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Abstract Stimulated by odd-bipartite and even-bipartite hypergraphs, we
define odd-bipartite (weakly odd-bipartie) and even-bipartite (weakly even-
bipartite) tensors. It is verified that all even order odd-bipartite tensors are
irreducible tensors, while all even-bipartite tensors are reducible no matter the
parity of the order. Based on properties of odd-bipartite tensors, we study the
relationship between the largest H-eigenvalue of a Z-tensor with nonnegative
diagonal elements, and the largest H-eigenvalue of absolute tensor of that Z-
tensor. When the order is even and the Z-tensor is weakly irreducible, we prove
that the largest H-eigenvalue of the Z-tensor and the largest H-eigenvalue of the
absolute tensor of that Z-tensor are equal, if and only if the Z-tensor is weakly
odd-bipartite. Examples show the authenticity of the conclusions. Then, we
prove that a symmetric Z-tensor with nonnegative diagonal entries and the
absolute tensor of the Z-tensor are diagonal similar, if and only if the Z-tensor
has even order and it is weakly odd-bipartite. After that, it is proved that,
when an even order symmetric Z-tensor with nonnegative diagonal entries
is weakly irreducible, the equality of the spectrum of the Z-tensor and the
spectrum of absolute tensor of that Z-tensor, can be characterized by the
equality of their spectral radii.
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1 Introduction

Since the early work of [12,17], more and more researchers are interested in
studying eigenvalue problems of tensors in the past several years [1,3–6,9,10,
14–16,18–21,24,25]. In [17], two kinds of eigenvalues were defined for real
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symmetric tensors: eigenvalues and E-eigenvalues. An eigenvalue (resp. E-
eigenvalue) with a real eigenvector (resp. E-eigenvector) is called an H-eigenvalue
(resp. Z-eigenvalue). When a symmetric tensor has even order, H-eigenvalues
and Z-eigenvalues always exist. An even order symmetric tensor is positive
definite (resp. semi-definite) if and only if all of its H-eigenvalues or all of its
Z-eigenvalues are positive (resp. nonnegative). Based upon this property, an H-
eigenvalue method for the positive definiteness (resp. positive semi-definiteness)
identification problem is developed.

The main difficulty in tensor problems is that they are generally nonlinear.
Because of the difficulties in studying the properties of a general tensor,
researchers focus on some structured tensors. Z-tensors are an important class
of structured tensors and have been well studied [7,13,26]. They are closely
related with spectral graph theory, the stationary distribution of Markov chains,
and the convergence of iterative methods for linear systems.

Recently, Hu et al. [10] considered the largest Laplacian H-eigenvalue and
the largest signless Laplacian H-eigenvalue of a k-uniform connected hyper-
graph. When the order is even and the hypergraph is odd-bipartite, they proved
that the largest Laplacian H-eigenvalue and the largest signless Laplacian H-
eigenvalue are equal. For the odd order case, it is proved that the largest
Laplacian H-eigenvalue is strictly less than the largest signless Laplacian H-
eigenvalue [10]. Later, Shao et al. [23] gave several spectral characterizations
of the connected odd-bipartite hypergraphs. They proved that the spectrum
of the Laplacian tensor and the spectrum of the signless Laplacian tensor of a
uniform hypergraph are equal if and only if the hypergraph is an even order
connected odd-bipartite hypergraph. Since the Laplacian tensor is a special case
of Z-tensors and the signless Laplacian tensor is a special case of the absolute
tensors of Z-tensors, questions comes naturally: what is the relation between
the largest H-eigenvalue of a general Z-tensor and the largest H-eigenvalue of
the Z-tensor’s absolute tensor? What is the relation between spectrums of a
general Z-tensor and its absolute tensor? These constitute main motivations of
the paper.

In this article, some spectral properties of Z-tensors with nonnegative
diagonal entries, and absolute tensors of Z-tensors are studied. The rest of
this paper is organized as follows. In Section 2, some basic notions and
preliminaries of tensors are presented. In Section 3, stimulated by odd-bipartite
and even-bipartite hypergraphs [9], odd-bipartite (resp. weakly odd-bipartite)
and even-bipartite (resp. weakly even-bipartite) tensors are defined. Odd-
bipartite (resp. even-bipartite) tensors are weakly odd-bipartite (resp. weakly
even-bipartite) tensors. Examples show that the converse, generally, may not
hold. A square odd-bipartite matrix is irreducible. For high order tensors, we
prove that an even order odd-bipartite tensor is irreducible, while a tensor is
reducible if it is even-bipartite no matter the parity of the order.

