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Abstract In this paper, we consider the tensor eigenvalue complementarity problem
which is closely related to the optimality conditions for polynomial optimization, as
well as a class of differential inclusions with nonconvex processes. By introducing
an NCP-function, we reformulate the tensor eigenvalue complementarity problem as
a system of nonlinear equations. We show that this function is strongly semismooth
but not differentiable, in which case the classical smooth methods cannot apply. Fur-
thermore, we propose a damped semismooth Newton method for tensor eigenvalue
complementarity problem. A new procedure to evaluate an element of the generalized
Jacobian is given, which turns out to be an element of the B-subdifferential under
mild assumptions. As a result, the convergence of the damped semismooth Newton
method is guaranteed by existing results. The numerical experiments also show that
our method is efficient and promising.
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1 Introduction

Complementarity problems have developed into a very fruitful discipline in the field of
mathematical programming, which were originally studied in the standard optimality
conditions for linear and smooth nonlinear optimization. The distinguishing feature
of a complementarity problem is a set of complementarity conditions. Each of these
conditions requires that the product of two or more quantities should be zero. They
appear prominently in the study of equilibria problems and arise naturally in numerous
applications from economics, engineering and the sciences [14].

As a special type of complementarity problems, the matrix eigenvalue complemen-
tarity problem first appeared in the stability analysis of finite dimensional mechanical
systemswith frictional contact [10],which has beenwell studied during the last decade.
Mathematically speaking, given a matrix A ∈ R

n×n and a positive definite matrix
B ∈ R

n×n , the matrix eigenvalue complementarity problem [19,34] consists of find-
ing a scalar λ > 0 and a vector x ∈ R

n\{0} such that

x ≥ 0, (λB − A)x ≥ 0,
〈
x, (λB − A)x

〉 = 0,

where 〈·, ·〉 denotes the inner product of two vectors. For more details about matrix
eigenvalue complementarity problems and their applications, the readers are referred
to [1,11,12,18,20].

Meanwhile, as a natural extension of the concept of matrices, a real mth order n-
dimensional tensorA = (ai1...im ) is a multidimensional array with each entry ai1...im ∈
R for any i1, . . . , im ∈ [n], where [n] = {1, 2, . . . , n}. Denote the set of all real mth
order n-dimensional tensors by Tm,n . For any vector x ∈ R

n , let Axm−1 be a vector
in Rn whose i th component is defined by

(Axm−1)i =
n∑

i2,...,im=1

aii2...im xi2 . . . xim .

LetAxm be the scalar denoted byAxm = x�Axm−1, which is exactly a homogeneous
polynomial ofxwith degreem.We say a tensorA is symmetric if its entries are invariant
under permutation. Denote the set of all real symmetric mth order n-dimensional
tensors by Sm,n . A tensor A ∈ Sm,n is called positive definite if Axm > 0 for all
x �= 0. Clearly, when m is odd, there are no positive definite tensors.

It is possible that the ideas of eigenvalues of tensors had been raised earlier. How-
ever, it was the independent work of Lim [24] and Qi [30] that initiated the rapid
developments of the spectral theory of tensors. Moreover, these definitions can all
be unified under generalized tensor eigenpair framework as follows, introduced by
Chang, Pearson and Zhang [4]. Let A,B ∈ Tm,n . Assume further that m is even and
B is positive definite. We say (λ, x) ∈ C × {Cn\{0}} is a generalized eigenpair if

Axm−1 = λBxm−1.
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Different choices ofB yield different versions of the tensor eigenvalue problem [4,21].
After that, the study of tensors and the spectra of tensors with their various applications
has attracted extensive attention and interest.

In this paper, we consider the tensor eigenvalue complementarity problem (TEiCP),
which consists of finding a scalar λ > 0 and a vector x ∈ R

n\{0} such that

x ≥ 0, (λB − A)xm−1 ≥ 0,
〈
x, (λB − A)xm−1〉 = 0, (1)

where A ∈ Tm,n and B ∈ Sm,n is positive definite. This problem is not only a natural
generalization of the classical eigenvalue complementarity problem for matrices, but
also closely related to the optimality conditions for polynomial optimization [36], a
kind of nonlinear differential dynamical system [8], as well as a class of differential
inclusions with nonconvex processes [22]. In particular, without the constraint λ > 0,
any solution λ of (1) is called a Pareto H-eigenvalue or a Pareto Z-eigenvalue by Song
and Qi [36] when tensor B has different special forms, respectively. The properties
of Pareto eigenvalues and their relationship with polynomial optimization are also
studied in [36]. The general properties of TEiCP, including the solution existence and
uniqueness, are systematically investigated by Chen et al. [8]. Note that the eigenvalue
complementarity problem under a given index set is also considered in [8]. When the
nonnegative cones in (1) are replaced by a closed convex cone and its dual cone, TEiCP
is called the cone eigenvalue complementarity problem for high-order tensors by Ling
et al. [22]. Moreover, as a natural extension of quadratic eigenvalue complementar-
ity problem for matrices, Ling et al. [23] also consider the high-degree eigenvalue
complementarity problem for tensors. Some properties of Pareto eigenvalues are fur-
ther studied in [39]. Another kind of complementarity problems related to tensors is
considered in [5,16,25,35].

On the other hand, some algorithms for computing the solutions of TEiCP have
been proposed, such as shifted projected power method [8], scaling-and-projection
algorithm [22] and alternating direction method of multipliers [23]. Notice that all
these methods are first order algorithms that are based on gradient information. In
this paper, we present a semismooth Newton method for computing the solutions of
TEiCP. It turns out that TEiCP is a parameterized nonlinear complementarity problem.
By introducing an NCP-function to get rid of the nonnegative constraints in (1), we
reformulate it as a system of nonsmooth operator equations. The main difficulty is
that this function is not differentiable. As a result, the classical Newton method cannot
apply. Fortunately, this function is strongly semismooth and the semismooth Newton
method has been well studied since the work of Qi and Sun [32]. In order to implement
the semismooth Newton method, we also propose a new procedure to evaluate an
element of the generalized Jacobian, which turns out to be an element of the B-
subdifferential under some mild assumptions. The numerical results indicate that our
method is efficient to compute the solutions of TEiCP.

