for the others. For i ∈ V1, we have

(Ayk−1)i =


e∈Ei


j∈e\{i}

yj =


e∈Ei


j∈e\{i}

xj = λxk−1
i = (αλ)(αxi)k−1

= (αλ)yk−1
i ,

where the second equality follows from the fact that G is hm-bipartite which implies that exactly the rest of the vertices of
every e ∈ Ei other than i belong to V2, and the third from the eigenvalue equation for (λ, x). For i ∈ V2, we have

(Ayk−1)i =


e∈Ei


j∈e\{i}

yj = α

e∈Ei


j∈e\{i}

xj = αλxk−1
i = (αλ)yk−1

i ,

where the second equality follows from the fact that G is hm-bipartite which implies that exactly one vertex other than i
from every e ∈ Ei belongs to V1, and the third from the eigenvalue equation for (λ, x).

Hence, by Definition 2.1, αλ is an eigenvalue of A. The result follows. �

A hypergraph is called k-partite if there is a pairwise disjoint partition of V = V1 ∪ · · · ∪ Vk such that every edge
e ∈ E intersects Vi nontrivially (i.e., e ∩ Vi ≠ ∅) for all i ∈ [k]. Obviously, k-partite hypergraphs are hm-bipartite. Thus,
Proposition 3.1 generalizes [6, Theorem 4.2].

The next proposition establishes the connection of the spectra of the signless Laplacian tensor and the Laplacian tensor
for an hm-bipartite hypergraph.

Proposition 3.2. Let k be even and G be a k-uniform hm-bipartite hypergraph. Then the spectrum of the Laplacian tensor and
the spectrum of the signless Laplacian tensor are equal.

Proof. For a tensor T of order k and dimension n, its similar transformation2 by a diagonal matrix P , denoted by P−1
· T · P ,

is defined as a k-th order n-dimensional tensor with its entries being

(P−1
· T · P)i1...ik := p−k+1

i1i1
ti1...ikpi2 i2 · · · pik ik , ∀is ∈ [n], s ∈ [k].

Consequently, P−1
· I · P = I. We then have

Det(P−1
· (λI − T ) · P) = Det(λP−1

· I · P − P−1
· T · P)

= Det(λI − P−1
· T · P).

By [7, Propositions 4.3 and 4.4], we get that

Det(P−1
· (λI − T ) · P) = [Det(P−1)](k−1)nDet(λI − T )[Det(P)](k−1)n

= Det(λI − T ).

These two facts, together with [8, Theorem 2.3], imply that T and P−1
· T · P have the same spectrum for any invertible

diagonal matrix P , see also [28].
By the diagonal block structure of D − A and D + A, we can assume that E ≠ ∅ and G is connected. Since G is hm-

bipartite, let V1 and V2 be a bipartition of V such that |e∩V1| = 1 for all e ∈ E. Let P be a diagonal matrix with its ith diagonal
entry being 1 if i ∈ V1 and −1 if i ∈ V2. By direct computation, we have that

P−1
· (D − A) · P = D + A.

Then, the conclusion follows from the preceding discussion since P is invertible. �

2 This is a special case of matrix-tensor multiplication. Please refer to [7,28] for more properties of general matrix-tensor multiplication.
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When k is odd and G is nontrivial, we do not have P−1
· (D −A) · P = D +A. Thus, it is unknownwhether the spectrum

of the Laplacian tensor and the spectrum of the signless Laplacian tensor are equal or not in this situation. On the other hand,
when k ≥ 4 is even, at present we are not able to prove the converse of Proposition 3.2, which is well-known in spectral
graph theory as: a graph is bipartite if and only if the spectrum of the Laplacian matrix and the spectrum of the signless
Laplacian matrix are equal [2].

There are fruitful connections between the structure of hypergraphs and their spectra [12,23]. In the sequel, the
discussion concerns the eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors.
To this end, we establish some basic facts about the eigenvectors associated with the eigenvalue zero in the next section.
For the Laplacian, there are similar results in [12, Section 6].

