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SOS TENSOR DECOMPOSITION: THEORY AND APPLICATIONS∗

HAIBIN CHEN† , GUOYIN LI‡ , AND LIQUN QI§

Abstract. In this paper, we examine structured tensors which have sum-of-squares (SOS) tensor
decomposition, and study the SOS-rank of SOS tensor decomposition. We first show that several classes
of even order symmetric structured tensors available in the literature have SOS tensor decomposition.
These include positive Cauchy tensors, weakly diagonally dominated tensors, B0-tensors, double B-
tensors, quasi-double B0-tensors, MB0-tensors, H-tensors, absolute tensors of positive semi-definite
Z-tensors, and extended Z-tensors. We also examine the SOS-rank of SOS tensor decompositions and
the SOS-width for SOS tensor cones. The SOS-rank provides the minimal number of squares in the
SOS tensor decomposition, and, for a given SOS tensor cone, its SOS-width is the maximum possible
SOS-rank for all the tensors in this cone. We first deduce an upper bound for general tensors that
have SOS decomposition and the SOS-width for general SOS tensor cone using the known results in
the literature of polynomial theory. Then, we provide an explicit sharper estimate for the SOS-rank
of SOS tensor decomposition with bounded exponent and identify the SOS-width for the tensor cone
consisting of all tensors with bounded exponent that have SOS decompositions. Finally, as applications,
we show how the SOS tensor decomposition can be used to compute the minimum H-eigenvalue of an
even order symmetric extended Z-tensor and test the positive definiteness of an associated multivariate
form. Numerical examples ranging from small size to large size are provided to show the efficiency of
the proposed numerical methods.

Key words. Structured tensor, SOS tensor decomposition, positive semi-definite tensor, SOS-
rank, H-eigenvalue.
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1. Introduction

Tensor decomposition is an important research area, and has found numerous ap-
plications in data mining [18–20], computational neuroscience [5, 11], and statistical
learning for latent variable models [1]. An important class of tensor decomposition is
sum-of-squares (SOS) tensor decomposition. It is known that to determine whether a
given even order symmetric tensor is positive semi-definite or not is an NP-hard problem
in general. On the other hand, an interesting feature of SOS tensor decomposition is
checking whether a given even order symmetric tensor has SOS decomposition or not
can be verified by solving a semi-definite programming problem (see for example [14]),
and hence, can be validated efficiently. SOS tensor decomposition has a close connec-
tion with SOS polynomials, and SOS polynomials are very important in polynomial
theory [3, 4, 12, 13, 35, 40] and polynomial optimization [16, 21–23, 34, 41]. It is known
that an even order symmetric tensor having SOS decomposition is positive semi-definite,
but the converse is not true in general. Recently, a few classes of structured tensors such
as B tensors [37] and diagonally dominated tensor [36], have been shown to be positive

∗Received: October 10, 2015; accepted (in revised form): January 18, 2016. Communicated by Shi
Jin.

†Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon,
Hong Kong (chenhaibin508@163.com).
This author’s work was supported by the Natural Science Foundation of China (11171180).

‡Department of Applied Mathematics, University of New South Wales, Sydney 2052, Australia
(g.li@unsw.edu.au).
This author’s work was partially supported by Australian Research Council.

§Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon,
Hong Kong (maqilq@polyu.edu.hk).
This author’s work was supported by the Hong Kong Research Grant Council (Grant No. PolyU 502111,
501212, 501913, and 15302114).

2073



2074 SOS TENSOR DECOMPOSITION: THEORY AND APPLICATIONS

semi-definite in the even order symmetric case. It then raises a natural and interesting
question: Will these structured tensors admit an SOS decomposition? Providing an
answer for this question is important because this will enrich the theory of SOS tensor
decomposition, achieve a better understanding for these structured tensors, and lead to
efficient numerical methods for solving problems involving these structured tensors.