The rest of this paper is organized as follows. In Sect. 2, we recall some basic
definitions and results in nonsmooth analysis and nonlinear complementarity problem.
In Sect. 3, we reformulate TEiCP as a system of nonlinear equations. In Sect. 4, we
present a damped semismoothNewtonmethod for TEiCP and its convergence analysis.
Some numerical results are reported in Sect. 5. In Sect. 6, we give two final remarks.
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Throughout this paper, we assume that m is even and B ∈ Sm,n is positive definite.
We use small letters x, y, . . . , for scalars, small bold letters x, y, . . . , for vectors,
capital letters A, B, . . . , for matrices, calligraphic letters A,B, . . . , for tensors. All
the tensors discussed in this paper are real.

2 Preliminaries

In this section, we present some basic definitions and properties in nonsmooth analysis
and nonlinear complementarity problem, which will be used in the sequel.

Suppose that F : U ⊆ R
n1 → R

n2 is a locally Lipschitz function, where U is
nonempty and open. By Rademacher’s Theorem, F is differentiable almost every-
where. Let DF ⊆ R

n1 denote the set of points at which F is differentiable. For any
x ∈ DF , we write J F(x) for the usual n2 × n1 Jacobian matrix of partial derivatives.
The B-subdifferential of F at x ∈ U is the set defined by

∂B F(x) :=
{
V ∈ R

n2×n1 : ∃{xk} ⊆ DF with xk → x, J F(xk) → V
}

.

The Clark’s generalized Jacobian of F at x is the set defined by

∂F(x) = co(∂B F(x)),

where “co” denotes the convex hull. In the case of n2 = 1, ∂F(x) is called the gen-
eralized gradient. Some fundamental properties about generalized Jacobian are given
below. For more details, one can refer to [9].

Proposition 1 Suppose that the function F : U ⊆ R
n1 → R

n2 is locally Lipschitz,
where U is nonempty and open. Then for any x ∈ U, we have

(a) ∂F(x) is a nonempty convex compact subset of Rn2×n1;
(b) ∂F(x) = ∂B F(x) = {J F(x)} if F is continuously differentiable at x;
(c) ∂F(x) ⊆ ∂ f 1(x) × ∂ f 2(x) × · · · × ∂ f m(x), where F(x) = [ f 1(x), f 2(x), . . . ,

f m(x)] and the latter denotes the set of all matrices whose i th row belongs to
∂ f i (x) for each i .

Let U ⊆ R
n1 be nonempty and open. The function F : U → R

n2 is semisoomth
[17,32] at x ∈ R

n1 , if it is locally Lipschitz at x and if

lim
V∈∂F(x+t d̃)

d̃→d, t↓0

V d̃

exists for all d ∈ R
n . If F is semismooth at all x ∈ U , we call F semismooth on

U . The function F is called strongly semismooth [33] if it is semismooth and for any
x ∈ U and V ∈ ∂F(x + d),

Vd − F ′(x;d) = O(‖d‖2), d → 0,
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where F ′(x;d) denotes the directional derivative [3] of F at x in direction d, i.e.,

F ′(x;d) = lim
t↓0

F(x + td) − F(x)
t

.

It is worth mentioning [32] that if the function F is semismooth, the directional deriv-
ative F ′(x;d) exists for all d ∈ R

n and

F ′(x;d) = lim
V∈∂F(x+t d̃)

d̃→d, t↓0

V d̃.

Suppose that F : R
n → R

n is directional differentiable at x; we say that F is
BD-regular [29] at x if for any d ∈ R

n\{0},

F ′(x;d) �= 0.

We say that F is strongly BD-regular at x if all V ∈ ∂B F(x) are nonsingular. These
concepts can be very important for the convergence analysis of the semismoothNewton
method.

Below, we introduce the classical nonlinear complementarity problem. It will be
shown in the next section that the tensor eigenvalue complementarity problem is a
special kind of parameterized nonlinear complementarity problem.

Definition 1 Given a mapping F : Rn+ → R
n , the nonlinear complementarity prob-

lem, denoted by NCP(F), is to find a vector x ∈ R
n satisfying

x ≥ 0, F(x) ≥ 0, 〈x, F(x)〉 = 0.

Many solution methods developed for NCP or related problems are based on
reformulating them as a system of equations using so-called NCP-functions. Here,
a function φ : R2 → R is called an NCP-function if

φ(a, b) = 0 ⇔ ab = 0, a ≥ 0, b ≥ 0.

Given an NCP-function φ, let us define

�(x) = [
φ(xi , Fi (x))

]n
i=1. (2)

By definition, x ∈ R
n is a solution of NCP(F) if and only if it solves the system of

equations �(x) = 0.
Here, we present some NCP-functions which are widely used in nonlinear com-

plementarity problems. For more details about NCP-functions and their smoothing
approximations, one can refer to [31,37,40,41] and references therein.

• The min function [38]

φmin(a, b) := a − (a − b)+.
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• The Fischer-Burmeister function [15]

φFB(a, b) := (a + b) −
√
a2 + b2.

• The penalized Fischer-Burmeister function [6]

φτ (a, b) := τφFB(a, b) + (1 − τ)a+b+,

where τ ∈ (0, 1).

Here, x+ = max{x, 0} for x ∈ R. It has been shown that all these NCP-functions are
globally Lipschitz continuous, directionally differentiable, and strongly semismooth.
Their generalized gradients are given as follows.