4. Eigenvectors associated with the zero eigenvalue

The next lemma characterizes the eigenvectors associated with the zero Laplacian and signless Laplacian eigenvalues of
a uniform hypergraph.

Lemma 4.1. Let G be a k-uniform hypergraph and Vi, i ∈ [s] be its connected components with s > 0. If x is an eigenvector
associated with the zero eigenvalue of the Laplacian or signless Laplacian tensor, then x(Vi) is an eigenvector of (D − A)(Vi) or
(D + A)(Vi) corresponding to the eigenvalue zero whenever x(Vi) ≠ 0. Furthermore, in this situation, supp(x(Vi)) = Vi, and
xj = γ exp( 2αjπ

k

√
−1) for some nonnegative integer αj for all j ∈ Vi and some γ ∈ C \ {0}.

Proof. The proof for the signless Laplacian tensor and that for the Laplacian tensor are similar. Hence, only the former is
given.

Similar to the proof of [12, Lemma 3.3], we have that for every connected component Vi of G, x(Vi) is an eigenvector of
(D + A)(Vi) corresponding to the eigenvalue zero whenever x(Vi) ≠ 0.

Suppose that x(Vi) ≠ 0. The case for Vi being a singleton is trivial. In the following, we assume that Vi has more than two
vertices. We can always scale x(Vi) with some nonzero γ ∈ C such that xj

γ
is positive and of the maximum modulus 1 for

some j ∈ Vi. Thus, without loss of generality, we assume that x(Vi) is a canonical eigenvector of (D + A)(Vi) and xj = 1 for
some j ∈ Vi. Then the jth eigenvalue equation is

0 =

(D + A)xk−1

j = djxk−1
j +


e∈Ej


t∈e\{j}

xt = dj +

e∈Ej


t∈e\{j}

xt . (1)

Since dj = |{e | e ∈ Ej}|, we must have that
t∈e\{j}

xt = −1, ∀e ∈ Ej.

This implies that
t∈e

xt = −1, ∀e ∈ Ej. (2)

Since the maximum modulus is 1, xt = exp(θt
√

−1) for some θt ∈ [0, 2π ] for all t ∈ e with e ∈ Ej. For another vertex s
which shares an edge with j, we have

0 =

(D + A)xk−1

s = dsxk−1
s +


e∈Es


t∈e\{s}

xt .

Similarly, we have

xk−1
s = −


t∈e\{s}

xt , ∀e ∈ Es.

Thus,

xks = −


t∈e

xt , ∀e ∈ Es.

The fact that s and j share one edge, together with (2), implies that xks = 1. Similarly, we have that

xks = 1, ∀s ∈ e, e ∈ Ej.

As GVi is connected, by induction, we can show that xks = 1 for all s ∈ Vi. Consequently, θt =
2αt
k π for some integers αt for

all t ∈ Vi. �

With Lemma 4.1, parallel results as those in [12, Section 6] can be established for the signless Laplacian tensor and the
Laplacian tensor. In particular, we have the following result.
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Theorem 4.1. Let G be a k-uniform connected hypergraph.
(i) A nonzero vector x is an eigenvector of the Laplacian tensor D − A corresponds to the zero eigenvalue if and only if there

exist nonzero γ ∈ C and integers αi such that xi = γ exp( 2αiπ
k

√
−1) for i ∈ [n], and

j∈e

αj = σek, ∀e ∈ E, (3)

for some integer σe with e ∈ E.
(ii) A nonzero vector x is an eigenvector of the signless Laplacian tensor D + A corresponds to the zero eigenvalue if and only if

there exist nonzero γ ∈ C and integers αi such that xi = γ exp( 2αiπ
k

√
−1) for i ∈ [n], and

j∈e

αj = σek +
k
2
, ∀e ∈ E, (4)

for some integer σe associated with each e ∈ E.

An immediate consequence of Theorem 4.1 is that the signless Laplacian tensor of a k-uniform connected hypergraph
with odd k does not have zero as an eigenvalue, since k

2 is a half-integer, and (4) can never be fulfilled in this situation.