In this paper, we make the following contributions in answering the above theo-
retical question and providing applications on important numerical problems involving
structured tensors:

(1) We first show that several classes of symmetric structured tensors available in
the literature have SOS decomposition when the order is even. These classes
include positive Cauchy tensors, weakly diagonally dominated tensors, B0-
tensors, double B-tensors, quasi-double B0-tensors, MB0-tensors, H-tensors,
absolute tensors of positive semi-definite Z-tensors, and extended Z-tensors.

(2) Secondly, we examine the SOS-rank for tensors with SOS decomposition and
the SOS-width for SOS tensor cones. The SOS-rank of tensor A is defined
to be the minimal number of the squares which appear in the sums-of-squares
decomposition of the associated homogeneous polynomial of A, and, for a given
SOS tensor cone, its SOS-width is the maximum possible SOS-rank for all the
tensors in this cone. We deduce an upper bound for the SOS-rank of general
SOS tensor decomposition and the SOS-width for the general SOS tensor cone
using the known result in polynomial theory [4]. We then provide a sharper
explicit upper bound of the SOS-rank for tensors with bounded exponent and
identify the exact SOS-width for the cone consists of all such tensors with SOS
decomposition.

(3) Finally, as applications, we show how the derived SOS tensor decomposition
can be used to compute the minimum H-eigenvalue of an even order symmetric
extended Z-tensor and test the positive definiteness of an associated multivari-
ate form. Numerical examples ranging from small size to large size are provided
to show the efficiency of the proposed numerical methods.

The rest of this paper is organized as follows. In Section 2, we recall some basic
definitions and facts for tensors and polynomials. We also present some properties of
SOS tensor cone and its duality. In Section 3, we present SOS decomposition property
for various classes of structured tensors. In Section 4, we study the SOS-rank of SOS
tensor decomposition and SOS-width for a given SOS tensor cone. In particular, we
examine SOS tensor decomposition with bounded exponents and the SOS-width of the
cone constituted by all such tensors with SOS decomposition, and provide their sharper
explicit estimate. In Section 5, as an application for the derived SOS decomposition of
structure tensors, we show that the minimum H-eigenvalue of an even order extended
Z-tensor can be computed via polynomial optimization technique. Accordingly, this
also leads to an efficient test for positive definiteness of an associated multivariate form.
Numerical experiments are reported to illustrate the significance of the result. Final
remarks and some questions are listed in Section 6.

Before we move on, we briefly mention the notation that will be used in the sequel.
Let Rn be the n dimensional real Euclidean space and the set consisting of all positive
integers is denoted by N. Suppose m,n∈N are two natural numbers. Denote [n]=
{1,2, . . . ,n}. Vectors are denoted by bold lowercase letters, i.e., x, y, ect., matrices are
denoted by capital letters, i.e., A, B, ect., and tensors are written as calligraphic capital
letters such as A, T etc. The ith unit coordinate vector in R

n is denoted by ei. If
A=(ai1···im)1≤ij≤n, j=1, . . . ,m, then |A|=(|ai1···im |)1≤ij≤n, j=1, . . . ,m.
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2. Preliminaries
A real mth order n-dimensional tensor A=(ai1i2···im) is a multi-array of real en-

tries ai1i2···im , where ij ∈ [n] for j∈ [m]. If the entries ai1i2···im are invariant under any
permutation of their indices, then tensor A is called a symmetric tensor. In this paper,
we always consider symmetric tensors defined in R

n. The identity tensor I with order
m and dimension n is given by Ii1···im =1 if i1= · · ·= im and Ii1···im =0 otherwise.

We first fix some symbols and recall some basic facts of tensors and polynomials. Let
m,n∈N. Consider Sm,n :={A :A is an mth-order n-dimensional symmetric tensor}.
Clearly, Sm,n is a linear space under the addition and multiplication defined as below:
for any t∈R, A=(ai1···im)1≤i1,...,im≤n and B=(bi1···im)1≤i1,...,im≤n.

