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Abstract Large scale tensors, including large scale Hankel tensors, have many applications
in science and engineering. In this paper, we propose an inexact curvilinear search optimiza-
tion method to compute Z- and H-eigenvalues of mth order n dimensional Hankel tensors,
where n is large. Owing to the fast Fourier transform, the computational cost of each itera-
tion of the new method is about O(mn log(mn)). Using the Cayley transform, we obtain an
effective curvilinear search scheme. Then, we show that every limiting point of iterates gen-
erated by the new algorithm is an eigen-pair of Hankel tensors. Without the assumption of a
second-order sufficient condition, we analyze the linear convergence rate of iterate sequence
by the Kurdyka–Łojasiewicz property. Finally, numerical experiments for Hankel tensors,
whose dimension may up to one million, are reported to show the efficiency of the proposed
curvilinear search method.
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1 Introduction

With the coming era ofmassive data, large scale tensors have important applications in science
and engineering. How to store and analyze these tensors? This is a pressing and challenging
problem. In the literature, there are two strategies for manipulating large scale tensors. The
first one is to exploit their structures such as sparsity [3]. For example, we consider an online
store (e.g. Amazon.com) where users may review various products [35]. Then, a third order
tensor with modes: users, items, and words could be formed naturally and it is sparse. The
other one is to use distributed and parallel computation [12,16]. This technique could deal
with large scale dense tensors, but it depends on a supercomputer. Recently, researchers
applied these two strategies simultaneously for large scale tensors [11,28].

In this paper, we consider a class of large scale dense tensors with a special Hankel
structure. Hankel tensors appear in many engineering problems such as signal processing
[6,18], automatic control [48], and geophysics [39,50]. For instance, in nuclear magnetic
resonance spectroscopy [52], aHankelmatrixwas formed to analyze the time-domain signals,
which is important for brain tumour detection. Papy et al. [40,41] improved this method by
using a high order Hankel tensor to replace the Hankel matrix. Ding et al. [18] proposed a fast
computational framework for products of a Hankel tensor and vectors. On the mathematical
properties, Luque and Thibon [34] explored the Hankel hyperdeterminants. Qi [43] and Xu
[54] studied the spectra of Hankel tensors and gave some upper bounds and lower bounds
for the smallest and the largest eigenvalues. In [43], Qi raised a question: Can we construct
some efficient algorithms for the largest and the smallest H- and Z-eigenvalues of a Hankel
tensor?

Numerous applications of the eigenvalues of higher order tensors have been found in
science and engineering, such as automatic control [37],medical imaging [9,45,47], quantum
information [36], and spectral graph theory [13]. For example, inmagnetic resonance imaging
[45], the principal Z-eigenvalues of an even order tensor associated to the fiber orientation
distribution of a voxel in white matter of human brain denote volume factions of several
nerve fibers in this voxel, and the corresponding Z-eigenvectors express the orientations of
these nerve fibers. The smallest eigenvalue of tensors reflects the stability of a nonlinear
multivariate autonomous system in automatic control [37]. For a given even order symmetric
tensor, it is positive semidefinite if and only if its smallest H- or Z-eigenvalue is nonnegative
[42].

The conception of eigenvalues of higher order tensors was defined independently by Qi
[42] and Lim [32] in 2005. Unfortunately, it is an NP-hard problem to compute eigenvalues
of a tensor even though the involved tensor is symmetric [26]. For two and three dimensional
symmetric tensors, Qi et al. [44] proposed a direct method to compute all of its Z-eigenvalues.
It was pointed out in [30,31] that the polynomial system solver, NSolve in Mathematica,
could be used to compute all of the eigenvalues of lower order and low dimensional tensors.
We note that the mathematical software Maple has a similar command solve which is also
applicable for the polynomial systems of eigenvalues of tensors.

For general symmetric tensors, Kolda andMayo [30] proposed a shifted symmetric higher
order power method to compute its Z-eigenpairs. Recently, they [31] extended the shifted
power method to generalized eigenpairs of tensors and gave an adaptive shift. Based on the
nonlinear optimization model with a compact unit spherical constraint, the power methods
[17] project the gradient of the objective at the current iterate onto the unit sphere at each
iteration. Its computation is very simple but may not converge [29]. Kolda and Mayo [30,31]
introduced a shift to force the objective to be (locally) concave/convex. Then the power
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method produces increasing/decreasing steps for computing maximal/minimal eigenvalues.
The sequence of objectives converges to eigenvalues since the feasible region is compact. The
convergence of the sequence of iterates to eigenvectors is established under the assumption
that the tensor has finitely many real eigenvectors. The linear convergence rate is estimated
by a fixed-point analysis.

Inspired by the power method, various optimization methods have been established. Han
[23] proposed an unconstrained optimization model, which is indeed a quadratic penalty
function of the constrained optimization for generalized eigenvalues of symmetric tensors.
Hao et al. [24] employed a subspace projection method for Z-eigenvalues of symmetric
tensors. Restricted by a unit spherical constraint, this method minimizes the objective in a
big circle of n dimensional unit sphere at each iteration. Since the objective is a homogeneous
polynomial, the minimization of the subproblem has a closed-form solution. Additionally,
Hao et al. [25] gave a trust region method to calculate Z-eigenvalues of symmetric tensors.
The sequence of iterates generated by this method converges to a second order critical point
and enjoys a locally quadratic convergence rate.

Since nonlinear optimization methods may produce a local minimizer, some convex opti-
mization models have been studied. Hu et al. [27] addressed a sequential semi-definite
programming method to compute the extremal Z-eigenvalues of tensors. A sophisticated
Jacobian semi-definite relaxation method was explored by Cui et al. [14]. A remarkable fea-
ture of this method is the ability to compute all of the real eigenvalues of symmetric tensors.
Recently, Chen et al. [8] proposed homotopy continuation methods to compute all of the
complex eigenvalues of tensors. When the order or the dimension of a tensor grows larger,
the CPU times of these methods become longer and longer.

In some applications [39,52], the scales of Hankel tensors can be quite huge. This highly
restricted the applications of the above mentioned methods in this case. How to compute the
smallest and the largest eigenvalues of a Hankel tensor? Canwe propose amethod to compute
the smallest and the largest eigenvalues of a relatively large Hankel tensor, say 1, 000, 000
dimension? This is one of the motivations of this paper.