Proposition 4.1. Let k be odd and G be a k-uniform connected hypergraph. Then zero is not an eigenvalue of the signless Laplacian
tensor.

When we restrict the discussion of Lemma 4.1 to H-eigenvectors, we get the following corollary. We state it explicitly
here for convenience, since it will be used in the next section.

Corollary 4.1. Let G be a k-uniform hypergraph and Vi, i ∈ [s] be its connected components with s > 0. If x is an H-eigenvector
associated with the zero eigenvalue of the Laplacian or signless Laplacian tensor, then x(Vi) is an H-eigenvector of (D − A)(Vi)
or (D + A)(Vi) corresponding to the eigenvalue zero whenever x(Vi) ≠ 0. Furthermore, in this situation, supp(x(Vi)) = Vi, and
up to a real scalar multiplication xj = ±1 for j ∈ Vi.

By Corollary 4.1, we get that amaximal canonical H-eigenvector x ∈ Rn, associatedwith the zero eigenvalue of the Laplacian
or signless Laplacian tensor must be of this form: xi is 1, −1 or 0 for all i ∈ [n].

5. H-eigenvectors

In this section, we establish the connection between the H-eigenvectors associated with the zero eigenvalues of the
Laplacian and signless Laplacian tensors and the even (odd)-connected components of the underlying hypergraph.

We note that canonical eigenvectors are considered in this section. Then, when we do the number count, we always
consider a maximal canonical H-eigenvector x and its reciprocal −x as the same.

The next proposition, together with Corollary 4.1, generalizes [2, Theorem 1.3.9] which says that the multiplicity of the
eigenvalue zero of the signless Laplacian matrix of a graph is equal to the number of bipartite connected components of this
graph.

Proposition 5.1. Let k be even and G be a k-uniform hypergraph. Then the number of maximal canonical H-eigenvectors associ-
ated with the zero signless Laplacian eigenvalue equals the number of odd-bipartite connected components of G.
Proof. Suppose that V1 ⊆ V is an odd-bipartite connected component of G. If V1 is a singleton, then 1 is amaximal canonical
H-eigenvector of (D + A)(V1) = 0 by definition. In the following, we assume that GV1 has at least one edge. Let V1 = S ∪ T
be an odd-bipartition of the sub-hypergraph GV1 such that every edge of GV1 intersects with S in an odd number of vertices.
Then S, T ≠ ∅, since k is even. Let y ∈ R|V1| be a vector such that yi = 1 whenever i ∈ S and yi = −1 whenever i ∈ T . Then,
for i ∈ S,

(D + A)yk−1
i = diyk−1

i +


e∈Ei


j∈e\{i}

yj

= di − di
= 0.

Here the second equality follows from the fact that for every e ∈ Ei, the number of yj = −1 is odd.
Next, for i ∈ T ,

(D + A)yk−1
i = diyk−1

i +


e∈Ei


j∈e\{i}

yj

= −di + di
= 0.

Here the second equality follows from the fact that for every e ∈ Ei, the number of yj = −1 other than yi is even.
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Thus, for every odd-bipartite connected component of G, we can associate it with a canonical H-eigenvector correspond-
ing to the eigenvalue zero. Since di = |{e | e ∈ Ei}|, it is easy to see that this vector y is a maximal canonical H-eigenvector.
Otherwise, suppose that xwith supp(x) ⊂ supp(y) is a canonical H-eigenvector of (D +A)(V1) corresponding to the eigen-
value zero. Since V1 is a nontrivial connected component of G and x ≠ 0, we must have a j ∈ V1 such that xj ≠ 0 and there
is an edge containing both j and swith xs = 0. The jth eigenvalue equation is

0 =

(D + A)yk−1

j = djxk−1
j +


e∈Ej


t∈e\{j}

xt .

