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1 Introduction

Over the past decade, the research of finite-dimensional variational inequality and
complementarity problems [1–6] has been rapidly developed in the theory of existence,
uniqueness and sensitivity of solutions, theory of algorithms and the application of
these techniques to transportation planning, regional science, socioeconomic analysis,
energy modeling and game theory.

Qi [7] defined two kinds of eigenvalues and described some relative results sim-
ilar to the matrix eigenvalues. Lim [8] proposed another definition of eigenvalues,
eigenvectors, singular values and singular vectors for tensors based on a constrained
variational approach, much like the Rayleigh quotient for symmetric matrix eigenval-
ues, independently.

Linear complementarity problems can be settled by the crisscross algorithm [9].
Conversely, for linear complementarity problems, the crisscross algorithm terminates
finitely only if thematrix is a sufficientmatrix [9].A sufficientmatrix is a generalization
of both a positive-definitematrix [10, Section 4.2] and a P-matrix [11], whose principal
minors are each positive. Similarly, for a symmetric tensor, Qi [7] gave the definition of
a positive-definite tensor and derived a method to check whether a symmetric tensor
is positive definite or not. The concept of copositive matrices [12] is important in
appliedmathematics,with applications in control theory, optimizationmodeling, linear
complementarity problems, graph theory and linear evolution variational inequalities
[13]. Qi [14] extended this concept to tensors.

The rest of this paper is organized as follows: Sect. 2 introduces notations and
definitions of basic preliminaries. Some existence and uniqueness theorems of solu-
tions of nonlinear complementarity problems and two problems that we consider in
this paper are given in Sect. 3. The main results in Sect. 4 are to study the exis-
tence and uniqueness of solution(s) of Problems 3.1 and 3.2. In Sect. 5, we present
two conjectures and two open questions. We conclude our paper in Sect. 6. Finally,
the Reference section contains the most comprehensive bibliography in this area to
date.

2 Notation and Definitions

In this section, we define the notations and collect some basic definitions and facts,
which will be used later on.

Throughout this paper, we assume that m, n (≥ 2) are positive integers and m is
even. We use small letters x, u, v, . . . , for scalars, small bold letters x,u, v, . . . , for
vectors, capital letters A, B,C, . . . , for matrices, calligraphic letters A ,B,C , . . . ,

for tensors, and A,B,C, . . . , for the subsets in Rn . Denote [n] = {1, 2, . . . , n}. 0
means a column vector inRn , where its all entries are zeros.Rn+ denotes the nonneg-
ative orthant of Rn . Given a column vector x ∈ Rn , x� represents the transpose of x,
that is, x� is a row vector.

The set Tm,n consists of all order m dimension n tensors, and every element in
A ∈ Tm,n is real, that is, Ai1i2...im ∈ R where ik ∈ [n] with k ∈ [m]. D ∈ Tm,n is
diagonal if all off-diagonal entries are zero. Particularly, when the diagonal entries of
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D are 1, then D is called the identity tensor and denote it by I [7]. Given a vector
x ∈ Rn , ‖x‖α

α = xα
1 + xα

2 + · · · + xα
n with α is an positive integers.

In the following, we present five definitions about tensors and nonlinear mappings.
The mode-k tensor–matrix product and mode-k tensor–vector product of A ∈ Tm,n

are defined as follows.

Definition 2.1 ([15]) The mode-k product of a tensor A ∈ Tm,n by a matrix B ∈
Rn×n , denoted by A ×k B, is a tensor C ∈ Tm,n of which are given by

Ci1...ik−1 j ik+1...im =
n∑

ik=1

Ai1...ik−1ik ik+1...im b jik , k ∈ [m].

Particularly, the mode-k multiplication of a tensor A ∈ Tm,n by a vector x ∈ Rn

is denoted by A ×̄kx. Set C = A ×̄kx, then, element-wise, we have

Ci1...ik−1ik+1...im =
n∑

ik=1

Ai1...ik−1ik ik+1...im xik .