Owing to the multi-linearity of tensors, we model the problem of eigenvalues of Hankel
tensors as a nonlinear optimization problem with a unit spherical constraint. Our algorithm
is an inexact steepest descent method on the unit sphere. To preserve iterates on the unit
sphere, we employ the Cayley transform to generate an orthogonal matrix such that the
new iterate is this orthogonal matrix times the current iterate. By the Sherman-Morrison-
Woodbury formula, the product of the orthogonal matrix and a vector has a closed-form
solution. So the subproblem is straightforward. A curvilinear search is employed to guarantee
the convergence. Then,weprove that every accumulation point of the sequence of iterates is an
eigenvector of the involved Hankel tensor, and its objective is the corresponding eigenvalue.
Furthermore, using the Kurdyka–Łojasiewicz property of the eigen-problem of tensors, we
prove that the sequence of iterates converges without an assumption of second order sufficient
condition. Under mild conditions, we show that the sequence of iterates has a linear or a
sublinear convergence rate. Numerical experiments show that this strategy is successful.

The outline of this paper is drawn as follows.We introduce a fast computational framework
for products of a well-structured Hankel tensor and vectors in Sect. 2. The computational
cost is cheap. In Sect. 3, we show the technique of using the Cayley transform to construct an
effective curvilinear search algorithm. The convergence of objective and iterates are analyzed
in Sect. 4. The Kurdyka–Łojasiewicz property is applied to analyze an inexact line search
method. Numerical experiments in Sect. 5 address that the new method is efficient and
promising. Finally, we conclude the paper with Sect. 6.
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2 Hankel Tensors

Suppose A is an mth order n dimensional real symmetric tensor

A = (ai1,i2,...,im ), for i j = 1, . . . , n, j = 1, . . . , m,

where all of the entries are real and invariant under any index permutation. Two products of
the tensor A and a column vector x ∈ R

n used in this paper are defined as follows.

• Axm is a scalar

Axm =
n∑

i1,...,im=1

ai1,...,im xi1 · · · xim .

• Axm−1 is a column vector

(Axm−1)
i =

n∑

i2,...,im=1

ai,i2,...,im xi2 · · · xim , for i = 1, . . . , n.

When the tensor A is dense, the computations of products Axm and Axm−1 require O(nm)

operations, since the tensor A has nm entries and we must visit all of them in the process
of calculation. When the tensor is symmetric, the computational cost for these products is
aboutO(nm/m!) [46]. Obviously, they are expensive. In this section, we will study a special
tensor, the Hankel tensor, whose elements are completely determined by a generating vector.
So there exists a fast algorithm to compute products of a Hankel tensor and vectors. Let us
give the definitions of two structured tensors.

Definition 1 An mth order n dimensional tensor H is called a Hankel tensor if its entries
satisfy

hi1,i2,...,im = vi1+i2+···+im−m, for i j = 1, . . . , n, j = 1, . . . , m.

The vector v = (v0, v1, . . . , vm(n−1))
� with length � ≡ m(n −1)+1 is called the generating

vector of the Hankel tensor H.
An mth order � dimensional tensor C is called an anti-circulant tensor if its entries satisfy

ci1,i2,...,im = v(i1+i2+···+im−m mod �), for i j = 1, . . . , �, j = 1, . . . , m.

It is easy to see thatH is a sub-tensor of C. Since for the same generating vector v we have

ci1,i2,...,im = hi1,i2,...,im , for i j = 1, . . . , n, j = 1, . . . , m.

For example, a third order two dimensional Hankel tensor with a generating vector v =
(v0, v1, v2, v3)

� is

H =
[

v0 v1 v1 v2
v1 v2 v2 v3

]
.

It is a sub-tensor of an anti-circulant tensor with the same order and a larger dimension

C =

⎡

⎢⎢⎣

v0 v1 v2 v3 v1 v2 v3 v0 v2 v3 v0 v1 v3 v0 v1 v2
v1 v2 v3 v0 v2 v3 v0 v1 v3 v0 v1 v2 v0 v1 v2 v3
v2 v3 v0 v1 v3 v0 v1 v2 v0 v1 v2 v3 v1 v2 v3 v0
v3 v0 v1 v2 v0 v1 v2 v3 v1 v2 v3 v0 v2 v3 v0 v1

⎤

⎥⎥⎦ .

As discovered in [18, Theorem 3.1], the mth order � dimensional anti-circulant tensor C
could be diagonalized by the �-by-� Fourier matrix F�, i.e., C = DFm

� , whereD is a diagonal
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tensor whose diagonal entries are diag(D) = F−1
� v. It is well-known that the computations

involving the Fourier matrix and its inverse times a vector are indeed the fast (inverse)
Fourier transform fft and ifft, respectively. The computational cost is about O(� log �)

multiplications, which is significantly smaller than O(�2) for a dense matrix times a vector
when the dimension � is large.

Now, we are ready to show how to compute the products introduced in the beginning of
this section, when the involved tensor has a Hankel structure. For any x ∈ R

n , we define
another vector y ∈ R

� such that

y ≡
[

x
0�−n

]
,

where � = m(n − 1) + 1 and 0�−n is a zero vector with length � − n. Then, we have

Hxm = Cym = D(F�y)m = ifft(v)�
(
fft(y)◦m)

.

To obtain Hxm−1, we first compute

Cym−1 = F�

(D(F�y)m−1) = fft
(

ifft(v) ◦
(

fft(y)◦(m−1)
))

.

Then, the entries of vector Hxm−1 is the leading n entries of Cym−1. Here, ◦ denotes the
Hadamard product such that (A ◦ B)i, j = Ai, j Bi, j . Three matrices A, B and A ◦ B have the
same size. Furthermore, we define A◦k = A ◦ · · · ◦ A as the Hadamard product of k copies
of A.

Since the computations of Hxm and Hxm−1 require 2 and 3 fft/iffts, the computa-
tional cost is aboutO(mn log(mn)) and obviously cheap. Another advantage of this approach
is that we do not need to store and deal with the tremendous Hankel tensor explicitly. It is
sufficient to keep and work with the compact generating vector of that Hankel tensor.