In Section 4, we study the relation between the largest H-eigenvalue of a Z-
tensor with nonnegative diagonal entries and the largest H-eigenvalue of the Z-
tensor’s absolute tensor. For an even order Z-tensor with nonnegative diagonal
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entries, if it is weakly irreducible, we show that the largest H-eigenvalues of the
Z-tensor and its absolute tensor are equal if and only if the Z-tensor is weakly
odd-bipartite. For the odd order case, sufficient conditions for the equality
of these largest H-eigenvalues are given. Examples show the authenticity of
the conclusions. In Section 5, we prove that, when an even order symmetric
Z-tensor with nonnegative diagonal entries is weakly irreducible, its spectrum
and the spectrum of its absolute tensor are equal if and only if the Z-tensor is
odd-bipartite. Furthermore, it is shown that the equality of the spectrum of a
symmetric Z-tensor with nonnegative diagonal entries and the spectrum of the
absolute tensor of that Z-tensor, can be characterized by the equality of their
spectral radii. We conclude this paper with some final remarks in Section 6.

By the end of the introduction, we add some comments on notation that will
be used in the sequel. Let R

n be the n-dimensional real Euclidean space and the
set consisting of all natural numbers is denoted by N. Suppose that m,n ∈ N are
two natural numbers. Denote [n] = {1, 2, . . . , n}. Vectors are denoted by italic
lowercase letters, i.e., x, y, . . . , and tensors are written as calligraphic capitals
such as A ,T , . . . . The i-th unit coordinate vector in R

n is denoted by ei. Let
|V | denote the number of elements when the symbol | · | be used on a subset
V ⊆ N. If the symbol | · | is used on a tensor

A = (ai1i2···im)1�ij�n, j = 1, 2, . . . ,m,

we get another tensor

|A | = (|ai1i2···im |)1�ij�n, j = 1, 2, . . . ,m.

If both

A = (ai1i2···im)1�ij�n, B = (bi1i2···im)1�ij�n, j = 1, 2, . . . ,m,

are real mth order n dimensional tensors, then A � B means

ai1i2···im � bi1i2···im, ∀ i1, i2 . . . , im ∈ [n].

2 Preliminaries

In this section, we will review some basic notions of tensors. For more details,
see [17] and references therein.

A real mth order n-dimensional tensor A = (ai1i2···im) is a multi-array of
real entries ai1i2···im , where ij ∈ [n] for j ∈ [m]. If the entries ai1i2···im are
invariant under any permutation of their indices, then tensor A is called a
symmetric tensor.

The following definition on eigenvalue-eigenvector comes from [17].

Definition 1 Let C be the complex field. A pair (λ, x) ∈ C × C
n \ {0} is

called an eigenvalue-eigenvector pair of T , if they satisfy

T xm−1 = λx[m−1], (1)
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where T xm−1 and x[m−1] are all n-dimensional column vectors such as

T xm−1 =
( n∑
i2,i3,...,im=1

tii2i3···imxi2xi3 · · · xim
)

1�i�n
, x[m−1] = (xm−1

i )1�i�n.

For real tensor T and x ∈ R
n in (1), λ is a real number since λ =

(T xm−1)j/xm−1
j for some j with xj �= 0. In this case, λ is called an H-eigenvalue

of T and x is its corresponding H-eigenvector [17].
Next, we present a fundamental result which will be much used in the sequel.

Proposition 1 [17] Suppose that T = a(B +bI ), where a and b are two real
numbers. Then μ is an eigenvalue (resp. H-eigenvalue) of tensor T if and only
if μ = a(λ + b), where λ is an eigenvalue (resp. H-eigenvalue) of tensor B. In
this case, they have the same eigenvectors (resp. H-eigenvectors).

The spectral radius of tensor T is denoted by

ρ(T ) = max{|λ| : λ is an eigenvalue of T }.
All eigenvalues of tensor T construct the spectrum denoted by σ(T ).

3 Odd-bipartite and even-bipartite tensors

In this section, we first define odd-bipartite tensors and even-bipartite tensors.
Then, some special characteristics of this kinds of tensors are shown.

Definition 2 Assume that A = (ai1i2···im) is a tensor with order m and
dimension n. If there is a nonempty proper index subset V ⊂ [n] such that

ai1i2···im

{
�= 0, |V ∩ {i1, i2, . . . , im}| odd,

= 0, otherwise,

then A is called an odd-bipartite tensor corresponding to set V or A is odd-
bipartite for simple.