We have |


t∈e\{j} xt | ≤ 1 and |xj| = 1. Since xs = 0 and there is an edge containing both s and j, we have |


e∈Ej


t∈e\{j} xt |

≤ |{e | e ∈ Ej}| − 1 < |{e | e ∈ Ej}| = dj. Thus, this results a contradiction to the eigenvalue equation. Hence, y is maximal.
Obviously, if S1 ∪ T1 = V1 and S2 ∪ T2 = V1 are two different odd-bipartitions of the connected component V1, then the
constructed maximal canonical H-eigenvectors are different. So the number of odd-bipartite connected components of G
is not greater than the number of maximal canonical H-eigenvectors associated with the zero eigenvalue of the signless
Laplacian tensor.

Conversely, suppose that x ∈ Rn is a maximal canonical H-eigenvector corresponding to the eigenvalue zero, then
supp(x) is a connected component ofG by Corollary 4.1. Denote byV0 this connected component ofG. IfV0 is a singleton, then
it is an odd-bipartite connected component by Definition 2.6. In the following, we assume that V0 has more than one vertex.

For all j ∈ V0,

0 =

(D + A)yk−1

j = djxk−1
j +


e∈Ej


s∈e\{j}

xs. (5)

Let S ∪ T = V0 be a bipartition of V0 such that xs > 0 whenever s ∈ S and xs < 0 whenever s ∈ T . Since x is canonical and
|V0| > 1, we must have S ≠ ∅. This, together with (5), implies that T ≠ ∅. From (5), we see that for every edge e ∈ Ej with
j ∈ S, |e∩ T | must be an odd number; and for every edge e ∈ Ej with j ∈ T , |e∩ T | must be an odd number as well. Then V0
is an odd-bipartite component of G. Hence, every maximal canonical H-eigenvector corresponding to the eigenvalue zero
determines an odd-bipartite connected component of G. Obviously, the odd-bipartite connected components determined
by a maximal canonical H-eigenvector x and its reciprocal −x are the same.

Combining the above results, the conclusion follows. �
The next proposition is an analogue of Proposition 5.1 for the Laplacian tensor.

Proposition 5.2. Let k be even and G be a k-uniform hypergraph. Then the number of maximal canonical H-eigenvectors
associated with the zero Laplacian eigenvalue equals the sum of the number of even-bipartite connected components of G and the
number of connected components of G, minus the number of singletons of G.
Proof. By similar proof of that for Proposition 5.1, we see that if V0 is an even-bipartite connected component of G, then we
can construct amaximal canonical H-eigenvector ofD−A. By the proof and the definition of even-bipartite hypergraph, we
see that this maximal canonical H-eigenvector contains negative components whenever this connected component is not a
singleton.Meanwhile, byDefinition 2.1 and Corollary 4.1, for every connected component ofG, the vector of all ones is amax-
imal canonical H-eigenvector corresponding to the eigenvalue zero. The two systems of maximal canonical H-eigenvectors
have common members at the singletons of G. Thus, the number of maximal canonical H-eigenvectors associated with the
zero Laplacian eigenvalue is not smaller than the sum of the number of even-bipartite connected components of G and the
number of connected components of G, minus the number of singletons of G.

Conversely, suppose that x is amaximal canonical H-eigenvector associatedwith the zero eigenvalue of the Laplacian ten-
sor. Then, by Corollary 4.1 and a similar proof to that in Proposition 5.1, supp(x) is a connected component of G. If x contains
both positive and negative components, then supp(x) must be an even-bipartite connected component. When x contains
only positive components, we can only conclude that supp(x) is a connected component. When supp(x) is a singleton, the
two systems of maximal canonical H-eigenvectors have common members. Thus, we can see that the number of maximal
canonical H-eigenvectors associated with the zero Laplacian eigenvalue is not greater than the sum of the number of even-
bipartite connected components of G and the number of connected components of G, minus the number of singletons of G.

Combining these two conclusions, the result follows. �
The next proposition is an analogue of Proposition 5.2 for k odd.