3 A Curvilinear Search Algorithm

We consider the generalized eigenvalue [7,19] of an mth order n dimensional Hankel tensor
H

Hxm−1 = λBxm−1,

where m is even, B is an mth order n dimensional symmetric tensor and it is positive definite.
If there is a scalar λ and a real vector x satisfying this system, we call λ a generalized
eigenvalue and x its associated generalized eigenvector. Particularly, we find the following
definitions from the literature, where the computation on the tensor B is straightforward.

• Qi [42] called a real scalar λ a Z-eigenvalue of a tensorH and a real vector x its associated
Z-eigenvector if they satisfy

Hxm−1 = λx and x�x = 1.

This definitionmeans that the tensorB is an identity tensor E such that Exm−1 = ‖x‖m−2x.
• If B = I, where

(I)i1,...,im =
{
1 if i1 = · · · = im,

0 otherwise ,

the real scalar λ is called an H-eigenvalue and the real vector x is its associated H-
eigenvector [42]. Obviously, we have (Ixm−1)i = xm−1

i for i = 1, . . . , n.
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To compute a generalized eigenvalue and its associated eigenvector, we consider the
following optimization model with a spherical constraint

min f (x) ≡ Hxm

Bxm
s.t. ‖x‖ = 1, (1)

where ‖ · ‖ denotes the Euclidean norm or its induced matrix norm. The denominator of the
objective is positive since the tensor B is positive definite. By some calculations, we get its
gradient and Hessian, which are formally presented in the following lemma.

Lemma 1 Suppose that the objective is defined as in (1). Then, its gradient is

g(x) = m

Bxm

(
Hxm−1 − Hxm

Bxm
Bxm−1

)
. (2)

And its Hessian is

H(x) = m(m − 1)Hxm−2

Bxm
− m(m − 1)HxmBxm−2 + m2(Hxm−1 � Bxm−1)

(Bxm)2

+ m2Hxm(Bxm−1 � Bxm−1)

(Bxm)3
, (3)

where x � y ≡ xy� + yx�.

Let Sn−1 ≡ {x ∈ R
n | x�x = 1} be the spherical feasible region. Suppose the current

iterate is x ∈ Sn−1 and the gradient at x is g(x). Because

x�g(x) = m

Bxm

(
x�Hxm−1 − Hxm

Bxm
x�Bxm−1

)
= 0, (4)

the gradient g(x) of x ∈ Sn−1 is located in the tangent plane of Sn−1 at x.

Lemma 2 Suppose ‖g(x)‖ = ε, where x ∈ Sn−1 and ε is a small number. Denote λ = Hxm

Bxm .
Then, we have

‖Hxm−1 − λBxm−1‖ = O(ε).

Moreover, if the gradient g(x) at x vanishes, then λ = f (x) is a generalized eigenvalue and
x is its associated generalized eigenvector.

Proof Recalling the definition of gradient (2), we have

‖Hxm−1 − λBxm−1‖ = Bxm

m
ε.

Since the tensor B is positive definite and the vector x belongs to a compact set Sn−1,Bxm

has a finite upper bound. Thus, the first assertion is valid.
If ε = 0, we immediately know that λ = f (x) is a generalized eigenvalue and x is its

associated generalized eigenvector. ��
Next, we construct the curvilinear search path using the Cayley transform [22]. Cayley

transform is an effective method which could preserve the orthogonal constraints. It has
various applications in the inverse eigenvalue problem [20], p-harmonic flow [21], andmatrix
optimization [53].

Suppose the current iterate is xk ∈ Sn−1 and the next iterate is xk+1. To preserve the
spherical constraint x�

k+1xk+1 = x�
k xk = 1, we choose the next iterate xk+1 such that

xk+1 = Qxk, (5)
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where Q ∈ R
n×n is an orthogonal matrix, whose eigenvalues do not contain −1. Using the

Cayley transform, the matrix
Q = (I + W )−1(I − W ) (6)

is orthogonal if and only if the matrix W ∈ R
n×n is skew-symmetric.1 Now, our task is to

select a suitable skew-symmetric matrix W such that g(xk)
�(xk+1 −xk) < 0. For simplicity,

we take the matrix W as
W = ab� − ba�, (7)

where a, b ∈ R
n are two undetermined vectors. From (5) and (6), we have

xk+1 − xk = −W (xk + xk+1).

Then, by (7), it yields that

g(xk)
�(xk+1 − xk) = −[(g(xk)

�a)b� − (g(xk)
�b)a�](xk + xk+1).

For convenience, we choose

a = xk and b = −αg(xk). (8)

Here, α is a positive parameter, which serves as a step size, so that we have some freedom to
choose the next iterate. According to this selection and (4), we obtain

g(xk)
�(xk+1 − xk) = −α‖g(xk)‖2x�

k (xk + xk+1)

= −α‖g(xk)‖2(1 + x�
k Qxk).

Since −1 is not an eigenvalue of the orthogonal matrix Q, we have 1 + x�
k Qxk > 0 for

x�
k xk = 1. Therefore, the conclusion g(xk)

�(xk+1 − xk) < 0 holds for any positive step size
α.

We summarize the iterative process in the following Theorem.

Theorem 1 Suppose that the new iterate xk+1 is generated by (5), (6), (7), and (8). Then,
the following assertions hold.

• The iterative scheme is

xk+1(α) = 1 − α2‖g(xk)‖2
1 + α2‖g(xk)‖2 xk − 2α

1 + α2‖g(xk)‖2 g(xk). (9)

• The progress made by xk+1 is

g(xk)
�(xk+1(α) − xk) = − 2α‖g(xk)‖2

1 + α2‖g(xk)‖2 . (10)

1 See “http://en.wikipedia.org/wiki/Cayley_transform”.

123

http://en.wikipedia.org/wiki/Cayley_transform


J Sci Comput (2016) 68:716–738 723

Proof From the equality (4) and the Sherman-Morrison-Woodbury formula, we have

xk+1(α) = (I − αxkg(xk)
� + αg(xk)x�

k )−1(I + αxkg(xk)
� − αg(xk)x�

k )xk

= (I + αg(xk)x�
k − αxkg(xk)

�)−1(xk − αg(xk))

=
(

I − [
αg(xk) −xk

] ([
1 0
0 1

]
+

[
x�

k
αg(xk)

�
]

I
[
αg(xk) −xk

])−1

·
[

x�
k

αg(xk)
�

])
(xk − αg(xk))

= xk − αg(xk) − [
αg(xk) −xk

] [
1 −1

α2‖g(xk)‖2 1

]−1 [
1

−α2‖g(xk)‖2
]

= 1 − α2‖g(xk)‖2
1 + α2‖g(xk)‖2 xk − 2α

1 + α2‖g(xk)‖2 g(xk).