Here, we should note that indices of an edge {i1, i2, . . . , im} in hypergraph [9]
are different from each other, which is a notable distinction to general tensors.
So, in this paper, we define that |V ∩ {i1, i2, . . . , im}| is the number of indices
V ∩ {i1, i2, . . . , im}, and duplicate indices should be calculated. For example,
suppose that V = {1, 2, 3} and A is a 4th order 6 dimensional tensor, then

|V ∩ {1, 1, 3, 3}| = 4, |V ∩ {1, 2, 3, 5}| = 3, |V ∩ {4, 6, 4, 5}| = 0.

Definition 3 Assume that A = (ai1i2···im) is a tensor with order m and
dimension n. A is called weakly odd-bipartite if there is a nonempty proper
index subset V ⊂ [n] such that

ai1i2···im = 0
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when |V ∩ {i1, i2, . . . , im}| is even.

From Definitions 2 and 3, even-bipartite and weakly even-bipartite tensors
can be defined similarly. Furthermore, we can easily prove that, if A is odd-
bipartite (resp. even-bipartite), then A is weakly odd-bipartite (resp. weakly
even-bipartite), but not vice versa. For example, suppose that A is a 3rd order
2 dimensional tensor with entries such that a222 = 1 and ai1i2i3 = 0 for the
others. It is easy to check that A is weakly odd-bipartite corresponding to the
index set V = {2} but not odd-bipartite corresponding to {1} or {2}.

When m is odd, for all i1, i2, . . . , im ∈ [n] and a nonempty proper
index subset V ⊂ [n], it holds that |{i1, i2, . . . , im} ∩ V | is odd if and only
if |{i1, i2, . . . , im}∩ V | is even, where V = [n]\V. So, by Definitions 2 and 3, we
can readily obtain the following conclusion.

Lemma 1 Let A be a tensor with order m and dimension n. Assume that
m is odd. Then A is odd-bipartite (resp. weakly odd-bipartite) corresponding
to nonempty proper index subset V ⊂ [n] if and only if A is even-bipartite
(resp. weakly even-bipartite) corresponding to the nonempty proper index subset
V = [n]\V.

Irreducible tensors are a class of important and useful tensors, which have
been repeatedly used in the Perron Frobenius Theorem for nonnegative tensors
[2,24,25]. Next, we will study the relation between irreducible tensors and odd-
bipartite tensors. To do this, we first list the corresponding definition below.

Definition 4 [2] For a tensor T with order m and dimension n. We say that
T is reducible if there is a nonempty proper index subset V ⊂ [n] such that

ti1i2···im = 0, ∀ i1 ∈ V, ∀ i2, i3, . . . , im /∈ V.

Otherwise, we say that T is irreducible.

Theorem 1 Let m be even. Assume that tensor A = (ai1i2···im) with order
m and dimension n is odd-bipartite. Then A is irreducible.

Proof Since A is odd-bipartite, there exists a nonempty proper index subset
V ⊂ [n] satisfying

ai1i2···im �= 0, |V ∩ {i1, i2, . . . , im}| odd. (2)

By contradiction, suppose that A = (ai1i2···im) is reducible. Then there is
a nonempty proper index subset V1 ⊂ [n] such that

ai1i2···im = 0, ∀ i1 ∈ V1, ∀ i2, i3, . . . , im /∈ V1. (3)

We will break the proof into four cases.
(i) When V1 ⊆ V, let i1 ∈ V1, i2, i3, . . . , im /∈ V. Here, several indices in

i2, i3, . . . , im may equal to each other when the number of elements in [n]\V is
strictly less than m − 1. Then, by (3), we have

ai1i2···im = 0,
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which contradicts (2) since |V ∩ {i1, i2, . . . , im}| = 1 is odd.
(ii) When V ⊆ V1, let i1 ∈ V, i2, i3, . . . , im /∈ V1. Then, by (3), one has

ai1i2···im = 0,

which is a contradiction with (2).
(iii) When V ∩ V1 �= ∅ and neither V ⊆ V1 nor V1 ⊆ V, let i1 ∈ V1 \ V,

i2, i3, . . . , im ∈ V \ V1. Then it follows that

ai1i2···im = 0,

which also contradicts (2), since |V ∩{i1, i2, . . . , im}| = m−1 is an odd number.
(iv) When V ∩ V1 = ∅, let i1 ∈ V1, i2, i3, . . . , im ∈ V. By Definition 4, we

have
ai1i2···im = 0.

Since |V ∩ {i1, i2, . . . , im}| = m − 1 is odd, by (2), one has

ai1i2···im �= 0,

which is a contradiction.
From (i)–(iv), we conclude that A is not reducible and the desired results

follow. �
When a tensor A is even-bipartite, no matter the order of A is odd or even,

we have the following result.

Theorem 2 Assume that tensor A = (ai1i2···im) with order m and dimension
n is even-bipartite corresponding to a nonempty proper index subset V ⊆ [n].
Then A is reducible corresponding to V.