Proposition 5.3. Let k be odd andGbe a k-uniformhypergraph. Then the number ofmaximal canonical H-eigenvectors associated
with the zero Laplacian eigenvalue equals the number of connected components of G.
Proof. By a similar proof of that in Proposition 5.2, we can see that a maximal canonical H-eigenvector of the eigenvalue
zero can only have positive components, since k is odd. Then, the result follows. �

The next proposition follows from Proposition 4.1. We highlight it here to make the statements in this section more
complete.

Proposition 5.4. Let k be odd and G be a k-uniform connected hypergraph. Then the signless Laplacian tensor has no zero
H-eigenvalue.
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The next corollary is an analogue of Proposition 5.3 for the signless Laplacian tensor, which follows from Proposition 5.4.

Corollary 5.1. Let k be odd and G be a k-uniform hypergraph. Then the number of maximal canonical H-eigenvectors associated
with the zero signless Laplacian eigenvalue is equal to the number of singletons of G.

6. N-eigenvectors

In this section, we establish the connection between maximal canonical N-eigenvectors associated with the zero
eigenvalues of the Laplacian and signless Laplacian tensors and somemulti-partite connected components of the underlying
hypergraph.

Canonical N-eigenvectors are considered in this section. In counting the number of such vectors, we always consider a
maximal canonical eigenvector x and itsmultiplication exp(θ

√
−1)xby any θ ∈ [0, 2π ] as the same. Actually, by Lemma4.1,

only θ =
2απ
k for integers α are involved.

6.1. 3-uniform hypergraphs

In this subsection, 3-uniform hypergraphs are discussed.

Definition 6.1. Let G = (V , E) be a 3-uniform hypergraph. If there exists a partition of V = V1 ∪ V2 ∪ V3 such that
V1, V2, V3 ≠ ∅, and for every edge e ∈ E, either e ⊆ Vi for some i ∈ [3] or e intersects Vi nontrivially for all i ∈ [3],
then G is called tripartite.

We prefer to use tripartite to distinguish it from the concept of 3-partite. Note that if a connected component V0 of G is
tripartite, then |V0| ≥ 3. As for bipartite hypergraphs introduced in Section 2, if a connected tripartite hypergraph G has
two tripartitions as V = V1 ∪ V2 ∪ V3 = S1 ∪ S2 ∪ S3, unless (with a possible renumbering of the subscripts of Si, i ∈ [3])
Sj = Vj, j ∈ [3], the two tripartitions are regarded different. Please see Fig. 3 as an example. In that figure, the partition (i)
and the partition (iii) are considered different.

The next lemma helps to establish the connection.

Lemma 6.1. Let G = (V , E) be a k-uniform hypergraph. Then x ∈ Cn is a canonical N-eigenvector associated with the zero
eigenvalue of the Laplacian or signless Laplacian tensor if and only if the conjugate x∗ of x is a canonical N-eigenvector of the zero
eigenvalue of the Laplacian or signless Laplacian tensor.

Proof. Since the Laplacian tensor and the signless Laplacian tensor of a uniform hypergraph are real, the conclusion follows
immediately from the definition of eigenvalues. �

With the above lemmas and the definitions, we are in a position to present the following result.

Proposition 6.1. Let G = (V , E) be a 3-uniform hypergraph. Then the number of maximal canonical conjugate N-eigenvector
pairs of the zero Laplacian eigenvalue equals the number of tripartite connected components of G.

Proof. If V0 is a tripartite connected component ofG, then let V0 = R∪S∪T be a tripartition of it. Let vector y ∈ C|V0| be such
that yi = 1 whenever i ∈ R; yi = exp( 2π

3

√
−1) whenever i ∈ S; and yi = exp( 4π

3

√
−1) whenever i ∈ T . By Definition 6.1

and Theorem 4.1(i), we see that y is an N-eigenvector of (D − A)(V0) corresponding to the eigenvalue zero. By Lemma 4.1,
we see that the image of y under the natural inclusionmapC|V0| → Cn is amaximal canonical N-eigenvector. By Lemma6.1,
the conjugate of y is also a maximal canonical N-eigenvector. Moreover, the maximal canonical N-eigenvector constructed
in this way from the tripartition V0 = R∪S∪T only can be either y or y∗. Hence the number of maximal canonical conjugate
N-eigenvector pairs associated with the zero eigenvalue of the Laplacian tensor is not less than the number of tripartite
connected components of G.