The proof of (10) is straightforward. ��
Whereafter, we devote to choose a suitable step size α by an inexact curvilinear search.

At the beginning, we give a useful theorem.

Theorem 2 Suppose that the new iterate xk+1(α) is generated by (9). Then, we have

d f (xk+1(α))

dα

∣∣∣∣
α=0

= −2‖g(xk)‖2.

Proof By some calculations, we get

x′
k+1(α) = −2

1 + α2‖g(xk)‖2 g(xk) + −4α‖g(xk)‖2
(1 + α2‖g(xk)‖2)2 (xk − αg(xk)).

Hence, x′
k+1(0) = −2g(xk). Furthermore, xk+1(0) = xk . Therefore, we obtain

d f (xk+1(α))

dα

∣∣∣∣
α=0

= g(xk+1(0))
�x′

k+1(0) = g(xk)
�(−2g(xk)) = −2‖g(xk)‖2.

The proof is completed. ��
According to Theorem 2, for any constant η ∈ (0, 2), there exists a positive scalar α̃ such

that for all α ∈ (0, α̃],
f (xk+1(α)) − f (xk) ≤ −ηα‖g(xk)‖2.

Hence, the curvilinear search process is well-defined.
Now, we present a curvilinear search algorithm (ACSA) formally in Algorithm 1 for the

smallest generalized eigenvalue and its associated eigenvector of a Hankel tensor. If our aim
is to compute the largest generalized eigenvalue and its associated eigenvector of a Hankel
tensor, we only need to change respectively (9) and (11) used in Steps 5 and 6 of the ACSA
algorithm to

xk+1(α) = 1 − α2‖g(xk)‖2
1 + α2‖g(xk)‖2 xk + 2α

1 + α2‖g(xk)‖2 g(xk),

and
f (xk+1(αk)) ≥ f (xk) + ηαk‖g(xk)‖2.

When the Z-eigenvalue of a Hankel tensor is considered, we have Exm = ‖x‖m = 1 and
the objective f (x) is a polynomial. Then, we could compute the global minimizer of the step
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Algorithm 1 A curvilinear search algorithm (ACSA).
1: Give the generating vector v of a Hankel tensor H, the symmetric tensor B, an initial unit iterate x1,

parameters η ∈ (0, 1
2 ], β ∈ (0, 1), ᾱ1 = 1 ≤ αmax, and k ← 1.

2: while the sequence of iterates does not converge do
3: ComputeHxm

k andHxm−1
k by the fast computational framework introduces in Sect. 2.

4: Calculate Bxm
k , Bxm−1

k , λk = f (xk ) = Hxm
k

Bxm
k

and g(xk ) by (2).

5: Choose the smallest nonnegative integer � and determine αk = β�ᾱk such that

f (xk+1(αk )) ≤ f (xk ) − ηαk‖g(xk )‖2, (11)

where xk+1(α) is calculated by (9).
6: Update the iterate xk+1 = xk+1(αk ).
7: Choose an initial step size ᾱk+1 ∈ (0, αmax] for the next iteration.
8: k ← k + 1.
9: end while

size αk (the exact line search) in each iteration as [24]. However, we use a cheaper inexact
line search here. The initial step size of the next iteration follows Dai’s strategy [15]

ᾱk+1 = ‖�xk‖
‖�gk‖ , (12)

which is the geometric mean of Barzilai-Borwein step sizes [4].

4 Convergence Analysis

Since the optimization model (1) has a nice algebraic nature, we will use the Kurdyka–
Łojasiewicz property [5,33] to analyze the convergence of the proposed ACSA algorithm.
Before we start, we give some basic convergence results.

4.1 Basic Convergence Results

If theACSAalgorithm terminates finitely, there exists a positive integer k such that g(xk) = 0.
According to Lemma 2, f (xk) is a generalized eigenvalue and xk is its associated generalized
eigenvector.

Next, we assume that ACSA generates an infinite sequence of iterates.

Lemma 3 Suppose that the even order symmetric tensor B is positive definite. Then, all the
functions, gradients, and Hessians of the objective (1) at feasible points are bounded. That
is to say, there is a positive constant M such that for all x ∈ Sn−1

| f (x)| ≤ M, ‖g(x)‖ ≤ M, and ‖H(x)‖ ≤ M. (13)

Proof Since the spherical feasible region Sn−1 is compact, the denominator Bxm of the
objective is positive and bounds away from zero. Recalling Lemma 1, we get this theorem
immediately. ��
Theorem 3 Suppose that the infinite sequence {λk} is generated by ACSA. Then, the sequence
{λk} is monotonously decreasing. And there exists a λ∗ such that

lim
k→∞ λk = λ∗.
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Proof Since λk = f (xk) which is bounded and monotonously decreasing, the infinite
sequence {λk} must converge to a unique λ∗. ��

This theorem means that the sequence of generalized eigenvalues converges. To show the
convergence of iterates, we first prove that the step sizes bound away from zero.

Lemma 4 Suppose that the step size αk is generated by ACSA. Then, for all iterations k, we
get

αk ≥ (2 − η)β

5M
≡ αmin > 0. (14)

Proof Let α ≡ 2−η
5M . According to the curvilinear search process of ACSA, it is sufficient to

prove that the inequality (11) holds if αk ∈ (0, α].
From the iterative formula (9) and the equality (4), we get

‖xk+1(α) − xk‖2 =
∥∥∥∥

−2α2‖g(xk)‖2
1 + α2‖g(xk)‖2 xk − 2α

1 + α2‖g(xk)‖2 g(xk)

∥∥∥∥
2

= 4α4‖g(xk)‖4‖xk‖2 + 4α2‖g(xk)‖2
(1 + α2‖g(xk)‖2)2

= 4α2‖g(xk)‖2
1 + α2‖g(xk)‖2 .