Proof By definitions of reducible tensors and even-bipartite tensors, the
conclusion obviously holds. �

Suppose that an even order Z-tensor and its absolute tensor are defined
such that

A = D − C , |A | = D + C , (4)

where D is a nonnegative diagonal tensor and C is a nonnegative tensor with
zero diagonal entries. From Theorem 2, if C is odd-bipartite, then tensors A
and |A | are irreducible. Combining this with [8, Theorem 3.1], we have the
following result.

Corollary 1 Let m be even. Suppose that tensor A = D − C with order m
and dimension n is defined as in (4). Then, A and its absolute tensor |A | are
both weakly irreducible if nonnegative tensor C is odd-bipartite.

By the Perron-Frobenius Theorem on nonnegative tensors [2] and by
[8, Theorem 4.1], the following result follows.



Spectral properties of odd-bipartite Z-tensors and their absolute tensors 545

Corollary 2 Let m be even. Assume that tensor A is defined as in Corollary
1. If C is odd-bipartite, then the largest H-eigenvalue of |A | is ρ(|A |). Further-
more, there exists a positive n-dimensional eigenvector x ∈ R

n such that

|A |xm−1 = ρ(|A |)x[m−1].

4 Relation between largest H-eigenvalues of a Z-tensor and its absolute
tensor

In this section, suppose that an order m dimension n Z-tensor A with non-
negative diagonal elements has format

A = D − C , (5)

where D is a nonnegative diagonal tensor and C is a nonnegative tensor with
zero diagonal elements. Then the absolute format of A is

|A | = D + C .

In the following analysis, entries of A , C , and D are always defined as

A = (ai1i2···im), C = (ci1i2···im), D = (di1i2···im), i1, i2, . . . , im ∈ [n].

For the sake of simple, let dii···i = di, i ∈ [n].
During this part, we mainly study the relationship between the largest

H-eigenvalue of a Z-tensor A in (5), and the largest H-eigenvalue of the
absolute tensor of A . Sufficient and necessary conditions or sufficient conditions
to guarantee the equality of these largest H-eigenvalues are shown. It should be
noted that all even order nonnegative tensors always have H-eigenvalues [24].
To proceed, we make an assumption in advance, all tensors considered in this
part always have H-eigenvalues.

The largest H-eigenvalues of A and |A | are denoted by λ(A ) and λ(|A |),
respectively. From Corollary 2, we know that

λ(|A |) = ρ(|A |).
Theorem 3 Let m be even. Suppose that A = D −C is defined as (5). Then,

λ(A ) = λ(|A |)
if C is odd-bipartite.

Proof By [19, Lemma 13], we have

λ(A ) � ρ(A ) � ρ(|A |) = λ(|A |).
Thus, in order to prove the conclusion, we only need to prove

λ(|A |) � λ(A ).
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Since C is odd-bipartite, there exists a nonempty proper index subset V ⊂ [n]
satisfying

ci1i2···im

{
�= 0, |V ∩ {i1, i2, . . . , im}| odd,

= 0, otherwise.

So, for all entries of A , it follows that

ai1i2···im �= 0

if |V ∩{i1, i2, . . . , im}| is odd, and ai1i2···im = 0 for the others except the diagonal
entries aii···i, i ∈ [n]. By Theorem 2, we know that C , A , and |A | are all
irreducible tensors. From [8, Theorem 4.1] and Definition 1, there is a vector
x ∈ R

n, x > 0, satisfying

|A |xm−1 = λ(|A |)x[m−1].

Let y ∈ R
n be defined with yi = xi whenever i ∈ V and yi = −xi for the others.

When i ∈ V, we have

(A ym−1)i = [(D − C )ym−1]i
= diy

m−1
i −

∑
i2,i3,...,im∈[n]

cii2i3···imyi2yi3 · · · yim

= diy
m−1
i −

∑
i2,i3,...,im∈[n], |V ∩{i,i2,i3,...,im}| odd

cii2i3···imyi2yi3 · · · yim

= dix
m−1
i +

∑
i2,i3,...,im∈[n], |V ∩{i,i2,i3,...,im}| odd

cii2i3···imxi2xi3 · · · xim

= [(D + C )xm−1]i
= λ(|A |)xm−1

i

= λ(|A |)ym−1
i . (6)

Here, the fourth equality follows the fact that m is even and exactly odd number
indices take negative values for each {i2, i3, . . . , im} ⊆ [n]. When i /∈ V, we have