According to Definition 2.1, let m vectors xk ∈ Rn , A ×̄1x1 . . . ×̄mxm is easy to
define. If these m vectors are the same vector, denoted by x, thenA ×̄1x . . . ×̄mx can
be simplified as A xm .

Given a mapping F : X ⊂ Rk → Rn , we suppose that F(x) ∈ Rn is a column
vector in this paper for all x ∈ X. Now, given two column vectors x, y ∈ Rn , 〈x, y〉
represents the inner product of x and y, i.e., 〈x, y〉 = y�x. All properties of an inner
product can be found in [16].

Our next definition is motivated by the class of copositive matrices [11], which in
turn generalizes that of nonnegative matrices.

Definition 2.2 ([3]) A mapping F : X → Rn is said to be

(a) Copositive with respect to X, iff

〈F(x) − F(0), x〉 ≥ 0, ∀x ∈ X.

(b) Strictly copositive with respect to X, iff

〈F(x) − F(0), x〉 > 0, ∀x ∈ X, x �= 0.

(c) Strongly copositive with respect to X, iff there exists a scalar α > 0 such that

〈F(x) − F(0), x〉 ≥ α‖x‖22, ∀x ∈ X.

The definition of a symmetric tensor [7,8] is stated as follows.

Definition 2.3 Suppose thatA ∈ Tm,n .A is called symmetric iffAi1i2...im is invariant
by any permutationπ , that isAi1i2...im = Aπ(i1,i2,...,im ) where all ik ∈ [n]with k ∈ [m].
We denote all symmetric tensors by STm,n .
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When m is even and A is symmetric, we say that

(a) A is positive definite [7], iff A xm > 0 for all x ∈ Rn and x �= 0,
(b) A is positive semi-definite [7], iff A xm ≥ 0 for all x ∈ Rn ,
(c) A is a copositive tensor [14], iff for any x ∈ Rn+, then A xm ≥ 0,
(d) A is a strictly copositive tensor [14], iff for any nonzero x ∈ Rn+, thenA xm > 0.

The set of all positive-definite tensors is denoted by SPTm,n .
The mapping

G(x) = F(x) − F(0) (1)

plays an important role in the nonlinear complementarity problem; this again is moti-
vated by the linear complementarity problem.

The strict copositivity of a mapping can be relaxed through the introduction of the
class of d-regular mappings.

Definition 2.4 ([3]) For any vector x ∈ Rn+, we define the index sets

I+(x) = {i : xi > 0} and I0(x) = {i : xi = 0}.
Let d > 0 be an arbitrary vector in Rn . A mapping G : Rn → Rn is said to be
d-regular, if the following system of equations has no solution in (x, t) ∈ Rn+ × R+
with z �= 0,

Gi (x) + tdi = 0, i ∈ I+(x),

Gi (x) + tdi ≥ 0, i ∈ I0(x).
(2)

Equivalently, G is d-regular if, for any scalar r > 0, the augmented nonlinear
complementarity problem NCP(H) defined by H : Rn+1 → Rn+1,

H

(
x
t

)
=

(
G(x) + td
r − 〈d, x〉

)
,

has no solution (x, t) with x �= 0.

Similar to the diagonalizable matrices [10], the definition of the diagonalizable
tensors [17,18] is presented as follows.

Definition 2.5 Suppose that A ∈ STm,n . A is called diagonalizable iff A can be
represented as

{A ∈ Tm,n|A = D ×1 B ×2 B · · · ×m B},
where B ∈ Rn×n with det(B) �= 0 and D is a diagonal tensor. Denote all diagonaliz-
able tensors by Dm,n .

It is obvious that Dm,n ⊆ STm,n and A are congruent to D when m = 2.

3 Lemmas and Problem Description

Let F be a mapping from Rn into itself. The nonlinear complementarity problem,
denoted by NCP(F), is to find a vector x∗ ∈ Rn+ such that

F(x∗) ∈ Rn+, 〈F(x∗), x∗〉 = 0.
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When F(x) is an affine function of x, say F(x) = q+ Mx for some given vectors q ∈
Rn andmatrixM ∈ Rn×n , the problemNCP(F) reduces to the linear complementarity
problem, which is denoted by LCP(q, M). The results of the linear complementarity
problem can be found in the references [11,19].