Hence,

‖xk+1(α) − xk‖ = 2α‖g(xk)‖√
1 + α2‖g(xk)‖2

. (15)

From the mean value theorem, (9), (4), and (15), we have

f (xk+1(α)) − f (xk) ≤ g(xk)
�(xk+1(α) − xk) + 1

2
M‖xk+1(α) − xk‖2

= 1

1 + α2‖g(xk)‖2
(

−2α2‖g(xk)‖2g(xk)
�xk − 2α‖g(xk)‖2 + M

2
4α2‖g(xk)‖2

)

≤ α‖g(xk)‖2
1 + α2‖g(xk)‖2 (4αM − 2) .

It is easy to show that for all α ∈ (0, α]
4αM − 2 ≤ −η(1 + α2M2).

Therefore, we have

f (xk+1(α)) − f (xk) ≤ −η(1 + α2M2)

1 + α2‖g(xk)‖2 α‖g(xk)‖2 ≤ −ηα‖g(xk)‖2.

The proof is completed. ��
Theorem 4 Suppose that the infinite sequence {xk} is generated by ACSA. Then, the sequence
{xk} has an accumulation point at least. And we have

lim
k→∞ ‖g(xk)‖ = 0. (16)

That is to say, every accumulation point of {xk} is a generalized eigenvector whose associated
generalized eigenvalue is λ∗.
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Proof Since the sequence of objectives { f (xk)} is monotonously decreasing and bounded,
by (11) and (14), we have

2M ≥ f (x1) − λ∗ =
∞∑

k=1

f (xk) − f (xk+1) ≥
∞∑

k=1

ηαk‖g(xk)‖2 ≥ ηαmin

∞∑

k=1

‖g(xk)‖2.

It yields that

∑

k

‖g(xk)‖2 ≤ 2M

ηαmin
< +∞. (17)

Thus, the limit (16) holds.
Let x∞ be an accumulation point of {xk}. Then x∞ belongs to the compact set Sn−1 and

‖g(x∞)‖ = 0. According to Lemma 2, x∞ is a generalized eigenvector whose associated
eigenvalue is f (x∞) = λ∗. ��
4.2 Further Results Based on the Kurdyka–Łojasiewicz Property

In this subsection, we will prove that the iterates {xk} generated by ACSA converge without
an assumption of the second-order sufficient condition. The key tool of our analysis is the
Kurdyka–Łojasiewicz property. This property was first discovered by S. Łojasiewicz [33]
in 1963 for real-analytic functions. Bolte et al. [5] extended this property to nonsmooth
subanalytic functions. Whereafter, the Kurdyka–Łojasiewicz property was widely applied to
analyze regularized algorithms for nonconvex optimization [1,2]. Significantly, it seems to
be new to use the Kurdyka–Łojasiewicz property to analyze an inexact line search algorithm,
e.g., ACSA proposed in Sect. 3.

Wenowwrite down theKurdyka–Łojasiewicz property [5, Theorem3.1] for completeness.

Theorem 5 (Kurdyka–Łojasiewicz (KL) property) Suppose that x∗ is a critical point of
f (x). Then there is a neighborhood U of x∗, an exponent θ ∈ [0, 1), and a constant C1 such
that for all x ∈ U , the following inequality holds

| f (x) − f (x∗)|θ
‖g(x)‖ ≤ C1. (18)

Here, we define 00 ≡ 1.

Lemma 5 Suppose that x∗ is one of the accumulation points of {xk}. For the convenience
of using the Kurdyka–Łojasiewicz property, we assume that the initial iterate x1 satisfies
x1 ∈ B(x∗, ρ) ≡ {x ∈ R

n | ‖x − x∗‖ < ρ} ⊆ U where

ρ >
2C1

η(1 − θ)
| f (x1) − f (x∗)|1−θ + ‖x1 − x∗‖.

Then, we have the following two assertions:

xk ∈ B(x∗, ρ), ∀ k = 1, 2, . . . , (19)

and ∑

k

‖xk+1 − xk‖ ≤ 2C1

η(1 − θ)
| f (x1) − f (x∗)|1−θ . (20)
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Proof We prove (19) by the induction. First, it is easy to see that x1 ∈ B(x∗, ρ). Next, we
assume that there is an integer K such that

xk ∈ B(x∗, ρ), ∀ 1 ≤ k ≤ K .

Hence, the KL property (18) holds in these iterates. Finally, we prove that xK+1 ∈ B(x∗, ρ).
For the convenience of presentation, we define a scalar function

ϕ(s) ≡ C1

1 − θ
|s − f (x∗)|1−θ .

Obviously, ϕ(s) is a concave function and its derivative is ϕ′(s) = C1
|s− f (x∗)|θ if s > f (x∗).

Then, for any 1 ≤ k ≤ K , we have

ϕ( f (xk)) − ϕ( f (xk+1)) ≥ ϕ′( f (xk))( f (xk) − f (xk+1))

= C1

| f (xk) − f (x∗)|θ ( f (xk) − f (xk+1))

[by KL property] ≥ 1

‖g(xk)‖ ( f (xk) − f (xk+1))

[since (11)] ≥ 1

‖g(xk)‖ηαk‖g(xk)‖2

≥ ηαk‖g(xk)‖√
1 + α2

k ‖g(xk)‖2

[because of (15)] ≥ η

2
‖xk+1 − xk‖.

It yields that
K∑

k=1

‖xk+1 − xk‖ ≤ 2

η

K∑

k=1

ϕ( f (xk)) − ϕ( f (xk+1))

= 2

η
(ϕ( f (x1)) − ϕ( f (xK+1)))

≤ 2

η
ϕ( f (x1)). (21)

So, we get

‖xK+1 − x∗‖ ≤
K∑

k=1

‖xk+1 − xk‖ + ‖x1 − x∗‖

≤ 2

η
ϕ( f (x1)) + ‖x1 − x∗‖

< ρ.