(A ym−1)i = [(D − C )ym−1]i
= diy

m−1
i −

∑
i2,i3,...,im∈[n]

cii2i3···imyi2yi3 · · · yim

= diy
m−1
i −

∑
i2,i3,...,im∈[n], |V ∩{i,i2,i3,...,im}| odd

cii2i3···imyi2yi3 · · · yim

= −dix
m−1
i −

∑
i2,i3,...,im∈[n], |V ∩{i,i2,i3,...,im}| odd

cii2i3···imxi2xi3 · · · xim

= −[(D + C )xm−1]i
= −λ(|A |)xm−1

i

= λ(|A |)ym−1
i . (7)
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Here, the fourth equality follows the fact that m is even and exactly even number
indices take negative values for each {i2, i3, . . . , im} ⊆ [n]. The last equality of
(7) follows from the definition of yi = −xi when i /∈ V. Thus, by (6), (7), and
Definition 1, λ(|A |) is an H-eigenvalue of A with H-eigenvector y. So, we have

λ(|A |) � λ(A ),

and the desired result follows. �
Here, in the proof of Theorem 3, odd-bipartite property of C guarantees that

|A | has a positive H-eigenvector. Actually, if the H-eigenvector is nonnegative,
one can obtain the same result. Before proving this, we first cite an useful
conclusion.

Lemma 2 [24] If A is a nonnegative tensor with order m and dimension n,
then ρ(A ) is an eigenvalue of A with a nonnegative eigenvector y �= 0.

Theorem 4 Let m be even. Suppose that A is defined as in Theorem 3. If C
is weakly odd-bipartite, then it holds that

λ(A ) = λ(|A |).

Proof Since tensor C is weakly odd-bipartite, there is a nonempty proper
index subset V ⊆ [n] such that

ci1i2···im = 0

when |{i1, i2, . . . , im} ∩ V | is even, and |{i1, i2, . . . , im} ∩ V | must be an odd
number for nonzero entries ci1i2···im �= 0, i1, i2, . . . , im ∈ [n].

On the other hand, by Lemma 2, there is a nonnegative H-eigenvector x � 0
of |A | corresponding to λ(|A |). Suppose that vector y ∈ R

n is defined such
that yi = xi whenever i ∈ V and yi = −xi for the others. Then, the remaining
process is similar with the proof of Theorem 3. �

Now, we will give an example to show that the conditions in Theorem 4 is
not necessary. For example, suppose 4th order 2 dimensional tensor A with
entries such that

a1111 = a2222 = 1, a1122 = −1,

and ai1i2i3i4 = 0 for the others. After calculating the largest H-eigenvalues of
A and |A |, we obtain

λ(A ) = λ(|A |) = 1.

But, the nonnegative tensor C is not weakly odd-bipartite corresponding to
any nonempty proper index subset of {1, 2}. In the following, sufficient and
necessary conditions for the equality of the two largest H-eigenvalues are
presented, and it is proved that the necessity of Theorem 4 holds when the
nonnegative tensor C is weakly irreducible. Before doing this, we cite a
definition.
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Definition 5 [19] Assume that T is a tensor with order m and dimension
n. Construct a graph Ĝ = (V̂ , Ê), where V̂ = ∪dj=1Vj and Vj are subsets of
{1, 2, . . . , n} for j = 1, 2, . . . , d. Suppose that ij ∈ Vj, il ∈ Vl, j �= l. (ij , il) ∈ Ê
if and only if ti1i2···im �= 0 for some m − 2 indices {i1, i2, . . . , im}\{ij , il}. Then,
tensor T is called weakly irreducible if Ĝ is connected.

As observed in [8], an irreducible tensor must be always weakly irreducible.

Theorem 5 Let A be defined as in Theorem 4. Assume that C is weakly
irreducible. Then,

λ(A ) = λ(|A |)
if and only if C is weakly odd-bipartite.

Proof The sufficient condition has been proved in Theorem 4, and we only
need to prove the necessary part.

Suppose that x ∈ R
n is an H-eigenvector of A corresponding to λ(A ) such

that
n∑
i=1

xmi = 1.

Assume that y ∈ R
n is defined by yi = |xi| for i ∈ [n]. Since m is even, one has

n∑
i=1

ymi = 1.