Proposition 2 (Proposition 1 of [6]) Let φmin(a, b), φFB(a, b) and φτ (a, b) be
defined as above. Then

(a) The generalized gradient ∂φmin(a, b) is equal to the set of all (va, vb) such that

(va, vb) =

⎧
⎪⎨

⎪⎩

(1, 0) if a < b,

(1 − v, v) if a = b,

(0, 1) if a > b,

where v is any scalar in the interval [0, 1].
(b) The generalized gradient ∂φFB(a, b) is equal to the set of all (va, vb) such that

(va, vb) =
{(

1 − a
‖(a,b)‖ , 1 − b

‖(a,b)‖
)

if (a, b) �= (0, 0),

(1 − σ, 1 − η) if (a, b) = (0, 0),

where (σ, η) is any vector satisfying ‖(σ, η)‖ ≤ 1.
(c) For any τ ∈ (0, 1), the generalized gradient ∂φτ (a, b) is equal to the set of all

(va, vb) such that

(va, vb)

=
{

τ
(
1− a

‖(a,b)‖ , 1− b
‖(a,b)‖

) + (1−τ)(b+∂a+, a+∂b+) if (a, b) �= (0, 0),

τ (1 − σ, 1 − η) if (a, b) = (0, 0),

where (σ, η) is any vector satisfying ‖(σ, η)‖ ≤ 1 and

∂x+ =

⎧
⎪⎨

⎪⎩

0 if x < 0,

[0, 1] if x = 0,

1 if x > 0.
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3 Reformulation

Suppose that m is even. As mentioned before, the tensor eigenvalue complementarity
problem has the form of

(TEiCP): Find λ > 0, x �= 0 such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w = (λB − A)xm−1

w ≥ 0

x ≥ 0

w�x = 0,

(3)

where A ∈ Tm,n and B ∈ Sm,n is positive definite. Note that any solution with w = 0
is a generalized tensor eigenpair of (A,B). Denote the solution set of (1) by σ(A,B),
i.e.,

σ(A,B) = {
(λ, x) ∈ R++ × R

n\{0} : 0 ≤ x ⊥ (λB − A)xm−1 ≥ 0
}
.

Notice that if (λ, x) ∈ σ(A,B), then (λ, sx) ∈ σ(A,B) for any s > 0. Without loss
of generality, we only consider solutions satisfying ‖x‖2 = 1. On the other hand, it is
clear that

σ(A,B) = σ(Ã,B),

where Ã ∈ Tm,n is the unique semi-symmetric tensor [27] such thatAxm−1 = Ãxm−1

for all x ∈ R
n . Hence, we always assume that A ∈ Tm,n is semi-symmetric.

By introducing a new variable t ∈ R, we denote

F(x, t) := (t2B − A)xm−1, ∀ x ∈ R
n, t ∈ R. (4)

As a result, TEiCP can be regarded as a parameterized nonlinear complementarity
problem, i.e.,

x ≥ 0, F(x, t) ≥ 0, x�F(x, t) = 0, (5)

with the constraint x�x = 1. It follows that the TEiCP can be represented compactly
by the system of nonlinear equations

H(z) = 0, (6)

where z = (x, t) ∈ R
n+1, t �= 0, and H : Rn+1 → R

n+1 is defined by

H(z) =
(

�(z)

x�x − 1

)

, (7)
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where the mapping � : Rn+1 → R
n is given by

�(z) = [
φ(xi , Fi (x, t))

]n
i=1, (8)

and φ(a, b) is an NCP-function. Moreover, a natural metric function of H(z) is given
by

	(z) = 1

2
H(z)�H(z). (9)

By using the techniques for nonlinear complementarity problems, we can see that
finding a solution of TEiCP is equivalent to solve the corresponding system of non-
linear equations.

Proposition 3 Let H(z) be defined by (7). If (λ, x) is a solution of (3) with ‖x‖ = 1,
then H(z) = 0 with z = (x,±√

λ) ∈ R
n+1. On the other hand, if H(z) = 0 with

z = (x, t) ∈ R
n+1 and t �= 0, then (t2, x) is a solution of (3) with ‖x‖ = 1.

Let Hmin(z), HFB(z) and Hτ (z) be the functions defined by (7), corresponding
to the NCP-functions φmin, φFB and φτ , respectively. In what follows, we will show
that these functions are all strongly semismooth, which can be very important for
nonsmooth Newton methods.

Lemma 1 The functions�min(z),�FB(z) and�τ (z) are strongly semismooth, where
�min(z),�FB(z) and �τ (z) are defined by (8), corresponding to the NCP-functions
φmin, φFB and φτ , respectively.

Proof Notice that for any z = (x, t) ∈ R
n+1, the function F(z) = (t2B − A)xm−1 is

continuously differentiable and its Jacobian J F(z) is locally Lipschitz continuous. It
follows fromTheorem 1 of [37] that�FB(z) and�λ(z) are strongly semismooth. Sim-
ilarly, �min(z) is strongly semismooth since the composition of strongly semismooth
functions is again strongly semismooth [26].

Theorem 1 The functions Hmin(z), HFB(z) and Hτ (z) are strongly semismooth.
Moreover, for any z ∈ R

n+1, we have

∂H(z) ⊆
{(

V

2x� 0

)

∈ R
(n+1)×(n+1) : V ∈ ∂�(z)

}

. (10)

Proof It is clear that Hn+1(z) = x�x − 1 is continuously differentiable. By Lemma
1, the functions �min(z),�FB(z) and �τ (z) are strongly semismooth. It follows that
Hmin(z), HFB(z) and Hτ (z) are strongly semismooth since all their components are
strongly semismooth. Moreover, by Proposition 2.6.2 of [9], (10) holds immediately.

��
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4 Semismooth Newton method

In order to establish a semismooth Newton method for TEiCP, we need to obtain an
element of ∂H(z). According to the Jacobian chain rule (see Theorem 2.6.6 of [9]),
we have the following result.

Proposition 4 Suppose that the mapping F : Rn1+n2 → R
n1 is continuously differ-

entiable and the function φ : R2 → R is locally Lipschitz. Let � : Rn1+n2 → R
n1 be

the mapping such that

�(z) = [φ(xi , Fi (z))]
n1
i=1 , ∀ z = (x, y) ∈ R

n1+n2 .

Then for any z ∈ R
n1+n2 , we have

∂�(z) ⊆ (
Da(z), 0n1×n2

) + Db(z)J F(z),

where Da(z) = diag{ai (z)} and Db(z) = diag{bi (z)} are diagonal matrices in
R
n1×n1 with entries (ai (z), bi (z)) ∈ ∂φ(xi , Fi (z)), where ∂φ(xi , Fi (z)) denotes the

set ∂φ(a, b) with (a, b) being replaced by (xi , Fi (z)).