Conversely, assume that x ∈ Cn is a maximal canonical N-eigenvector associated with the zero eigenvalue of the
Laplacian tensor. By Lemma 4.1, V0 := supp(x) is a connected component of G. Since x is an N-eigenvector, V0 is a nontrivial
connected component of G, i.e., |V0| > 1. This, together with Lemma 4.1, implies that we can get a tripartition of V0 as
V0 = R ∪ S ∪ T such that R consists of the indices such that the corresponding components of x are one; S consists of
the indices such that the corresponding components of x are exp( 2π

3

√
−1); and T consists of the indices such that the

corresponding components of x are exp( 4π
3

√
−1).

It is easy to see that R ≠ ∅, and S ∪ T ≠ ∅ since x is an N-eigenvector. The fact that x is an eigenvector corresponding
to the eigenvalue zero, together with Theorem 4.1(i), implies that both S and T are nonempty. Otherwise, the equations
in (3) cannot be fulfilled. By (3) again, we must have that for every edge e ∈ E(GV0) (i.e., EV0) either e ⊆ R, S or T ; or e
intersects R, S and T nontrivially. Consequently, V0 is a tripartite connected component ofG. We also see fromDefinition 6.1,
Lemma 6.1 that the tripartite connected component of G determined by x∗ is the same as that of x. Hence, the number of
maximal canonical conjugate N-eigenvector pairs of the zero eigenvalue of the Laplacian tensor is not greater than the
number of tripartite connected components of G.

Combining the above two conclusions, the result follows. �
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Fig. 3. The three tripartitions of the 3-uniform hypergraph in Example 6.1. The tripartitions are clear from the groups of disks in different colors (also with
dotted, dashed and solid margins).

In the following, we give an example to illustrate the result obtained.

Example 6.1. Let G = (V , E) be a 3-uniform hypergraph with V = [7] and

E = {{1, 2, 3}, {3, 4, 5}, {5, 6, 7}}.

By Definition 6.1, there are three tripartitions of G as

{1}, {2}, {3, 4, 5, 6, 7}; {1, 2, 3}, {4}, {5, 6, 7}; and {1, 2, 3, 4, 5}, {6}, {7}.

These tripartitions are pictured in Fig. 3. By Proposition 6.1, there are threemaximal canonical conjugate N-eigenvector pairs
associated with the zero eigenvalue of the Laplacian tensor. By Proposition 5.3, there is only one maximal H-eigenvector
associated with the zero eigenvalue of the Laplacian tensor, i.e., the vector of all ones, since G is connected.

We note that the tripartitions in (i) and (iii) of Fig. 3 are essentially the same. The numbering which is used to distinguish
the tripartitions (i) and (iii) above was added manually. Then, there is a gap between Proposition 6.1 and the complete
characterization of the intrinsic tripartite connected components of a uniform hypergraph.

We try to generalize the result in this subsection to k-uniform hypergraphs with k ≥ 4. However, the definitions for
multi-partite connected components of k-uniform hypergraphs with bigger k are somewhat complicated. Thus, only k = 4
and k = 5 are presented in the next two subsections respectively. Neater statements are expected in the future.

6.2. 4-uniform hypergraphs

In this subsection, 4-uniform hypergraphs are discussed.