A further generalization of the NCP(F) is the variational inequality: given a map-
ping F : Rn → Rn , and ∅ �= K ⊆ Rn , find a x∗ ∈ K satisfying

〈F(x∗), y − x∗〉 ≥ 0, for all y ∈ K,

denoted by VI(K, F).
If K = {x : x ≥ 0}, then a x∗ is a solution of VI(K, F) solves the NCP(F).
It is well known that A is a P-matrix [11] if and only if the linear complementarity

problem

find z ∈ Rn such that z ≥ 0, q + Az ≥ 0, and 〈q + Az, z〉 = 0.

has a unique solution for all q ∈ Rn . Then, for a P-tensor [20] A ∈ Tm,n, (m > 2),
does a similar property hold for the following nonlinear complementarity problem

find x ∈ Rn such that x ≥ 0, q + A xm−1 ≥ 0, and 〈q + A xm−1, x〉 = 0?

In this paper, we consider a special kind of NCP(F), that is, Fi (x) is a multivariate
polynomial and the degree of Fi (x) is ki ; then, F(x) can be expressed by,

F(x) =
k∑

i=1

Aixi−1,

where Ai ∈ Ti−1,n , Aixi−1 means the tensor–vector product given in Definition 2.1,
k = max

1≤i≤n
ki . Particularly, A1 is a vector and A2 is a matrix.

3.1 Lemmas

The following lemma is an existence and uniqueness theorem by Cottle [1]. It involves
the notion of positively bounded Jacobians, and the original proof was constructive in
the sense that an algorithm was employed to actually compute the unique solution.

Lemma 3.1 ([1,3]) Let F : Rn+ → Rn be continuously differentiable and suppose
that there exists one δ ∈ (0, 1), such that all principal minors of the Jacobian matrix
∇F(x) are bounded between δ and δ−1, for all x ∈ Rn+. Then, the NCP(F) has a
unique solution.

If mapping F is strictly copositive, then the following result holds.

Lemma 3.2 ([5]) Let F : Rn+ → Rn be continuous and strictly copositive with
respect to Rn+. If there exists a mapping c : R+ → R such that c(λ) → ∞ as
λ → ∞, and for all λ ≥ 1, x ≥ 0,

〈F(λx) − F(0), x〉 ≥ c(λ)〈F(x) − F(0), x〉, (3)
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then the problem NCP(F) has a nonempty, compact solution set.

For the linear complementarity problem, the mapping G, given in formula (1), is
obviously linear, and thus, condition (3) is satisfied with c(λ) = λ. More generally, the
same condition will hold with c(λ) = λα , if G is positively homogeneous of degree
α > 0; i.e., if G(λx) = λαG(x) for λ > 0.

If F is strictly copositive with respect toRn+, then the mappingG in (1) is d-regular
for any d > 0. The following lemma presents an existence result for the nonlinear
complementarity problem with d-regular mapping.

Lemma 3.3 ([4]) Let F be a continuous mapping fromRn into itself and G defined by
(1). Suppose that G is positively homogeneous of degree α > 0 and that G is d-regular
for some d > 0. Then, the problem NCP(F) has a nonempty, compact solution set.

The main characterization theorem for copositive tensors can be summarized as
follows.

Lemma 3.4 ([14, Theorem5]) Let A ∈ Tm,n be a symmetric tensor. Then, A is
copositive of and only if

min

{
A xm : x ∈ Rn+,

n∑

i=1

xmi = 1

}
≥ 0.

A is strictly copositive if and only if

min

{
A xm : x ∈ Rn+,

n∑

i=1

xmi = 1

}
> 0.

3.2 Problem Description

In this subsection, we present two problems, which we shall discuss in this paper.