Let F(z) be defined in (4) and φ(a, b) be one of the NCP-functions φFB and φτ .
Since A ∈ Tm,n is semi-symmetric, by simple computation, the Jacobian of F at z is
given by

J F(z) =
[
(m − 1)(t2B − A)xm−2 2tBxm−1

]
∈ R

n×(n+1).

Here, for a tensor T = (ti1...im ) ∈ Tm,n and a vector x ∈ R
n , let T xm−2 be a matrix in

R
n×n whose (i, j)-th component is defined by

(T xm−2)i j =
n∑

i3,...,im=1

ti j i3...im xi3 . . . xim .

By Propositions 2 and 4, we can obtain the overestimation of ∂�FB(z) and ∂�τ (z),
respectively. In the following, we present a procedure to obtain an element of ∂�τ (z)
for any z ∈ R

n+1, where τ ∈ (0, 1]. Note that ∂�1(z) = ∂�FB(z).

Algorithm 1 A procedure to generate an element V ∈ ∂�τ (z)
Step 0. Given τ ∈ (0, 1], z = (x, t) ∈ R

n+1 and let Vi be the i th row of a matrix
V ∈ R

n×(n+1).
Step 1. Set S1 = {i ∈ [n] : xi = 0, Fi (x, t) = 0}, S2 = {i ∈ [n] : xi = 0, Fi (x, t) >

0}, S3 = {i ∈ [n] : xi > 0, Fi (x, t) = 0} and S4 = {i ∈ [n] : xi > 0, Fi (x, t) > 0}.
Step 2. Let c ∈ R

n such that ci = 1 for i ∈ S1 ∪ S2 ∪ S3 and 0 otherwise.
Step 3. For i ∈ S1, set

Vi = τ

(
1 + ci

‖(ci ,∇xFi (z)�c)‖
)

(e�
i , 0) + τ

(
1 + ∇xFi (z)�c

‖(ci ,∇xFi (z)�c)‖
)

∇Fi (z)�.
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Step 4. For i ∈ S3, set

Vi =
{(

τ + (1 − τ)xi
)∇Fi (z)� if ∇xFi (z)�c < 0,

τ∇Fi (z)� otherwise.

Step 5. For i ∈ S4, set

Vi =
[
τ

(
1 − xi

‖(xi , Fi (z))‖
)

+ (1 − τ)Fi (z)
]

(e�
i , 0)

+
[
τ

(
1 − Fi (z)

‖(xi , Fi (z))‖
)

+ (1 − τ)xi

]
∇Fi (z)�.

Step 6. For i /∈ S1 ∪ S3 ∪ S4, set

Vi = τ

(
1 − xi

‖(xi , Fi (z))‖
)

(e�
i , 0) + τ

(
1 − Fi (z)

‖(xi , Fi (z))‖
)

∇Fi (z)�.

For τ ∈ (0, 1), based on the overestimate of ∂�τ (z), we can see that under some
assumptions, the matrix

G =
(

V

2x� 0

)

is an element in the B-subdifferential of Hτ at z, where V ∈ R
n×(n+1) is the matrix

generated by Algorithm 1 with τ ∈ (0, 1).

Theorem 2 Let z = (x, t) ∈ R
n+1 be given and let V ∈ R

n×(n+1) be the matrix
generated by Algorithm 1 with τ ∈ (0, 1). Suppose that∇xFi (z)�c �= 0 for all i ∈ S3.

Then the matrix G =
(

V

2x� 0

)
is an element of ∂BHτ (z).

Proof Notice that Hτ (z) is differentiable everywhere except on the set


 := {
z = (x, t) ∈ R

n+1 : xi ≥ 0, Fi (z) ≥ 0, xi Fi (z) = 0 for some i ∈ [n]}.

We shall generate a sequence {zk}∞k=1 ⊆ R
n+1\
 such that J H(zk) tends to thematrix

G. Then the conclusion follows immediately by the definition of B-subdifferential.
The conclusion is trivial if z /∈ 
, i.e., S1 ∪ S2 ∪ S3 = ∅. In the following, we

suppose that z ∈ 
, i.e., S1 ∪ S2 ∪ S3 �= ∅. Let zk = z − 1
k (c

�, 0), where c ∈ R
n is

the vector given in Step 2. It is clear that zki < 0 for i ∈ S1 ∪ S2. For i ∈ S1 ∪ S3, by
Taylor expansion, we have

Fi (zk) = Fi (z) + ∇Fi (ζ
k)�(zk − z) = −1

k
∇xFi (ζ

k)�c, (11)
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where ζ k → z as k → ∞. Since ∇xFi (z)�c �= 0 for all i ∈ S3, by continuity, we
have that for all i ∈ S3, Fi (zk) �= 0 when k is large enough. Hence, there exists N > 0
such that Hτ (zk) is differentiable for all k > N .

For i ∈ [n + 1], let J H(zk)i be the i th row of J H(zk). If i /∈ S1 ∪ S2 ∪ S3 or
i = n + 1, by continuity, it is obvious that J H(zk)i tends to the i th row of G. For
i ∈ S1 ∪ S2, we have

J H(zk)i = τ

(

1 − xki
‖(xki , Fi (zk))‖

)

(e�
i , 0) + τ

(

1 − Fi (zk)

‖(xki , Fi (zk))‖

)

∇Fi (zk)�.

For i ∈ S3, it is not difficult to show that

J H(zk)i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

τ

(

1 − xki
‖(xki , Fi (zk))‖

)

+ (1 − τ)Fi (zk)

]

(e�
i , 0)

+
[

τ

(

1 − Fi (zk)

‖(xki , Fi (zk))‖

)

+ (1 − τ)xki

]

∇Fi (zk)�
if ∇xFi (zk)�c < 0,

τ

(

1 − xki
‖(xki , Fi (zk))‖

)

(e�
i , 0)

+ τ

(

1 − Fi (zk)

‖(xki , Fi (zk))‖

)

∇Fi (zk)�
if ∇xFi (zk)�c > 0.