A+B=(ai1···im +bi1···im)1≤i1,...,im≤n and tA=(tai1···im)1≤i1,...,im≤n.

For each A,B∈Sm,n, we define the inner product by

〈A,B〉 :=
n∑

i1,...,im=1

ai1···imbi1···im .

The corresponding norm is defined by ‖A‖=(〈A,A〉)1/2=

⎛
⎝ n∑

i1,...,im=1

(ai1···im)2

⎞
⎠1/2

.

For a vector x∈R
n, we use xi to denote its ith component. Moreover, for a vector

x∈R
n, we use xm to denote the mth-order n-dimensional symmetric rank one tensor

induced by x, i.e.,

(xm)i1i2···im =xi1xi2 · · ·xim , ∀i1, . . . ,im∈{1, . . . ,n}.

We note that an mth order n-dimensional symmetric tensor uniquely defines an
mth degree homogeneous polynomial fA on R

n: for all x=(x1, . . . ,xn)
T ∈R

n,

fA(x)=Axm=
∑

i1,i2,...,im∈[n]

ai1i2···imxi1xi2 · · ·xim . (2.1)

Conversely, any mth degree homogeneous polynomial function f on R
n also uniquely

corresponds a symmetric tensor. Furthermore, a tensor A is called positive semi-definite
(positive definite) if fA(x)≥0 (fA(x)>0) for all x∈R

n (x∈R
n\{0}).

We now recall the following definitions on eigenvalues and eigenvectors for a tensor
[36].

Definition 2.1. Let C be the complex field. Let A=(ai1i2···im) be an order m dimension
n tensor. A pair (λ,x)∈C×C

n \{0} is called an eigenvalue-eigenvector pair of tensor
A, if they satisfy

Axm−1=λx[m−1],

where Axm−1 and x[m−1] are all n dimensional column vectors given by

Axm−1=

⎛
⎝ n∑

i2,...,im=1

aii2···imxi2 · · ·xim

⎞
⎠

1≤i≤n

and x[m−1]=(xm−1
1 , . . . ,xm−1

n )T ∈R
n. If the eigenvalue λ and the eigenvector x are

real, then λ is called an H-eigenvalue of A and x is its corresponding H-eigenvector [36].
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An important fact which will be used frequently later on is that an even order symmetric
tensor is positive semi-definite (definite) if and only if all H-eigenvalues of the tensor
are nonnegative (positive).

Suppose that m is even. In Equation (2.1), if fA(x) is a sums-of-squares (SOS)
polynomial, then we say A has an SOS tensor decomposition (or an SOS decom-
position, for simplicity). If a given tensor has SOS decomposition, then the tensor is
positive semi-definite, but not vice versa. Next, we recall a useful lemma which provides
a test for verifying whether a homogeneous polynomial is a sums-of-squares polynomial
or not. To do this, we introduce some basic notions.

For all x∈R
n, consider a homogeneous polynomial f(x)=

∑
αfαx

α with degree m
(m is an even number), where α=(α1, . . . ,αn)∈ (N∪{0})n, xα=xα1

1 · · ·xαn
n and |α| :=∑n

i=1αi=m. Let fm,i be the coefficient associated with xm
i . Let ei be the ith unit

vector and let

Ωf :={α=(α1, . . . ,αn)∈ (N∪{0})n :fα 	=0 and α 	=mei, i=1, . . . ,n}. (2.2)

Then, f can be decomposed as f(x)=
∑n

i=1fm,ix
m
i +
∑

α∈Ωf
fαx

α. Recall that 2N
denotes the set consisting of all the even numbers. Define

f̂(x)=

n∑
i=1

fm,ix
m
i −

∑
α∈Δf

|fα|xα,

where

Δf :={α=(α1, . . . ,αn)∈Ωf :fα<0 or α /∈ (2N∪{0})n}. (2.3)

Lemma 2.1 ( [9] Corollary 2.8). Let f be a homogeneous polynomial of degree m, where

m is an even number. If f̂ is a polynomial which always takes nonnegative values, then
f is a sums-of-squares polynomial.