Definition 6.2. Let G = (V , E) be a 4-uniform hypergraph. If there exists a partition of V = V1 ∪ V2 ∪ V3 ∪ V4 such that
at least two of Vi, i ∈ [4] are nonempty, and for every edge e ∈ E, either e ⊆ Vi for some i ∈ [4] or one of the following
situations happens:

(i) |e ∩ V1| = 2 and |e ∩ V3| = 2;
(ii) |e ∩ V2| = 2 and |e ∩ V4| = 2;
(iii) |e ∩ V1| = 2, |e ∩ V2| = 1, and |e ∩ V4| = 1;
(iv) |e ∩ V3| = 2, |e ∩ V2| = 1, and |e ∩ V4| = 1,

then G is called L-quadripartite.

Similarly,weprefer to use L-quadripartite to distinguish it from the concept of 4-partite. Here theprefix ‘‘L’’ is for the Laplacian
tensor.

Definition 6.3. Let G = (V , E) be a 4-uniform hypergraph. If there exists a partition of V = V1 ∪ V2 ∪ V3 ∪ V4 such that
at least two of Vi, i ∈ [4] are nonempty, and for every edge e ∈ E, either e ⊆ Vi for some i ∈ [4] or one of the following
situations happens:
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(i) |e ∩ V1| = 3 and |e ∩ V3| = 1;
(ii) |e ∩ V3| = 3 and |e ∩ V1| = 1;
(iii) |e ∩ V2| = 3 and |e ∩ V4| = 1;
(iv) |e ∩ V4| = 3 and |e ∩ V2| = 1;
(v) |e ∩ V1| = 2 and |e ∩ V2| = 2;
(vi) |e ∩ V2| = 2 and |e ∩ V3| = 2;
(vii) |e ∩ V3| = 2 and |e ∩ V4| = 2;
(viii) e intersects Vi nontrivially for all i ∈ [4],

then G is called sL-quadripartite.

Here the prefix ‘‘sL’’ is for the signless Laplacian tensor. For a connected L(sL)-quadripartite hypergraph G which has two
L(sL)-quadripartitions V = V1 ∪· · ·∪V4 = S1 ∪· · ·∪S4, unless (with a possible renumbering of the subscripts of Si, i ∈ [4])
Sj = Vj, j ∈ [4], the two L(sL)-quadripartitions are regarded different.

With similar proofs as that for Proposition 6.1, we can get the following two propositions. However, we give the key
points of the proof for the next proposition as an illustration.

Proposition 6.2. Let G = (V , E) be a 4-uniform hypergraph. Then the number of maximal canonical conjugate N-eigenvector
pairs of the zero Laplacian eigenvalue equals the number of L-quadripartite connected components of G.

Proof. Let V0 be an L-quadripartite connected component of G with the L-quadripartition being S1 ∪ S2 ∪ S3 ∪ S4. Without
loss of generality, we can assume that S1 ≠ ∅. Then, we can associate it with a maximal canonical N-eigenvector x ∈ Cn,
defined by

xi := exp

2(j − 1)π

4

√
−1


, whenever i ∈ Sj, j ∈ [4].

By Definition 6.3, we can conclude that the other maximal canonical N-eigenvectors y with yi = 1 for i ∈ S1 can only
be y = x∗. Consequently, an L-quadripartite connected component of G determines a maximal canonical conjugate N-
eigenvector pair. The converse is obvious. Then the result follows from a similar proof as that of Proposition 6.1. �

Proposition 6.3. Let G = (V , E) be a 4-uniform hypergraph. Then the number of maximal canonical conjugate N-eigenvector
pairs of the zero signless Laplacian eigenvalue equals the number of sL-quadripartite connected components of G.

6.3. 5-uniform hypergraphs

In this subsection, 5-uniform hypergraphs are discussed.