Note that for i ∈ S1, by substituting (11), we have

lim
k→∞

xki
‖(xki , Fi (zk))‖

= lim
k→∞

−1/k
√

(1/k)2 + Fi (zk)2
= −1

√
1 + (∇xFi (z)�c)2

.

Similarly,

lim
k→∞

Fi (zk)

‖(xki , Fi (zk))‖
= −∇xFi (z)�c√

1 + (∇xFi (z)�c)2
.

It follows that for i ∈ S1 ∪ S2 ∪ S3, J H(zk)i tends to the i th row of the matrix G. ��
We also mention that HFB(z) is differentiable everywhere except on the set

{z = (x, t) ∈ R
n+1 : xi = 0, Fi (z) = 0 for some i ∈ [n]}.

Hence, HFB(z)i is differentiable for all i ∈ S3. By a proof similar to that of Theorem

2, we can see that the matrix G =
(

V

2x� 0

)
is exactly an element of ∂BHFB(z)

without any assumption, where V ∈ R
n×(n+1) is the matrix generated by Algorithm

1 with τ = 1.
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Theorem 3 Let z = (x, t) ∈ R
n+1 be given and let V ∈ R

n×(n+1) be the matrix

generated by Algorithm 1 with τ = 1. Then the matrix G =
(

V

2x� 0

)
is an element

of ∂BHFB(z).

Now we present some properties of the metric functions 	FB(z) and 	τ (z).

Theorem 4 The metric functions 	FB(z) and 	τ (z) defined in (9) are continuously
differentiable with ∇	(z) = G�H(z) for any G ∈ ∂H(z).

Proof By known rules of the calculus of generalized gradients (see [9], Theorem
2.6.6), it holds that ∂	(z) = H(z)�∂H(z). Since the zero components of H(z)
cancel the “multivalued rows” of ∂H(z), it is easy to check that H(z)�∂H(z) is single
valued everywhere. By the corollary to Theorem 2.2.4 in [9], we have that 	(z) is
continuously differentiable. ��

Note that the metric function 	min(z) is not continuously differentiable, which
makes the generalized Newton direction not necessarily a descent direction. Now we
present a damped Newton method for tensor eigenvalue complementarity problem.
Here, we only take the NCP-functions φFB and φτ .

Algorithm 2 Damped semismooth Newton method for TEiCP
Step 0. Given ε > 0, ρ > 0, p > 2, β ∈ (0, 1

2 ) and choose z
0 = (x0, t0) ∈ R

n+1. Set
k = 0.
Step 1. If ‖H(zk)‖ ≤ ε, stop. Otherwise, go to Step 2.
Step 2. Compute

Gk =
(

Vk

2(xk)� 0

)

,

where Vk ∈ R
n×(n+1) is the element of ∂�(zk) generated by Algorithm 1. Find the

solution dk of the system

Gkd = −H(zk). (12)

If Gk in (12) is ill-conditioned or if the condition

∇	(zk)�dk ≤ −ρ‖dk‖p

is not satisfied, set dk = −∇	(zk).
Step 3. Find the smallest ik = 0, 1, . . . such that αk = 2−ik and

	(zk + αkdk) ≤ 	(zk) + βαk∇	(zk)�dk .

Set zk+1 = zk + αkdk .
Step 4. Set k = k + 1 and go back to Step 1.
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The global convergence of Algorithm 2 is guaranteed by the following theorem,
whose proof can be found in the papers [13,28,29].

Theorem 5 Suppose that the solution set σ(A,B) is nonempty. Let {zk} ⊆ R
n+1 be

generated by Algorithm 2. Assume that H(zk) �= 0 for all k. Then the conclusions (a)
and (b) hold:

(a) ‖H(zk+1)‖ ≤ ‖H(zk)‖ ;
(b) Each accumulation point z∗ of the sequence {zk} is a stationary point of 	.

Furthermore, if H(z) is strongly BD-regular at z∗, then z∗ is a zero of H(z) if and
only if {zk} converges to z∗ quadratically and αk eventually becomes 1. On the
other hand, z∗ is not a zero of H(z) if and only if {zk} diverges or limk→∞ αk = 0.

Here, we make several remarks. First, if H(zk) = 0 for some k, Algorithm 2
terminates right then with a zero solution of H(z). Second, by Theorem 1, H(z) is
strongly semismooth. It follows fromLemma2.3 of [29] that the directional differential
H ′(·, ·) is semicontinuous of degree 2 at z∗. Then the convergence is quadratic if H(z)
is strongly BD-regular at z∗. Third, when H(z) is not strongly BD-regular at z∗, i.e.,
there exists a singular matrix V ∈ ∂BH(z∗), the local convergence is also established
by using adaptive constructs of outer inverses [7].

5 Numerical results

In this section, we present the numerical performance of the damped semismooth
Newton method for the tensor eigenvalue complementarity problem. All codes were
written by using Matlab Version R2012b and the Tensor Toolbox Version 2.5 [2].
The numerical experiments were done on a laptop with an Intel Core i5-2430M CPU
(2.4 GHz) and RAM of 5.58 GB.

In the implementation of Algorithm 2, we set the parameters ε = 10−6, ρ =
10−10, p = 2.1 and β = 10−4. We choose the penalized Fischer-Burmeister function
with τ = 0.95. Numerically, we say that the matrix Gk in (12) is ill-conditioned if
κ(Gk) ≥ 1010, where κ(M) = σmax (M)

σmin(M)
denotes the condition number of the matrix

M . We let Algorithm 2 run until any of the following situations occur:

(a) k = 1000 Failure (converge to a stationary point but not a solution),
(b) ‖H(z)‖ ≤ ε Success (a solution has been detected).

For simplicity, the positive definite tensor B ∈ Sm,n is chosen as the identity tensor
[21], i.e., Bxm−1 = x for all x�x = 1 where m is even.