2.1. SOS tensor cone and its dual cone. In this part, we study the cone
consisting of all tensors that have SOS decomposition, and its dual cone [30]. We use
SOSm,n to denote the cone consisting of all orderm and dimension n tensors, which have
SOS decomposition. The following simple lemma from [14] gives some basic properties
of SOSm,n.

Lemma 2.2 (cf. [14]). Let m,n∈N and m be an even number. Then, SOSm,n is a
closed convex cone with dimension at most I(m,n)=

(
n+m−1

m

)
.

For a closed convex cone C, we recall that the dual cone of C in Sm,n is denoted by
C⊕ and defined by C⊕={A∈Sm,n : 〈A,C〉≥0 for all C ∈C}. Let M=(mi1,i2,...,im)∈
Sm,n. We also define the symmetric tensor Sym(M⊗M)∈S2m,n by

Sym(M⊗M)x2m=(Mxm)2

=
∑

1≤i1,...,im,j1,...,jm≤n

mi1,...,immj1,...,jmxi1 · · ·ximxj1 · · ·xjm .

Moreover, in the case where the degree m=2, SOS2,n and its dual cone are equal, and
both reduce to the cone of positive semidefinite (n×n) matrices. Therefore, to avoid
triviality, we consider the duality of the SOS tensor cone SOSm,n in the case where m
is an even number with m≥4.
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Proposition 2.1 (Duality between tensor cones). Let n∈N and m be an even number
with m≥4. Then, we have SOS⊕m,n={A∈Sm,n : 〈A,Sym(M⊗M)〉≥0, ∀ M∈Sm

2 ,n}
and SOSm,n 	⊆SOS⊕m,n.

Proof. We define SOShm,n to be the cone consisting of all mth-order n-dimensional
symmetric tensors such that fA(x) := 〈A,xm〉 is a polynomial which can be written as
sums of finitely many homogeneous polynomials. We now see that indeed SOShm,n=

SOSm,n. Clearly, SOShm,n⊆SOSm,n. To see the reverse inclusion, we let A∈SOSm,n.
Then, there exists l∈N and f1, . . . ,fl are real polynomials with degree at most m

2 such

that 〈A,xm〉=∑l
i=1fi(x)

2. In particular, for all t≥0, we have

tm 〈A,xm〉= 〈A,(tx)m〉=
l∑

i=1

fi(tx)
2

Dividing tm on both sides and letting t→+∞, we see that 〈A,xm〉=∑l
i=1fi,m2 (x)

2,

where fi,m2 is the m
2 th-power term of fi, i=1, . . . ,l. This shows that A∈SOShm,n. Thus,

we have SOShm,n=SOSm,n. It then follows that(
SOSm,n

)⊕
=
(
SOShm,n

)⊕
={A∈Sm,n : 〈A,C〉≥0 for all C ∈SOShm,n}

={A∈Sm,n : 〈A,C〉≥0 for all C=
l∑

i=1

Sym(Mi⊗Mi),

Mi∈Sm
2 ,n,i=1, . . . ,l}={A∈Sm,n : 〈A,Sym(M⊗M)〉≥0 for all M∈Sm

2 ,n}.

We now show that SOSm,n 	⊆SOS⊕m,n if m≥4. Let f(x)=x4
1+x4

2+
1
4x

4
3+6x2

1x
2
2+

6x2
1x

2
3+6x2

2x
2
3 and let A∈S4,3 be such that Ax4=f(x). Then, A has an SOS decom-

position and A1,1,1,1=A2,2,2,2=1, A3,3,3,3=
1
4 , A1,1,3,3=A1,1,2,2=A2,2,3,3=1. We now

see that A 	∈SOS⊕m,n. To see this, we only need to find M ∈S2,3 such that 〈A,Sym(M⊗
M)〉<0. To see this, let M =diag(1,1,−4). Then, Sym(M⊗M)x4=(xTMx)2=(x2