Problem 3.1 ([20]) GivenA ∈ Tm,n and q ∈ Rn . The NCP(q,A ) is to find a vector
x ∈ Rn+ such that

F(x) = A xm−1 + q ∈ Rn+, A xm + 〈q, x〉 = 0.

Problem 3.2 Given Ak ∈ Tm−(2k−2),n and q ∈ Rn with k ∈ [m/2]. The
NCP(q, {Ak}) is to find a vector x ∈ Rn+ such that

F(x) =
m/2∑

k=1

Akxm−(2k−1) + q ∈ Rn+,

m/2∑

k=1

Akxm−2k+2 + 〈q, x〉 = 0,

where Am/2 is a square matrix.
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Let FEA(q,A ) = {x ∈ Rn+ : A xm−1 + q ∈ Rn+}. If FEA(q,A ) �= ∅, then
we see that NCP(q,A ) is feasible. It is obvious that Problem 3.1 is a special case of
Question 3.2. However, for simplicity, we only consider the solvability of Problem 3.1,
in detail, andmake use of the results obtained by solving Problem3.1;we then consider
the solvability of Problem 3.2.

4 Main Results

Without loss of generality, suppose that q ∈ Rn in Problems 3.1 and 3.2 is nonzero.
For example, let A ∈ STm,n be positive definite. If q is zero, then the solution of
Problem 3.1 is zero. This situation is extraordinary, in order to avoid this situation, let
q ∈ Rn in Problems 3.1 and 3.2 be nonzero.

If zero vector 0 solves Problems 3.1 and 3.2, we derive that q is a nonnegative
vector. Hence, in this paper, we only consider a nonzero solution x of Problems 3.1
and 3.2.

4.1 Necessary Conditions for Solving Problem 3.1

The cornerstone for the necessary conditions to be presented is the nonlinear program-
ming formulation of the Problem 3.1,

min A xm + 〈q, x〉
s.t. A xm−1 + q ∈ Rn+, x ∈ Rn+.

(4)

Because FEA(q,A ) is also the feasible set of (4), if x∗ minimizes the nonlinear
programming given in (4) andA xm∗ +〈q, x∗〉 = 0, then x∗ is a solution of Problem 3.1.
According to first-order necessary conditions given in [21], we obtain the following
theorem.

Theorem 4.1 If FEA(q,A ) �= ∅ and x∗ is a local solution of (4). Then, there exists
a vector u∗ of multipliers satisfying the conditions,

q + mA xm−1∗ − (m − 1)A xm−2∗ u∗ ≥ 0

〈x∗,q + mA xm−1∗ − (m − 1)A xm−2∗ u∗〉 = 0

u∗ ≥ 0

〈u∗,q + A xm−1∗ 〉 = 0.

(5)

Finally, the vectors x∗ and u∗ satisfy

(m − 1)(x∗ − u∗)i (A xm−2∗ (x∗ − u∗))i ≤ 0, i ∈ [n]. (6)

Proof Since FEA(q,A ) �= ∅, the nonlinear programming (4) is feasible. Such an
optimal solution x∗ and a suitable vector u∗ of multipliers will satisfy the Karush–
Kuhn–Tucker conditions (5). To prove (6), we examine the inner product

〈x∗,q + mA xm−1∗ − (m − 1)A xm−2∗ u∗〉 = 0,
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at the componentwise level and deduce that for all i ∈ [n],

(m − 1)(x∗)i (A xm−2∗ (x∗ − u∗))i ≤ 0, (7)

using the fact that x∗ ∈ FEA(q,A ). Similarly, multiplying the i th component in

q + mA xm−1∗ − (m − 1)A xm−2∗ u∗ ≥ 0,

by u∗ and then invoking the complementarity condition

(u∗)i (q + A xm−1∗ )i = 0,

which is implied by u∗ ≥ 0, 〈u∗,q + A xm−1∗ 〉 = 0, and the feasibility of x∗, we
obtain

− (m − 1)(u∗)i (A xm−2∗ (x∗ − u∗))i ≤ 0. (8)

Now, (6) follows by adding (7) and (8). ��
Remark 4.1 Theorem4.1 is the special case of the result given inCottle [1, Theorem3].