Our first numerical experiment concerns the symmetric tensor A ∈ S6,4 described
in Table 1 of [8]. We compare the numerical performance of the damped semismooth
Newton method and the shifted projected power method [8]. It has been shown that
this problem is solvable, i.e., the solution set is nonempty, since A is symmetric with
a111111 > 0 [8]. In order to get all possible solutions,we take 1000 random initial points
for both methods. We adopt the following strategy: one generates a random vector
x0 ∈ R

4 with each element uniformly distributed on the open interval (0, 1), a scalar
t0 ∈ R drawn from the standard normal distribution N (0, 1), and then normalizes x0

such that ‖x0‖ = 1. Note that for the shifted projected power method, the initial point
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Table 1 All possible solutions detected by the shifted projected power method for the tensor A given in
Table 1 of [8]

No. λ∗ x∗ w∗ Time1(s) Ite. Time2(s)

73 0.5081 (0.8158, 0, 0, 0.5784)� (0, 0.2647, 0.2295, 0)� 0.011182 9.22 0.074547

11 0.6136 (0, 0, 0, 1)� (0.3403, 0.1706, 0.0559, 0)� 0.009655 2.36 0.021255

196 0.8181 (0, 0.7804, 0.6253, 0)� (0.0735, 0, 0, 0.0243)� 0.012117 9.08 0.078052

402 0.8568 (0, 0.8251, 0.5146, 0.2333)� (0.3184, 0, 0, 0)� 0.011359 40.4 0.338430

318 1.1666 (0.5781, 0, 0.816, 0)� (0, 0.3347, 0, 0.4207)� 0.013218 48.6 0.409752

Table 2 All possible solutions detected by the damped semismooth Newton method for the tensorA given
in Table 1 of [8]

No. λ∗ x∗ w∗ Ite. Time(s)

161 0.2655 (0.2922, 0.4238, 0.8573, 0)� (0, 0, 0, 0.3808)� 31.06 0.782480

44 0.2985 (0.9738, 0, 0, 0.2274)� (0, 0.261, 0.1069, 0)� 38.14 1.058434

174 0.5081 (0.8158, 0, 0, 0.5784)� (0, 0.2647, 0.2295, 0)� 7.11 0.139725

64 0.6136 (0, 0, 0, 1)� (0.3403, 0.1706, 0.0559, 0)� 7.05 0.126869

24 0.8161 (0, 0.7884, 0.6146, 0.0274)� (0.1047, 0, 0, 0)� 6.83 0.119179

49 0.8181 (0, 0.7804, 0.6253, 0)� (0.0735, 0, 0, 0.0243)� 6 0.106406

253 0.8568 (0, 0.8251, 0.5146, 0.2333)� (0.3184, 0, 0, 0)� 8.23 0.189993

135 1.1666 (0.5781, 0, 0.816, 0)� (0, 0.3347, 0, 0.4207)� 7.19 0.141976

96 Converge to a stationary point but not a solution

x0 needs to be chosen such that A(x0)m > 0 while the damped semismooth Newton
method does not have this constraint. We also record the time needed for finding the
proper initial point for the shifted projected power method.

The numerical results of these two methods are reported in Tables 1 and 2, respec-
tively. In Tables 1 and 2, No. denotes the number of each solution detected by the
method within 1000 random initial points. Ite. denotes the average number of iteration
for each solution. In Table 1, Time1 and Time2 denote the average time of finding the
initial point and the average time of iteration in second, respectively. In Table 2, Time
denotes the average time of iteration and the values in bold are the solutions detected
only by the damped semismooth Newton method.

Our second numerical experiment consists of applying the damped semismooth
Newton method to a sample of 10 randomly generated tensors. Given order m and
dimension n, the tensor A ∈ Sm,n is generated as [8], i.e., we select random entries
from [−1, 1] and symmetrize the result. To make TEiCP solvable, we reset its first
entry by 0.5. The idea is measuring the rate of success of the damped semismooth
Newton algorithm with a given number of initial points. The damped semismooth
Newton algorithm is declared successful if a solution is found while working with
a prescribed number of initial points (for instance, 1, 5, or 10). The outcome of this
experiment is reported in Table 3.
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Table 3 The success rate of the
damped semismooth Newton
method

m n Number of random initial points

1 (%) 5 (%) 10 (%)