By [11, Lemma 3.1], we have

λ(A ) = A xm

= (D − C )xm

=
n∑
i=1

dix
m
i −

∑
i1,i2,...,im∈[n]

ci1i2···imxi1xi2 · · · xim

�
n∑
i=1

diy
m
i +

∑
i1,i2,...,im∈[n]

ci1i2···imyi1yi2 · · · yim

= (D + C )ym

� λ(|A |). (8)

Hence, by the fact that λ(A ) = λ(|A |), all inequalities in (8) should be
equalities, which implies that y is an H-eigenvector of |A | corresponding to
λ(|A |). Since C is weakly irreducible, |A | is also weakly irreducible. According
to [8, Theorem 4.1], it holds that y > 0, i.e., all elements in y are positive. Let

V = {i ∈ [n] | xi > 0}, V = {i ∈ [n] | xi < 0}.
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Then V ∪ V = [n]. By (8), we obtain∑
i1,i2,...,im∈[n]

ci1i2···im(|xi1 | |xi2 | · · · |xim | + xi1xi2 · · · xim) = 0,

which implies that

ci1i2···im(|xi1 | |xi2 | · · · |xim | + xi1xi2 · · · xim) = 0, ∀ i1, i2, . . . , im ∈ [n],

since C is nonnegative. When |{i1, i2, . . . , im} ∩ V | is even, we have

|xi1 | |xi2 | · · · |xim | + xi1xi2 · · · xim > 0,

which implies ci1i2···im = 0. When |{i1, i2, . . . , im} ∩ V | is odd, we have

|xi1 | |xi2 | · · · |xim | + xi1xi2 · · · xim = 0.

In this case, the value ci1i2···im may be zero or may not be zero. Thus, from
Definition 3, it follows that C is weakly odd-bipartite corresponding to set V
and the desired conclusion holds. �

Next, we study the relationship between a Z-tensor and its absolute tensor in
the odd order case. Hu et al. [10] proved that the largest H-eigenvalue of an odd
order Laplacian tensor is always strictly less than the largest H-eigenvalue of the
signless Laplacian tensor corresponding to the Laplacian tensor. By definitions
of Laplacian tensor and signless Laplacian tensor in connected hypergraphs, we
know that their diagonal entries are positive, and subscripts of each nonzero
element are mutually distinct. However, general Z-tensors (5) may not possess
those advantages. Hence, for a general odd order Z-tensor (5), the largest H-
eigenvalue of A may not be strictly less than the largest H-eigenvalue of |A |
when the order is odd.

The following example shows that the largest H-eigenvalues of a Z-tensor
(5) and its absolute tensor are equal.

Example 1 Let A be a 5th order 3 dimensional tensor. Its entries are given
by

a11111 = a22222 = a33333 = 1, a11122 = a22233 = −1,

and ai1i2i3i4i5 = 0 for the others. Then the H-eigenvalue problems for A and
|A | are ⎧⎪⎨⎪⎩

x4
1 − x2

1x
2
2 = λx4

1,

x4
2 − x2

2x
2
3 = λx4

2,

x4
3 = λx4

3,

⎧⎪⎨⎪⎩
x4

1 + x2
1x

2
2 = λx4

1,

x4
2 + x2

2x
2
3 = λx4

2,

x4
3 = λx4

3.

After calculating the equation systems, we know that

λ(A ) = λ(|A |) = 1.
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Theorem 6 Let A be defined as (5). Assume that m is odd. Suppose that C is
weakly odd-bipartite corresponding to a nonempty proper index subset V ⊆ [n].
If for all i ∈ V, it satisfies

cii2i3···im = 0, ∀ i2, i3, . . . , im ∈ [n],

then λ(A ) = λ(|A |).
Proof By the analysis in Theorems 3–5, from [19, Lemma 13] and Corollary
2, it follows that

λ(A ) � ρ(A ) � ρ(|A |) = λ(|A |).
Thus, we only need to prove

λ(|A |) � λ(A ).

Let x ∈ R
n be a nonnegative H-eigenvector of |A | corresponding to λ(|A |).

Then, for all i ∈ [n], we have

(|A |xm−1)i = [(D + C )xm−1]i = λ(|A |)xm−1
i . (9)

Suppose that y ∈ R
n is defined as

yi =

{
−xi, i ∈ V,

xi, i /∈ V.

By conditions, C is weakly odd-bipartite corresponding to subset V, which
means

ci1i2···im = 0, i1, i2, . . . , im ∈ [n],

when |{i1, i2, i3, . . . , im} ∩ V | is even. Then, for all i ∈ [n], one has

(A ym−1)i = [(D − C )ym−1]i
= diy

m−1
i −

∑
i2,i3,...,im∈[n], |V ∩{i,i2,i3,...,im}| odd

cii2i3···imyi2yi3 · · · yim

= dix
m−1
i −

∑
i2,i3,...,im∈[n], |V ∩{i,i2,i3,...,im}| odd

cii2i3···imyi2yi3 · · · yim, (10)

where the third equality follows m − 1 is even and ym−1
i = xm−1

i . When i ∈ V,
by the fact that cii2i3···im = 0, i2, i3, . . . , im ∈ [n], and by (9), (10), we have