1+
x2
2−4x2

3)
2. Direct verification shows that Sym(M⊗M)x4=x4

1+x4
2+16x4

3+2x2
1x

2
2−

8x2
1x

2
3−8x2

2x
2
3. So, Sym(M⊗M)1,1,1,1=Sym(M⊗M)2,2,2,2=1, Sym(M⊗M)3,3,3,3=

16, Sym(M⊗M)1,1,2,2=
1
3 , Sym(M⊗M)1,1,3,3=Sym(M⊗M)2,2,3,3=− 4

3 . Therefore,

〈A,Sym(M⊗M)〉=1+1+
1

4
·16+6

(
1 · 1

3

)
+6

(
1 ·
(
−4

3

))
+6

(
1 ·
(
−4

3

))
=−8<0,

and the desired results hold.

Question: It is known from polynomial optimization (see [22, Proposition 4.9]
or [21]) that the dual cone of the cone consisting of all sums-of-squares polynomials
(possibly nonhomogeneous) is the moment cone (that is, all the sequence whose associ-
ated moment matrix is positive semi-definite). Can we link the dual cone of SOSm,n to
the moment matrix? Can the membership problem of SOS⊕m,n be solvable in polynomial
time?

3. SOS decomposition of several classes of structured tensors
In this section, we examine the SOS decomposition of several classes of symmetric

even order structured tensors, such as positive Cauchy tensor, weakly diagonally dom-
inated tensors, B0-tensors, double B-tensors, quasi-double B0-tensors, MB0-tensors,
H-tensors, absolute tensors of positive semi-definite Z-tensors, and extended Z-tensors.
For SOS decomposition of strong Hankel tensors, see [7, 27].



2078 SOS TENSOR DECOMPOSITION: THEORY AND APPLICATIONS

3.1. Characterizing SOS decomposition for even order Cauchy tensors.
Symmetric Cauchy tensors was first studied in [2]. Some checkable sufficient and neces-
sary conditions for an even order symmetric Cauchy tensor to be positive semi-definite
or positive definite were provided in [2], which extends the matrix cases established
in [10].

Let c=(c1,c2, . . . ,cn)
T ∈R

n with ci1 +ci2 + · · ·+cim 	=0 for all ij ∈{1, . . . ,n}, j=
1, . . . ,m. Let the real tensor C=(ci1i2···im) be defined by

ci1i2···im =
1

ci1 +ci2 + · · ·+cim
, j∈ [m], ij ∈ [n].

Then, we say that C is a symmetric Cauchy tensor with order m and dimension n
or simply a Cauchy tensor. The corresponding vector c∈R

n is called the generating
vector of C.

To establish the SOS decomposition of Cauchy tensors, we will also need another
class of tensors called completely positive tensor, which has an SOS tensor decomposition
in the even order case.

Tensor A is called a completely decomposable tensor if there are vectors xj ∈
R

n, j∈ [r] such that A can be written as sums of rank-one tensors generated by the
vector xj , that is,

A=
∑
j∈[r]

xm
j .

If xj ∈R
n
+ for all j∈ [r], then A is called a completely positive tensor [38]. It

was shown that a strongly symmetric, hierarchically dominated nonnegative tensor is a
completely positive tensor [38].

We now characterize the SOS decomposition and completely positivity for even
order Cauchy tensors.

Theorem 3.1. Let c=(c1,c2, . . . ,cn)
T ∈R

n with ci1 +ci2 + · · ·+cim 	=0 for all ij ∈
{1, . . . ,n}, j=1, . . . ,m. Let C be a Cauchy tensor generated by c with even order m and
dimension n. Then, the following statements are equivalent.

(i) the Cauchy tensor C has an SOS tensor decomposition;

(ii) the Cauchy tensor C is positive semi-definite;

(iii) the generating vector of the Cauchy tensor ci, i∈ [n], are all positive;

(iv) the Cauchy tensor C is a completely positive tensor.