Thus, xK+1 ∈ B(x∗, ρ) and (19) holds.
Moreover, let K → ∞ in (21). We obtain (20). ��

Theorem 6 Suppose that the infinite sequence of iterates {xk} is generated by ACSA. Then,
the total sequence {xk} has a finite length, i.e.,

∑

k

‖xk+1 − xk‖ < +∞,

and hence the total sequence {xk} converges to a unique critical point.
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Proof Since the domain of f (x) is compact, the infinite sequence {xk} generated by ACSA
must have an accumulation point x∗. According to Theorem 4, x∗ is a critical point. Hence,
there exists an index k0, which could be viewed as an initial iteration when we use Lemma 5,
such that xk0 ∈ B(x∗, ρ). From Lemma 5, we have

∑∞
k=k0 ‖xk+1 − xk‖ < +∞. Therefore,

the total sequence {xk} has a finite length and converges to a unique critical point. ��
Next, we give an estimation for the convergence rate of ACSA, which is a specialization

of Theorem 2 of Attouch and Bolte [1]. The proof here is clearer since we have a new bound
in Lemma 6.

Lemma 6 There exists a positive constant C2 such that

‖xk+1 − xk‖ ≥ C2‖g(xk)‖. (22)

Proof Since αmax ≥ αk ≥ αmin > 0 and (15), we have

‖xk+1 − xk‖ = 2αk‖g(xk)‖√
1 + α2

k ‖g(xk)‖2
≥ 2αmin

1 + αmaxM
‖g(xk)‖.

Let C2 ≡ 2αmin
1+αmaxM . We get this lemma. ��

The following theorem is almost the same as in the one in [1] on convergence rates.

Theorem 7 Suppose that x∗ is the critical point of the infinite sequence of iterates {xk}
generated by ACSA. Then, we have the following estimations.

• If θ ∈ (0, 1
2 ], there exists a γ > 0 and  ∈ (0, 1) such that

‖xk − x∗‖ ≤ γ k .

• If θ ∈ ( 12 , 1), there exists a γ > 0 such that

‖xk − x∗‖ ≤ γ k− 1−θ
2θ−1 .

Proof Without loss of generality, we assume that x1 ∈ B(x∗, ρ). For convenience of follow-
ing analysis, we define

�k ≡
∞∑

i=k

‖xi − xi+1‖ ≥ ‖xk − x∗‖.

Then, we have

�k =
∞∑

i=k

‖xi − xi+1‖

[since (20)] ≤ 2C1

η(1 − θ)
| f (xk) − f (x∗)|1−θ

= 2C1

η(1 − θ)

(| f (xk) − f (x∗)|θ
) 1−θ

θ

[KL property] ≤ 2C1

η(1 − θ)
(C1‖g(xk)‖) 1−θ

θ

[for (22)] ≤ 2C1

η(1 − θ)

(
C1C−1

2 ‖xk − xk+1‖
) 1−θ

θ
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= 2C
1
θ

1 C
− 1−θ

θ

2

η(1 − θ)
(�k − �k+1)

1−θ
θ

≡ C3 (�k − �k+1)
1−θ
θ , (23)

where C3 is a positive constant.
If θ ∈ (0, 1

2 ), we have
1−θ
θ

≥ 1. When the iteration k is large enough, the inequality (23)
implies that

�k ≤ C3(�k − �k+1).

That is

�k+1 ≤ C3 − 1

C3
�k .

Hence, recalling ‖xk − x∗‖ ≤ �k , we obtain the estimation if we take  ≡ C3−1
C3

.

Otherwise, we consider the case θ ∈ ( 12 , 1). Let h(s) = s− θ
1−θ . Obviously, h(s) is monoto-

nously decreasing. Then, the inequality (23) could be rewritten as

C
− θ

1−θ

3 ≤ h(�k)(�k − �k+1)

=
∫ �k

�k+1

h(�k) ds

≤
∫ �k

�k+1

h(s) ds

= − 1 − θ

2θ − 1

(
�

− 2θ−1
1−θ

k − �
− 2θ−1

1−θ

k+1

)
.

Denote ν ≡ − 2θ−1
1−θ

< 0 since θ ∈ ( 12 , 1). Then, we get

�ν
k+1 − �ν

k ≥ −νC
− θ

1−θ

3 ≡ C4 > 0.

It yields that for all k > K ,

�k ≤ [�ν
K + C4(k − K )] 1

ν ≤ γ k
1
ν ,

where the last inequality holds when the iteration k is sufficiently large. ��

We remark that if the Hessian H(x∗) at the critical point x∗ is positive definite, the key
parameter θ in the Kurdyka–Łojasiewicz property is θ = 1

2 . Under Theorem 7, the sequence
of iterates generated by ACSA has a linear convergence rate. In this viewpoint, the Kurdyka–
Łojasiewicz property is weaker than the second order sufficient condition of x∗ being a
minimizer.

5 Numerical Experiments

To show the efficiency of the proposed ACSA algorithm, we perform some numerical exper-
iments. The parameters used in ACSA are

η = .001, β = .5, αmax = 10000.

123



730 J Sci Comput (2016) 68:716–738

Table 1 Computed Z-eigenvalues of the Hankel tensor in Example 1

Algorithms Power M. Han’s UOA ACSA-general ACSA-Hankel

−8.846335 54% 58% 72% 72%

−3.920428 46% 42% 28% 28%

CPU t. (sec) 23.09 9.34 8.39 0.67

We terminate the algorithm if the objectives satisfy

|λk+1 − λk |
max(1, |λk |) < 10−12√n

or the number of iterations exceeds 1000. The codes are written in MATLAB R2012a and
run in a desktop computer with Intel Core E8500 CPU at 3.17GHz and 4GBmemory running
Windows 7.

We will compare the following four algorithms in this section.

• An adaptive shifted power method [30,31] (Power M.) is implemented as eig_sshopm
and eig_geap in Tensor Toolbox 2.6 for Z- and H-eigenvalues of even order symmetric
tensors.

• An unconstrained optimization approach [23] (Han’s UOA) is solved by fminunc
in MATLAB with settings: GradObj:on, LargeScale:off, TolX:1.e-10,
TolFun:1.e-8, MaxIter:10000, Display:off.

• For general symmetric tensors without considering a Hankel structure, we implement
ACSA as ACSA-general.