With Theorem 4.1, we prove the following existence result for the NCP(q,A ).

Theorem 4.2 Let nonzero x∗ be a local solution of (4). If A xm−2 is positive definite
for all x ∈ Rn, then x∗ solves NCP(q,A ).

Proof According to Theorem 4.1, there exists a nonnegative vector u∗ such that

(m − 1)(x∗ − u∗)i (A xm−2∗ (x∗ − u∗))i ≤ 0, i ∈ [n],

that is,
〈x∗ − u∗,A xm−2∗ (x∗ − u∗)〉 ≤ 0.

According to proposition assumptions, we know that x∗ = u∗. Based on (5), then,
x∗ solves NCP(q,A ). ��
Remark 4.2 If x∗ = 0 is a local solution of (4), then x∗ solves NCP(q,A ) for all
vectors q ∈ Rn+.

Moreover, we can derive some results about Problem 3.2, similar to Theorems 4.1
and 4.2. Here, we do not list them out.

4.2 Solving Problem 3.1

In Problem 3.1, let F(x) = A xm−1 + q. We first consider some properties of F(x)
when A is selected from sets of structured tensors.
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Theorem 4.3 Suppose A ∈ STm,n and x ∈ Rn+.
(a) If A is (strictly) copositive, then the mapping F(x) is (strictly) copositive with

respect to Rn+.
(b) IfA is positive definite, then the mapping F(x) is strongly copositive with respect

to Rn+ when α ≤ λmin (≤ λmin
‖x‖22‖x‖mm ), where λmin is the smallest Z-eigenvalue

(H-eigenvalue) of A .

Proof According to Definition 2.2, because of F(x) = A xm−1 + q, so 〈F(x) −
F(0), x〉 = A xm . Since A is (strictly) copositive, that is, A xm (>) ≥ 0 for all
(nonzero) x ∈ Rn+ Then, part (a) is proved.

We now prove part (b). Since A is positive definite, according to [7, Theorem5],
we know that the smallest Z-eigenvalue (H-eigenvalue) of A , denoted by λmin, is
greater than zero, that is λmin > 0.

When λmin is the smallest Z-eigenvalue of A , then

〈F(x) − F(0), x〉 = A xm ≥ λmin‖x‖22.

Hence, under this case, part (b) is proved.
It is obvious to prove part (b) in the case of λmin is the smallest H-eigenvalue of

A . ��
WhenA ∈ Dm,n is positive semi-definite, the following theorem will give a prop-

erty of the Jacobian matrix ∇F(x), where x is nonzero vector.

Theorem 4.4 Let A ∈ Dm,n be positive semi-definite. Then, the Jacobian matrix
∇F(x) is positive semi-definite with nonzero vectors x ∈ Rn.

Proof As A is diagonalizable, for a vector x, according to Definition 2.1, we have

A xm = (D ×1 B ×2 B · · · ×m B)xm = D(B�x)m

= Dym (y
�= B�x) =

n∑

i=1

di y
m
i ,

where di is the i th diagonal entry of D . According to the proposition assumption,
di ≥ 0, we have A xm ≥ 0 for all nonzero vectors x.

Since the Jacobian matrix ∇F(x) is (m − 1)A xm−2, for any vector z ∈ Rn ,
〈z,∇F(x)z〉 can be expressed by

〈z,∇F(x)z〉 = (m − 1)
n∑

i=1

di y
m−2
i z̃2i ≥ 0,

where z̃ = B�z = (z̃1, z̃2, . . . , z̃n)�.
Hence, the Jacobian matrix ∇F(x) is positive semi-definite with x ∈ Rn . ��
For A ∈ STm,n , the existence theorems on solutions of Problem 3.1 are given in

the following theorem.
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Theorem 4.5 Suppose that A ∈ STm,n. For Problem 3.1, the following results hold.