(A ym−1)i = [(D − C )ym−1]i
= diy

m−1
i −

∑
i2,i3,...,im∈[n]

cii2i3···imyi2yi3 · · · yim

= dix
m−1
i

= λ(|A |)xm−1
i

= λ(|A |)ym−1
i . (11)
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Similarly, when i /∈ V, it holds that

(A ym−1)i = [(D − C )ym−1]i
= diy

m−1
i −

∑
i2,i3,...,im∈[n], |V ∩{i,i2,i3,...,im}| odd

cii2i3···imyi2yi3 · · · yim

= dix
m−1
i +

∑
i2,i3,...,im∈[n], |V ∩{i,i2,i3,...,im}| odd

cii2i3···imxi2xi3 · · · xim

= dix
m−1
i + (C xm−1)i

= [(D + C )xm−1]i
= (|A |xm−1)i
= λ(|A |)xm−1

i

= λ(|A |)ym−1
i , (12)

where the third equality follows the fact that m is odd and exactly odd indices
take negative values. By (11) and (12), we know that λ(|A |) is an H-eigenvalue
of A . Hence, we have λ(|A |) � λ(A ) and the desired result follows. �

Now, we present an example to verify the authenticity of Theorem 6.

Example 2 Set a 5th order 3 dimensional tensor A such that

a11111 = 1, a22222 = 1, a33333 = 3, a11333 = −1, a22333 = −2,

and ai1i2i3i4 = 0 for the others. Let V = {3}. Then C is weakly odd-bipartite
corresponding to the set V and c3i2i3i4i5 = 0, ∀ i2, i3, i4, i5 ∈ [3].

The H-eigenvalue problems for A and |A | are to solve⎧⎪⎨⎪⎩
x4

1 − x1x
3
3 = λx4

1,

x4
2 − 2x2x

3
3 = λx4

2,

3x4
3 = λx4

3,

⎧⎪⎨⎪⎩
x4

1 + x1x
3
3 = λx4

1,

x4
2 + 2x2x

3
3 = λx4

2,

3x4
3 = λx4

3.

After calculating the largest H-eigenvalues of A and |A |, we obtain

λ(A ) = λ(|A |) = 3.

The next example shows that the conditions in Theorem 6 are not necessary.

Example 3 Let A be a 5th order 3 dimensional tensor. Its entries are given
by

a11111 = 1, a22222 = 2, a33333 = 4, a11122 = a11333 = −1, a22233 = −2,

and ai1i2i3i4i5 = 0 for the others. Then the H-eigenvalue problems for A and
|A | are ⎧⎪⎨⎪⎩

x4
1 − x2

1x
2
2 − x1x

3
3 = λx4

1,

2x4
2 − 2x2

2x
2
3 = λx4

2,

4x4
3 = λx4

3,

⎧⎪⎨⎪⎩
x4

1 + x2
1x

2
2 + x1x

3
3 = λx4

1,

2x4
2 + 2x2

2x
2
3 = λx4

2,

4x4
3 = λx4

3.
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After calculating these equation sets, we know that

λ(A ) = λ(|A |) = 4,

but the nonnegative tensor C is not weakly odd-bipartite corresponding to any
nonempty proper index subset of {1, 2, 3}.

By Lemma 1 and Theorem 6, we have the following conclusion.

Corollary 3 Let A be defined as in (5). Assume that m is odd. Suppose that
C is weakly even-bipartite corresponding to a nonempty proper index subset
V ⊆ [n]. If for all i /∈ V, it satisfies

cii2i3···im = 0, ∀ i2, i3, . . . , im ∈ [n],

then λ(A ) = λ(|A |).

5 Relation between spectrums of a symmetric Z-tensor and its absolute
tensor

In this section, we will study the relation between the spectrum of an even order
symmetric Z-tensor with nonnegative diagonal entries and the spectrum of the
absolute tensor of the Z-tensor. It is proved that, if the symmetric Z-tensor is
weakly irreducible and odd-bipartite, then the two spectral sets equal. Further-
more, for a weakly irreducible symmetric Z-tensor with nonnegative diagonal
entries, we show that the spectral sets of the Z-tensor and its absolute tensor
equal if and only if their spectral radii equal. Before proving the conclusion,
we first cite the definition of diagonal similar tensors [22], which is useful in the
following analysis.

Definition 6 Let A and B be two order m � 2 dimension n tensors. If there
exists a nonsingular diagonal matrix P of dimension n such that

B = P−(m−1)A P,

then A and B are called diagonal similar.