• The ACSA algorithm (ACSA-Hankel) is proposed in Sect. 3 for Hankel tensors.

5.1 Small Hankel Tensors

First, we examine some small tensors, whose Z- and H-eigenvalues could be computed
exactly.

Example 1 ([38]) A Hankel tensor A whose entries are defined as

ai1i2···im = sin(i1 + i2 + · · · + im), i j = 1, 2, . . . , n, j = 1, 2, . . . , m.

Its generating vector is v = (sin(m), sin(m + 1), . . . , sin(mn))�.
If m = 4 and n = 5, there are five Z-eigenvalues which are listed as follows [8,14]

λ1 = 7.2595, λ2 = 4.6408, λ3 = 0.0000, λ4 = −3.9204, λ5 = −8.8463.

We test four kinds of algorithms: power method, Han’s UOA, ACSA-general and ACSA-
Hankel. For the purpose of obtaining the smallest Z-eigenvalue of the Hankel tensor, we
select 100 random initial points on the unit sphere. The entries of each initial point is first
chosen to have a Gaussian distribution, then we normalize it to a unit vector. The resulting
Z-eigenvalues and CPU times are reported in Table 1. All of the four methods find the
smallest Z-eigenvalue −8.846335. But the occurrences for each method finding the smallest
Z-eigenvalue are different. We say that the ACSA algorithm proposed in Sect. 3 could find
the extreme eigenvalues with a higher probability.

Form the viewpoint of totally computational times, ACSA-general, and ACSA-Hankel
are faster than the power method and Han’s UOA. When the Hankel structure of a fourth
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Fig. 1 The smallest Z- and H-eigenvalues of the parameterized fourth order four dimensional Hankel tensors

order five dimensional symmetric tensorA is exploited, it is unexpected that the newmethod
is about 30 times faster than the power method.

Example 2 We study a parameterized fourth order four dimensional Hankel tensorHε whose
generating vector has the following form

vε = (8 − ε, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 8 − ε)�.

If ε = 0,H0 is positive semidefinite but not positive definite [10]. When the parameter ε

is positive and trends to zero, the smallest Z- and H-eigenvalues are negative and trends to
zero. In this example, we will illustrate this phenomenon by a numerical approach.

Again, we compare the power method, Han’s UOA, ACSA-general, and ACSA-Hankel
for computing the smallest Z- and H-eigenvalues of the parameterized Hankel tensors in
Example 2. For the purpose of accuracy, we slightly modify the setting TolX:1.e-12,
TolFun:1.e-12 for Han’s UOA. In each case, thirty random initial points on a unit sphere
are selected to obtain the smallest Z- or H-eigenvalues. When the parameter ε decreases from
1 to 10−10, the smallest Z- and H-eigenvalues returned by these four algorithm are congruent.
We show this results in Fig. 1. When ε trends to zero, the smallest Z- and H-eigenvalues are
negative and going to zero too.

The detailed CPU times for these four algorithms computing the smallest Z- and H-
eigenvalues of the parameterized fourth order four dimensional Hankel tensors are drawn in
Table 2. Obviously, even without exploiting the Hankel structure, ACSA-general is two times
faster than the power method and Han’s UOA. Furthermore, when the fast computational
framework for the products of a Hankel tensor time vectors is explored, ACSA-Hankel saves
about 90% CPU times.

5.2 Large Scale Problems

When the Hankel structure of higher order tensors is explored, we could compute eigenvalues
and associated eigenvectors of large scale Hankel tensors.
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Table 2 CPU times (second) for computing Z- and H-eigenvalues of the parameterized Hankel tensors shown
in Example 2

Algorithms Power M. Han’s UOA ACSA-general ACSA-Hankel

Z-eigenvalues 41.980 46.629 17.878 1.498

H-eigenvalues 29.562 45.833 16.973 1.544

Total CPU times 71.542 92.462 34.851 3.042

Example 3 A Vandermonde tensor [43,54] is a special Hankel tensor. Let

α = n

n − 1
and β = 1 − n

n
.

Then, u1 = (1, α, α2, . . . , αn−1)� and u2 = (1, β, β2, . . . , βn−1)� are two Vandermonde
vectors. The following mth order n dimensional symmetric tensor

HV = u1 ⊗ u1 ⊗ · · · ⊗ u1︸ ︷︷ ︸
m times

+ u2 ⊗ u2 ⊗ · · · ⊗ u2︸ ︷︷ ︸
m times

is a Vandermonde tensor which satisfies the Hankel structure. Here ⊗ is the outer product.
Obviously, the generating vector of HV is v = (2, α + β, . . . , αm(n−1) + βm(n−1))�.

Proposition 1 Suppose the mth order n dimensional Hankel tensor HV is defined as in
Example 3. Then, when n is even, the largest Z-eigenvalue of HV is ‖u1‖m and its associated
eigenvector is u1‖u1‖ .

Proof Since αβ = −1 and n is even, u1 and u2 are orthogonal. We consider the optimization
problem

max HV xm = (u�
1 x)m + (u�

2 x)m,

s.t. x�x = 1.

Since ‖u1‖ > ‖u2‖, when x = u1‖u1‖ , the above optimization problem obtains its maximal
value ‖u1‖m . We write down its KKT condition, and it is easy to see that (‖u1‖m, u1‖u1‖ ) is a
Z-eigenpair of HV . ��

Now, we employ the proposed ACSA algorithm which works with the generating vector
of a Hankel tensor to compute the largest Z-eigenvalue of the Vandermonde tensor defined in
Example 3.We consider different ordersm = 4, 6, 8 and various dimension n = 10, . . . , 106.
For each case, we choose ten random initial points, which has a Gaussian distribution on a
unit sphere. Table 3 shows the computed largest Z-eigenvalues and the associated CPU
times. For all case, the resulting largest Z-eigenvalue is agree with Proposition 1. When the
dimension of the tensor is one million, the computational times for fourth order and sixth
order Vandermonde tensors are about 35 and 55 minutes respectively.

Example 4 An mth order n dimensional Hilbert tensor [49] is defined as

HH = 1

i1 + i2 + · · · + im − m + 1
i j = 1, 2, . . . , n, j = 1, 2, . . . , m.