(a) If A is positive definite, then the NCP(q,A ) has a nonempty, compact solution
set.

(b) IfA is strictly copositive with respect toRn+, then theNCP(q,A ) has a nonempty,
compact solution set.

Proof Since A is positive definite, according to Theorem 4.3, we have F(x) =
A xm−1a +q is strictly copositive. Let c(λ) = λα with 0 < α ≤ m − 1 and λ ≥ 1, we
know that c(λ) → ∞ as λ → ∞ and 〈F(λx) − F(0), x〉 ≥ c(λ)〈F(x) − F(0), x〉.
Based on Lemma 3.2, we know that ifA is positive definite, then the NCP(q,A ) has
a nonempty, compact solution set.

The rest is to prove part (b). By Theorem 4.3, we obtain that F(x) = A xm−1 + q
is strictly copositive. In [4], we have that if F(x) is strictly copositive with respect to
Rn+, then the mapping G in (1) is d-regular for any d > 0 and G(λx) = λm−1G(x)
with λ > 0. Hence, according to Lemma 3.3, if A is strictly copositive with respect
to Rn+, then the NCP(q,A ) has a nonempty, compact solution set. ��

4.3 Solving Problem 3.2

In the above subsection, we have considered the solvability of Problem 3.1. Analo-
gously, the following theorems have been described by the solvability of Problem 3.2.

Theorem 4.6 Suppose that Ak ∈ STm−(2k−2),n, with k ∈ [m/2]. For Question 3.2,
the following results hold.

(a) If Ak (k ∈ [m/2 − 1]) are diagonalizable and positive semi-definite and Am/2 is
positive definite, then the NCP(q, {Ak}) has a unique solution;

(b) if Ak are positive semi-definite and there exists at least k0 ∈ [m/2] such that Ak0
is positive definite, then the NCP(q, {Ak}) has a nonempty, compact solution set;

(c) if Ak are strictly copositive with respect to Rn+, then the NCP(q, {Ak}) has a
nonempty, compact solution set;

where Am/2 is a square matrix.

Proof For part (a), according to the assumption, we can derive that Akxm−2k

(k ∈ [m/2 − 1]) are symmetric and positive semi-definite, with x ∈ Rn . When Am/2
is symmetric and positive definite, then we obtain that ∇F(x) is symmetric and posi-
tive definite, where F(x) is defined in Question 3.2. Then, according to Lemma 3.1,
NCP(q, {Ak}) has a unique solution.

We will prove part (b) as follows. According to these assumptions, if k0 = m/2,
then

〈F(x) − F(0), x〉 =
m/2∑

k=1

Akxm−(2k) ≥ λ‖x‖22 > 0,
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where λ is the smallest eigenvalue of Am/2 for all nonzero vectors x ∈ Rn+; and if
k0 ∈ [m/2 − 1], then,

〈F(x) − F(0), x〉 =
m/2∑

k=1

Akxm−(2k) ≥ λ‖x‖22 > 0,

where λ is the smallest Z-eigenvalue of Ak0 for all nonzero vectors x ∈ Rn+ (Mean-
while, we can also consider the case when λ is the smallest H-eigenvalue of Ak0 ).
Then, F(x) is strictly copositive. Let c(λ) = λ with α = 1 and λ ≥ 1, we know that
c(λ) → ∞ as λ → ∞ and 〈F(λx) − F(0), x〉 ≥ c(λ)〈F(x) − F(0), x〉. Based on
Lemma 3.2, we derive that if Ak are positive semi-definite and there exists at least
k0 ∈ [m/2] such thatAk0 is positive definite, then the NCP(q, {Ak}) has a nonempty,
compact solution set.

The rest is to prove part (c). By Theorem 4.3, we obtain that

F(x) =
m/2∑

k=1

Akxm−(2k−1) + q

is strictly copositive. Let c(λ) = λ with α = 1 and λ ≥ 1, we know that c(λ) → ∞
as λ → ∞ and 〈F(λx) − F(0), x〉 ≥ c(λ)〈F(x) − F(0), x〉. Then, according to
Lemma 3.2, ifA is strictly copositive with respect toRn+, then the NCP(q, {Ak}) has
a nonempty, compact solution set. ��

These constraints of tensorsAk given in part (a) of Theorem 4.6 can be weakened.
Hence, a more general result is given as follows.