Definition 6.4. Let G = (V , E) be a 5-uniform hypergraph. If there exists a partition of V = V1 ∪ · · · ∪ V5 such that at least
three of Vi, i ∈ [5] are nonempty, and for every edge e ∈ E, either e ⊆ Vi for some i ∈ [5] or one of the following situations
happens:

(i) |e ∩ V2| = 2, |e ∩ V5| = 2, and |e ∩ V1| = 1;
(ii) |e ∩ V3| = 2, |e ∩ V4| = 2, and |e ∩ V1| = 1;
(iii) |e ∩ V1| = 3, |e ∩ V2| = 1, and |e ∩ V5| = 1;
(iv) |e ∩ V1| = 3, |e ∩ V3| = 1, and |e ∩ V4| = 1;
(v) |e ∩ V2| = 3, |e ∩ V4| = 1, and |e ∩ V5| = 1;
(vi) |e ∩ V3| = 3, |e ∩ V1| = 1, and |e ∩ V4| = 1;
(vii) |e ∩ V4| = 3, |e ∩ V1| = 1, and |e ∩ V2| = 1;
(viii) |e ∩ V5| = 3, |e ∩ V2| = 1, and |e ∩ V3| = 1;
(ix) e intersects Vi nontrivially for all i ∈ [5],

then G is called pentapartite.

For a connected pentapartite hypergraph G which has two pentapartitions V = V1 ∪ · · · ∪ V5 = S1 ∪ · · · ∪ S5, unless (with
a possible renumbering of the subscripts of Si, i ∈ [5]) Sj = Vj, j ∈ [5], the two pentapartitions are regarded as different.
With a similar proof as that of Propositions 6.1 and 6.2, we obtain the next proposition.

Proposition 6.4. Let G = (V , E) be a 5-uniform hypergraph. Then the number of maximal canonical conjugate N-eigenvector
pairs of the zero Laplacian eigenvalue equals the number of pentapartite connected components of G.

7. Final remarks

In this paper, the relations of the eigenvectors associatedwith the zero eigenvalues of the Laplacian and signless Laplacian
tensors of a uniform hypergraph, with some configured components of that hypergraph, are discussed. It is different from
the recentwork [23,12]whichmainly concentrates on the discussions of H+-eigenvalues of the Laplacian tensor, the signless
Laplacian tensor and the Laplacian. H-eigenvectors and,more importantly, N-eigenvectors are discovered to be applicable in
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spectral hypergraph theory. It is shown that the H-eigenvectors and N-eigenvectors associated with the zero eigenvalues of
the Laplacian and signless Laplacian tensors can characterize some intrinsic structures of the underlying hypergraph. More
work on the other eigenvalues of these Laplacian-type tensors are expected in the future. In particular, a general statement
on the connection between the N-eigenvectors and the configured components of a hypergraph is our next topic.

After the first draft of this paper, several new results related with this paper appeared. The concept of odd-bipartite
hypergraph introduced in this paper has found further applications. It was proved in [23] that the largest H-eigenvalue
of the Laplacian tensor of a k-uniform hypergraph G is always less than or equal to the largest H-eigenvalue of the signless
Laplacian tensor ofG. In [14], it was proved that ifG is connected, then equality holds here if and only if k is even andG is odd-
bipartite. This generalized a classical result in spectral graph theory: the largest eigenvalue of the Laplacianmatrix of a graph
G is always less than or equal to the largest eigenvalue of the signless Laplacianmatrix ofG, andwhenG is connected, equality
holds if and only if G is bipartite. In [13], a k-uniform hypergraph G is called a cored hypergraph if each edge of G has at least
one vertex with degree one. It was proved there that an even-uniform cored hypergraph is odd-bipartite. Sunflowers, loose
and general loose s-paths with 1 ≤ s < k

2 , loose cycles and general loose s-cycles with 1 ≤ s < k
2 , hypertress and squids are

examples of cored hypergraphs. In [25], itwas proved that all the even-uniform s-paths and all the even-uniformnon-regular
s-cycles are odd-bipartite for 1 ≤ s ≤ k − 1, though for s ≥

k
2 , s-paths and s-cycles are not cored hypergraphs. An s-cycle is

regular if and only if k = q(k−s) for some integer q. A sufficient and necessary condition for an even-uniform regular s-cycle
to be odd-bipartite was also given in [25]. Finally, a question raised at the end of Section 4 of this paper about the relation
between the Laplacian and signless Laplacian spectra of a k-uniform hypergraph when k is odd, was answered in [29].
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