Its generating vector is v = (1, 1
2 ,

1
3 , . . . ,

1
m(n−1)+1 )

�. When the order m is even, the Hilbert
tensors are positive definite. Its largest Z-eigenvalue and largest H-eigenvalues are bounded
by n

m
2 sin π

n and nm−1 sin π
n respectively.
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Table 3 The largest Z-eigenvalues of Vandermonde tensor in Example 3

m n Largest Z-eigenvalues Occurrences CPU times (sec.)

4 10 9.487902e02 8 0.062

4 100 1.013475e05 8 0.140

4 1,000 1.019800e07 7 0.889

4 10,000 1.020431e09 8 9.048

4 100,000 1.020494e11 10 150.245

4 1,000,000 1.020500e13 5 2066.592

6 10 2.922505e04 5 0.140

6 100 3.226409e07 5 0.234

6 1,000 3.256659e10 7 1.919

6 10,000 3.259683e13 7 17.753

6 100,000 3.259985e16 9 211.537

6 1,000,000 3.260016e19 4 3190.439

8 10 9.002029e05 5 0.359

8 100 1.027131e10 5 0.437

8 1,000 1.039992e14 7 2.917

8 10,000 1.041279e18 7 30.561

8 100,000 1.041408e22 8 1058.248
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Fig. 2 The largest Z-eigenvalue and its upper bound for Hilbert tensors

We illustrate by numerical experiments to show whether these bounds are tight? First, for
the dimension varying from ten to one million, we calculate the theoretical upper bounds
of the largest Z-eigenvalues of corresponding fourth order and sixth order Hilbert tensors.
Then, for each Hilbert tensor, we choose ten initial points and employ the ACSA algorithm
equipped with a fast computational framework for products of a Hankel tensor and vectors
to compute the largest Z-eigenvalues. These results are shown in the left sub-figure of Fig. 2.
The right sub-figure of Fig. 2 shows the corresponding CPU times for ACSA-Hankel. We
can see that the theoretical upper bounds for the largest Z-eigenvalues of the Hilbert tensors
are almost tight up to a constant multiple.

Similar results for the largest H-eigenvalues and their theoretical upper bounds of Hilbert
tensors are illustrated in Fig. 3.
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Fig. 3 The computed largest H-eigenvalue and its upper bound for Hilbert tensors

5.3 An Application in Exponential Data Fitting

Exponential data fitting has important applications in signal processing and nuclear magnetic
resonance [51,52]. A Hankel tensor based method was first proposed by Papy et al. [40] to
process exponential data fitting.Whereafter, several approaches based onHankel-type tensors
are established and studied [6,18,41]. In this subsection, we consider a single-channel data
with two peaks [40,51]

z(k) = exp[(−0.01 + 2πι0.2)k] + exp[(−0.02 + 2πι0.22)k], k = 0, 1, . . . , N ,

where ι = √−1 is an imaginary unit. An original signal z = (z(k)) is corrupted by complex
Gaussian white noise e ∈ C

N+1. The signal-noise ratio (SNR) is defined as

SNR = 10 log10

(‖z‖2
‖e‖2

)
.

Hence, the observed signal y = (y(k)) is

y(k) = z(k) + ek−1, k = 0, 1, . . . , N .

In this way, we could obtain an mth order n dimensional Hankel tensorHE whose generating
vector is vE = |y| if N = m(n − 1).

Now, we study the largest H- and Z-eigenvalues of HE versus SNR. For instance, we
consider fourth order 1000 dimensional Hankel tensors with SNR = 10, 15, 20, 25, 30. In
eachSNR, onehundrednoise-corruptedHankel tensors are generated. For eachHankel tensor,
we start ACSA from ten random initial points chosen uniformly on a unit sphere. The largest
one of resulting ten eigenvalues is regarded as the largest eigenvalue of this Hankel tensor. In
Fig. 4, we illustrated themean value and the standard error of the largest H- and Z-eigenvalues
of one hundred noise-corrupted Hankel tensors for each SNR. A red bar stands for a mean
value and a blue segment is two standard errors. Obviously, as SNR decreases, mean values
and standard errors of the largest H- and Z-eigenvalues of noise-corrupted Hankel tensors
increase.
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Fig. 4 The largest H- and Z-eigenvalues of Hankel tensors arising from exponential data fitting

5.4 Initial Step Sizes

In the process of the curvilinear search, how to determine a suitable step size is a critical
problem. Barzilai and Borwein [4] provided two candidates

ᾱBB−I
k+1 := �x�

k �gk

‖�gk‖2 and ᾱBB−II
k+1 := ‖�xk‖2

�x�
k �gk

,

which satisfy the quasi-Newton condition approximately. However, when the optimization
problem is nonconvex, the inner product �x�

k �gk maybe zero or negative, which could
destroy the curvilinear search. Dai [15] proposed to use their geometric mean.

Next, we compare four sorts of strategies for the initial step size of curvilinear search:
(1) Dai’s step size (12), (2)–(3) absolute values of ᾱBB−I

k+1 and ᾱBB−II
k+1 , (4) a fixed step size

ᾱOne
k+1 = 1. Using these strategies, we compute the largest Z-eigenvalue of a fourth order

10, 000 dimensional Hilbert tensor. All of the four approaches start from the same ten initial
points and reach the sameZ-eigenvector. Figure 5 illustrates counting results of the curvilinear
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Fig. 5 Comparisons of four sorts of step size strategies
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search parameter �. Obviously, the fixed step size one performs poorly since � is always great
than or equal to 2. By exploiting the quasi-Newton condition approximately, BB-I and BB-II
perform satisfactory, where BB-I seems better. The performance of Dai’s step size is in the
medium place of BB-I and BB-II. It only requires � = 0.78 times curvilinear search per
iteration on average. We employ Dai’s step size since it is positive and hence safe in theory.

6 Conclusion

We proposed an inexact steepest descent method processing on a unit sphere for generalized
eigenvalues and associated eigenvectors of Hankel tensors. Owing to the fast computation
framework for the products of a Hankel tensor and vectors, the new algorithm is fast and
efficient as shown by some preliminary numerical experiments. Since the Hankel structure
is well-exploited, the new method could deal with some large scale Hankel tensors, whose
dimension is up to one million in a desktop computer.
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