Theorem 4.7 Suppose that Ak ∈ STm−(2k−2),n, with k ∈ [m/2 − 1] and Am/2 is a
square matrix. For Problem 3.2, the following result holds.

IfAk are diagonalizable and positive semi-definite and there exists one δ ∈ (0, 1),
such that all principal minors of Am/2 are bounded between δ and δ−1, then the
NCP(q, {Ak}) has a unique solution.
Proof Since there exists one δ ∈ (0, 1), such that all principal minors of Am/2 are
bounded between δ and δ−1, then the real part of every eigenvalue ofAm/2 is positive.
Hence, for all nonzero vector x, we can derive 〈x,Am/2x〉 > 0. Meanwhile, according
to the assumption, we can obtain that the Jacobian matrix �F(x) of F(x) given in
Problem 3.2 is positive definite. Hence, the NCP(q, {Ak}) has a unique solution. ��
Remark 4.3 In the above two theorems, the assumptions ofAk ∈ STm−(2k−2),n , with
k ∈ [m/2] can be appropriately reduced. However, we do not here consider these
situations.

5 Perspectives

In this paper, by structured tensors, the main task is to consider the existence and
uniqueness about solutions of Problems 3.1 and 3.2. However, we do not completely
solve Problems 3.1 and 3.2. Now, we present two conjectures about Question 3.1.
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Conjecture 5.1 If A ∈ Dm,n is positive definite, then NCP(q,A ) has a unique
solution.

Conjecture 5.2 If FEA(q,A ) �= ∅, then the nonlinear programming (4) has an opti-
mal solution, x∗. Moreover, there exists a vector u∗ of multipliers satisfying the
conditions,

q + mA xm−1∗ − (m − 1)A xm−2∗ u∗ ≥ 0

〈x∗,q + mA xm−1∗ − (m − 1)A xm−2∗ u∗〉 = 0

u∗ ≥ 0

〈u∗,q + A xm−1∗ 〉 = 0.

Finally, the vectors x∗ and u∗ satisfy

(m − 1)(x∗ − u∗)i (A xm−2∗ (x∗ − u∗))i ≤ 0, i ∈ [n].

When m = 2, this is the theorem about the existence result for a solution of the
quadratic programming associated with the linear complementarity problem given in
[19]. Unfortunately, Cottle [1] presented some counter examples to explain that this
conjecture is not true for the general nonlinear programming.

Finally, for the existence and uniqueness about solutions of Problem 3.1, we have
an open question given as follows.

Question 5.1 Suppose A ∈ Tm,n and nonzero x ∈ Rn . What conditions of A will
make sure that there exists one δ ∈ (0, 1), such that all principal minors of matrix
A xm−2 are bounded between δ and δ−1, for all x ∈ Rn+?

When m is odd, another open question will be listed below.

Question 5.2 Given A ∈ Tm,n and q ∈ Rn . The NCP(q,A ) is to find a vector
x ∈ Rn+ such that

F(x) = A xm−1 + q ∈ Rn+, A xm + 〈q, x〉 = 0.

6 Conclusions

In this paper, we consider a special case of the nonlinear complementarity problem
based on structured tensors.

For Problem 3.1, we prove that the Jacobian matrix of the multilinear map is pos-
itive semi-definite under mild conditions. Based on Lemmas 3.2, 3.3 and 3.4 and
Definitions 2.2 and 2.4, we derive some results of KKT condition and the existence
about solutions of Problem 3.1. Meanwhile, we first give two conditions to ensure
that Problem 3.2 has a unique solution and then we derive the existence theorem on
solutions of Problem 3.2.

Finally, we present some open problems about this topic that we will investigate in
the near future.
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