Here, tensor B = P−(m−1)A P is defined by

bi1i2···im =
∑

j1,j2,...,jm∈[n]

aj1j2···jmpm−1
i1j1

pj2i2pj3i3 · · · pjmim , i1, i2, . . . , im ∈ [n].

Theorem 7 Assume that order m dimension n symmetric Z-tensor A is
defined as in (5). Suppose that C is weakly irreducible. Then, A and |A | are
diagonal similar if and only if m is even and C is weakly odd-bipartite.

Proof For necessity, from Definition 6, we know that there is a nonsingular
diagonal matrix P satisfying

A = P−(m−1)|A |P,
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i.e.,
D − C = P−(m−1)(D + C )P.

Since D = P−(m−1)DP, we have

−C = P−(m−1)C P,

which implies that

−ci1i2···im = ci1i2···imp
−(m−1)
i1i1

pi2i2pi3i3 · · · pimim . (13)

If p11 = p22 = · · · = pnn, by (13), we get C = 0, which is a contradiction to the
fact that C is weakly irreducible. So there are at least two distinct diagonal
entries in P.

When ci1i2···im �= 0, by (13), one has

−pmi1i1 = pi1i1pi2i2 · · · pimim . (14)

By (14), and by the fact that C is weakly irreducible, we obtain

pmii = pmjj, i, j ∈ [n],

which implies that m is even and

V = {i ∈ [n] | pii < 0} �= ∅, Ṽ = {i ∈ [n] | pii > 0} �= ∅.
Combining this with (13) and (14), we know that

ci1i2···im = 0, |{i1, i2, . . . , im} ∩ V | even.

Thus, tensor C is weakly odd-bipartite corresponding to V and the only if part
holds.

For the if part, without loss of generality, suppose that C is weakly odd-
bipartite corresponding to Ω ⊂ [n]. Let P be a diagonal matrix with i-th
diagonal entries being −1 when i ∈ Ω and 1 when i /∈ Ω. By a direct
computation, one has

A = P−(m−1)|A |P.

Apparently, P is a nonsingular diagonal matrix. From Definition 6, it follows
that A and |A | are diagonal similar. �

It should be noted that diagonal similar tensors have the same characteristic
polynomials, and thus, they have the same spectrum (see [22, Theorem 2.1]),
which is similar to the matrix case.

Corollary 4 Assume that tensor A is defined as in Theorem 7. Let m be
even. Suppose that C is odd-bipartite. Then σ(A ) = σ(|A |).
Lemma 3 [25] Let A and B be two order m dimension n tensors with |B| �
A . Then
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(a) ρ(B) � ρ(A );
(b) if A is weakly irreducible and ρ(B) = ρ(A ), where λ = ρ(A )eiψ is an

eigenvalue of B with an eigenvector y, then
(i) all the components of y are nonzero;
(ii) when U = diag(y1/|y1|, y2/|y2|, . . . , yn/|yn|) is a nonsingular diagonal

matrix, we have
B = eiψU−(m−1)A U.

Theorem 8 Assume that order m dimension n symmetric Z-tensor A is
defined as in (5). If C is weakly irreducible, then, ρ(A ) = ρ(|A |) if and only if
σ(A ) = σ(|A |).
Proof The sufficient condition is obvious. Now, we prove the only if part.
Suppose that λ = ρ(|A |)eiψ is an eigenvalue of A . Since C is weakly irreducible,
from Lemma 3, we know that there exists a nonsingular diagonal matrix P such
that

A = eiψP−(m−1)|A |P, (15)

which means
D − C = eiψP−(m−1)(D + C )P. (16)

By the fact that all diagonal elements of C equal zero and by (16), one has

D = eiψP−(m−1)DP = eiψD ,

which implies eiψ = 1. So, by Definition 6 and (15), we know that A and
|A | are diagonal similar tensors. Thus, from [22, Theorem 2.3], it holds that
σ(A ) = σ(|A |). �

6 Final remarks

Odd-bipartite and even-bipartite tensors are defined in this paper. Using this,
we study the relation between the largest H-eigenvalue of a Z-tensor with
nonnegative diagonal elements and the largest H-eigenvalue of the Z-tensor’s
absolute tensor. Sufficient and necessary conditions for the equality of these
largest H-eigenvalues are given when the Z-tensor has even order. For the odd
order case, sufficient conditions are presented. Examples are given to verify the
authenticity of the conclusions. On the other side, relation between spectral
sets of an even order symmetric Z-tensor with nonnegative diagonal entries and
its absolute tensor are studied.

In this paper, we only study the case of H-eigenvalues of Z-tensors. Do
Z-eigenvalues of Z-tensors also hold in such case? This may be an interesting
work in the future.
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