4 5 70 100 100

4 10 60 100 100

4 20 30 90 100

4 30 10 70 90

4 40 10 50 90

6 5 90 100 100

6 10 80 100 100

8 4 50 100 100

8 5 50 100 100

Table 4 A random symmetric nonnegative tensor A = (ai1i2...i6 ) ∈ T6,4

a111111 = 0.1197 a111112 = 0.4859 a111113 = 0.4236 a111114 = 0.1775

a111122 = 0.4639 a111123 = 0.4951 a111124 = 0.5322 a111133 = 0.4219

a111134 = 0.4606 a111144 = 0.4646 a111222 = 0.4969 a111223 = 0.4649

a111224 = 0.5312 a111233 = 0.5253 a111234 = 0.4635 a111244 = 0.4978

a111333 = 0.5562 a111334 = 0.5183 a111344 = 0.4450 a111444 = 0.4754

a112222 = 0.4992 a112223 = 0.5420 a112224 = 0.4924 a112233 = 0.5090

a112234 = 0.4844 a112244 = 0.5513 a112333 = 0.5040 a112334 = 0.4611

a112344 = 0.4937 a112444 = 0.5355 a113333 = 0.4982 a113334 = 0.4985

a113344 = 0.4756 a113444 = 0.4265 a114444 = 0.5217 a122222 = 0.2944

a122223 = 0.5123 a122224 = 0.4794 a122233 = 0.5046 a122234 = 0.4557

a122244 = 0.5332 a122333 = 0.5161 a122334 = 0.5236 a122344 = 0.5435

a122444 = 0.5576 a123333 = 0.5685 a123334 = 0.5077 a123344 = 0.5138

a123444 = 0.5402 a124444 = 0.4774 a133333 = 0.6778 a133334 = 0.4831

a133344 = 0.5030 a133444 = 0.4865 a134444 = 0.4761 a144444 = 0.3676

a222222 = 0.1375 a222223 = 0.5707 a222224 = 0.5440 a222233 = 0.5135

a222234 = 0.5770 a222244 = 0.6087 a222333 = 0.5075 a222334 = 0.4935

a222344 = 0.5687 a222444 = 0.5046 a223333 = 0.5226 a223334 = 0.4652

a223344 = 0.5289 a223444 = 0.4810 a224444 = 0.5310 a233333 = 0.6187

a233334 = 0.5811 a233344 = 0.4811 a233444 = 0.4883 a234444 = 0.4911

a244444 = 0.4452 a333333 = 0.1076 a333334 = 0.6543 a333344 = 0.4257

a333444 = 0.5786 a334444 = 0.5956 a344444 = 0.4503 a444444 = 0.3840

The third numerical experiment focuses on nonnegative tensors. As pointed out in
[8], there exists a unique solution for TEiCPwhenA ∈ Tm,n is irreducible nonnegative
and B = I ∈ Sm,n , where I is the diagonal tensor with diagonal entries 1 and 0
otherwise. To be specific, this unique solution is exactly the largest H-eigenvalue ofA,
associated with the unique positive eigenvector. We generate a symmetric nonnegative
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Table 5 The iteration of Algorithm 2 for the tensor A given in Table 4

k λk xk ‖H(zk )‖ αk

1 514.2207 (0.4977, 0.5013, 0.5005, 0.5005)� 1.30e−01 1

2 515.3181 (0.4982, 0.5012, 0.5003, 0.5003)� 1.05e−02 1

3 515.4096 (0.4982, 0.5012, 0.5003, 0.5003)� 1.08e−04 1

4 515.4105 (0.4982, 0.5012, 0.5003, 0.5003)� 1.20e−08 1

5 515.4105 (0.4982, 0.5012, 0.5003, 0.5003)� 1.83e−14 1

Table 6 Numerical results for
random nonnegative tensors

m n Suc. Ite. Time(s) λ∗

3 20 100 5.48 0.0998 0.2000e+03

3 40 100 6.00 0.1375 0.8001e+03

3 60 100 6.00 0.2215 1.8004e+03

3 80 100 6.00 0.2904 3.2000e+03

3 100 100 6.00 0.4424 4.9999e+03

4 10 100 5.06 0.0851 0.4997e+03

4 20 100 5.57 0.1542 4.0002e+03

4 30 100 5.92 0.3636 1.3498e+04

4 40 100 5.98 0.8690 3.1999e+04

4 50 100 6.00 1.9368 6.2500e+04

5 5 100 4.65 0.0677 0.3127e+03

5 10 100 5.07 0.1137 5.0000e+03

5 15 100 5.29 0.3102 2.5311e+04

5 20 100 5.66 1.0001 7.9993e+04

6 4 100 4.51 0.0695 0.5112e+03

6 6 100 4.82 0.0968 3.8880e+03

6 8 100 4.99 0.1695 1.6386e+04

6 10 100 5.10 0.3610 5.0000e+04

8 4 100 4.41 0.0873 8.1914e+03

8 5 100 4.69 0.1826 3.9070e+04

tensor A ∈ S6,4 with all entries randomly selected from (0, 1). The tensor A is given
in Table 4. We test the damped semismooth Newton method with the initial point
x0 = e/‖e‖ and t0 = √

A(x0)6/I(x0)6, where e = (1, 1, . . . , 1)� ∈ R
n . The iteration

of Algorithm 2 is given in Table 5. Here we also report the value of αk derived in Step
3 of Algorithm 2.

It is worth mentioning that the damped semismooth Newton method can also work
for nonsymmetric tensors while the shifted projected power method does not work.
We test the damped semismooth Newton method for randomly generated nonnegative
tensors with all entries selected from the interval (0, 1). Note that these nonnegative
tensors are not symmetric in general, and the order m is not necessary to be even. We
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use the same initial point in the third numerical experiment. Interestingly, we find that
the damped semismooth Newton method always converges to the unique solution. We
summarize our numerical results in Table 6. For each case, we use a sample of 100
random tensors to record the number of success (Suc.), the average number of iteration
(Ite.), the average time of iteration (Time) and the average value of λ-solution (λ∗).

6 Final remarks

In this paper, we propose a damped semismooth Newton method for the tensor eigen-
value complementarity problem. Here we make two final remarks.

1. Given an index set J ⊆ [n], the generalized tensor eigenvalue complementarity
problem (TEiCP)J is also considered in [8]. In fact, we can also apply our damped
semismooth Newton method to (TEiCP)J . Since the results are similar, we omit
them in this paper.

2. From the numerical results, we may give a new way to compute the largest
H-eigenvalue of irreducible nonnegative tensors since this problem can be equiv-
alently reformulated as a tensor eigenvalue complementarity problem.

Acknowledgments The authors are very grateful to the two anonymous referees for their valuable sug-
gestions and constructive comments, which have considerably improved the presentation of the paper. We
are also thankful to Dr. Ziyan Luo for her helpful comments. Liqun Qi work was supported by the Hong
Kong Research Grant Council (Grant No. PolyU 502111, 501212, 501913 and 15302114).

References

1. Adly, S., Rammal, H.: A new method for solving Pareto eigenvalue complementarity problems. Com-
put. Optim. Appl. 55, 703–731 (2013)

2. Bader, B.W., Kolda, T.G., et al.: MATLAB Tensor Toolbox Version 2.5. http://www.sandia.gov/
~tgkolda/TensorToolbox/ (2012 )

3. Bonnans, J.F., Cominetti, R., Shapiro, A.: Second order optimality conditions based on parabolic
second order tangent sets. SIAM J. Optim. 9(2), 466–493 (1999)

4. Chang, K.C., Pearson, K., Zhang, T.: On eigenvalue problems of real symmetric tensors. J. Math. Anal.
Appl. 350, 416–422 (2009)

5. Che, M., Qi, L., Wei, Y.: Positive definite tensors to nonlinear complementarity problems. J. Optim.
Theor. Appl. 168(2), 475–487 (2015)

6. Chen, B., Chen, X., Kanzow, C.: A penalized Fischer–Burmeister NCP-function. Math. Program. 88,
211–216 (2000)

7. Chen, X., Nashed, Z., Qi, L.: Convergence of Newton’s method for singular smooth and nonsmooth
equations using adaptive outer inverses. SIAM J. Optim. 7, 445–462 (1997)

8. Chen, Z., Yang,Q., Ye, L.: Generalized eigenvalue complementarity problem for tensors. arXiv preprint
arXiv:1505.02494 (2015)

9. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
10. da Costa, A., Figueiredo, I., Júdice, J., Martins, J.: A complementarity eigenproblem in the stability

analysis of finite dimensional elastic systems with frictional contact. In: Ferris, M., Pang, J.S., Man-
gasarian, O. (eds.) Complementarity: Applications, Algorithms and Extensions, pp. 67–83. Kluwer,
New York (2001)

11. da Costa, A.,Martins, J.A.C., Figueiredo, I.N., Júdice, J.: The directional instability problem in systems
with frictional contacts. Comput. Methods Appl. Mech. Eng. 193, 357–384 (2004)

12. da Costa, A., Seeger, A.: Cone-constrained eigenvalue problems: theory and algorithms. Comput.
Optim. Appl. 45(1), 25–57 (2010)

123

http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.sandia.gov/~tgkolda/TensorToolbox/
http://arxiv.org/abs/1505.02494


Z. Chen, L. Qi

13. de Luca, T., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlinear
complementarity problems. Math. Program. 75, 407–439 (1996)

14. Ferris, M., Pang, J.: Engineering and economic applications of complementarity problems. SIAMRev.
39(4), 669–713 (1997)

15. Fischer, A.: A special Newton-type optimization method. Optimization 24, 269–284 (1992)
16. Gowda, M.S., Luo, Z., Qi, L., Xiu, N.: Z-tensors and complementarity problems. arXiv preprint

arXiv:1510.07933 (2015)
17. Hintermüller, M.: Semismooth Newton methods and applications. Department of Mathematics,

Humboldt-University of Berlin (2010)
18. Júdice, J.J., Raydan, M., Rosa, S.S., Santos, S.A.: On the solution of the symmetric eigenvalue com-

plementarity problem by the spectral projected gradient algorithm. Numer. Algorithm 47(4), 391–407
(2008)

19. Júdice, J.J., Sherali, H.D., Ribeiro, I.M.: The eigenvalue complementarity problem. Comput. Optim.
Appl. 37, 139–156 (2007)

20. Júdice, J.J., Sherali, H.D., Ribeiro, I.M., Rosa, S.S.: On the asymmetric eigenvalue complementarity
problem. Optim. Method Softw. 24(4–5), 549–568 (2009)

21. Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J.Matrix Anal.
Appl. 32, 1095–1124 (2011)

22. Ling, C., He, H., Qi, L.: On the cone eigenvalue complementarity problem for higher-order tensors.
Comput. Optim. Appl. 63(1), 143–168 (2016)

23. Ling, C., He H., Qi, L.: Higher-degree eigenvalue complementarity problems for tensors. Comput.
Optim. Appl. (2015). doi:10.1007/s10589-015-9805-x

24. Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the
IEEE International Workshop on Computational Advances in Multi-Sensor Addaptive Processing.
CAMSAP05, pp. 129–132. IEEE Computer Society Press, Piscataway (2005)

25. Luo, Z., Qi, L., Xiu, N.: The sparsest solutions to Z-Tensor complementarity problems. Optim. Lett.
(2016). doi:10.1007/s11590-016-1013-9

26. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control
Optim. 15(6), 959–972 (1977)

27. Ni, Q., Qi, L.: A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative
homogeneous polynomial map. J. Global Optim. 61(4), 627–641 (2015)

28. Pang, J.S.: Newton’s method for B-differentiable equations. Math. Oper. Res. 15(2), 311–341 (1990)
29. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res.

18(1), 227–244 (1993)
30. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput. 40, 1302–1324 (2005)
31. Qi, L., Sun, D., Zhou, G.: A new look at smoothing Newton methods for nonlinear complementarity

problems and box constrained variational inequalities. Math. Program. 87(1), 1–35 (2000)
32. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58(1–3), 353–367 (1993)
33. Qi, L., Yin, H.: A strongly semismooth integral function and its application. Comput. Optim. Appl.

25(1–3), 223–246 (2003)
34. Queiroz, M., Júdice, J.J., Humes, J.C.: The symmetric eigenvalue complementarity problem. Math.

Comp. 73, 1849–1863 (2004)
35. Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl.

(2015). doi:10.1007/s10957-015-0800-2
36. Song, Y., Qi, L.: Eigenvalue analysis of constrained minimization problem for homogeneous polyno-

mials. J. Global Optim. 64(3), 563–575 (2016)
37. Sun, D., Qi, L.: On NCP-functions. Comput. Optim. Appl. 13(1–3), 201–220 (1999)
38. Sun, D., Sun, J.: Strong semismoothness of the Fischer-Burmeister SDC and SOC complementarity

functions. Math. Program. 103(3), 575–581 (2005)
39. Xu, F., Ling, C.: Some properties on Pareto-eigenvalues of higher-order tensors. Oper. Res. Trans.

19(3), 34–41 (2015)
40. Yin, H., Ling, C., Qi, L.: Convergence rate of Newton’s method for L2 spectral estimation. Math.

Program. 107(3), 539–546 (2006)
41. Zhou, G., Caccetta, L., Teo, K.L.: A superlinearly convergent method for a class of complementarity

problems with non-Lipschitzian functions. SIAM J. Optim. 20(4), 1811–1827 (2010)

123

http://arxiv.org/abs/1510.07933
http://dx.doi.org/10.1007/s10589-015-9805-x
http://dx.doi.org/10.1007/s11590-016-1013-9
http://dx.doi.org/10.1007/s10957-015-0800-2

	A semismooth Newton method for tensor eigenvalue complementarity problem
	Abstract
	1 Introduction
	2 Preliminaries
	3 Reformulation
	4 Semismooth Newton method
	5 Numerical results
	6 Final remarks
	Acknowledgments
	References