Proof. Since m is even, by definitions of completely positive tensor, SOS ten-
sor decomposition and positive semi-definite tensor, we can easily obtain (i)⇒ (ii) and
(iv)⇒ (i). By [2, Theorem 2.1], we know that C is positive semi-definite if and only if
ci>0,i∈ [n], and hence, (ii)⇔ (iii) holds. So, we only need to prove (iii)⇒ (iv), that is,
any Cauchy tensors with positive generating vector is completely positive.

Assume (iii) holds. Then, for any x∈R
n,

Cxm =
∑n

i1,i2,...,im=1
xi1

xi2
···xim

ci1+ci2+···+cim

=
∑n

i1,i2,...,im=1

(∫ 1

0
tci1+ci2+···+cim−1xi1xi2 · · ·ximdt

)
=
∫ 1

0

(∑n
i1,i2,...,im=1 t

ci1+ci2+···+cim−1xi1xi2 · · ·xim

)
dt

=
∫ 1

0

(∑n
i=1 t

ci− 1
mxi

)m
dt.
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By the definition of Riemann integral, we have

Cxm= lim
k→∞

k∑
j=1

(∑n
i=1(

j
k )

ci− 1
mxi

)m
k

.

Let Ck be the symmetric tensor such that

Ckxm =
∑k

j=1

(∑n
i=1(

j
k )ci−

1
m xi

)m

k

=
∑k

j=1

(∑n
i=1

( j
k )ci−

1
m

k
1
m

xi

)m

=
∑k

j=1

(
〈uj ,x〉

)m
,

where

uj =

(
( jk )

c1− 1
m

k
1
m

, . . . ,
( jk )

cn− 1
m

k
1
m

)
∈R

n, j=1, . . . ,k.

Let CDm,n denote the set consisting of all completely decomposable tensor with order
m and dimension n. From [27, Theorem 1], CDm,n is a closed convex cone when m is
even. It then follows that C=limk→∞Ck is also a completely positive tensor.

3.2. Even order symmetric weakly diagonally dominated tensors have
SOS decompositions. In this section, we establish that even order symmetric weakly
diagonally dominated tensors have SOS decompositions. Firstly, we give the definition
of weakly diagonally dominated tensors. To do this, we introduce an index set ΔA
associated with a tensor A. Now, let A be a tensor with order m and dimension n,
and let fA be its associated homogeneous polynomial such that fA(x)=Axm. We then
define the index set ΔA as Δf with f =fA, as given as in Equation (2.3).

Definition 3.1. We say A is a diagonally dominated tensor if, for each i=
1, . . . ,n,

aii···i≥
∑

(i2,...,im) 	=(i,...,i)

|aii2···im |.

We say A is a weakly diagonally dominated tensor if, for each i=1, . . . ,n,

aii···i≥
∑

(i2,...,im) �=(i,...,i),

(i,i2,...,im)∈ΔA

|aii2···im |.

Clearly, any diagonally dominated tensor is a weakly diagonally dominated tensor. How-
ever, the converse is, in general, not true.

Theorem 3.2. Let A be a symmetric weakly diagonally dominated tensor with order m
and dimension n. Suppose that m is even. Then, A has an SOS tensor decomposition.

Proof. Denote I={(i,... ,i) |1≤ i≤n}. Let x∈R
n. Then,

Axm=
n∑

i=1

aii···ixm
i +

∑
(i1,...,im)/∈I

ai1i2···imxi1xi2 · · ·xim
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=

n∑
i=1

⎛
⎜⎝aii···i−

∑
(i2,...,im) �=(i,...,i)

(i,i2,...,im)∈ΔA

|aii2···im |

⎞
⎟⎠xm

i

+

n∑
i=1

∑
(i2,...,im) �=(i,...,i)

(i,i2,...,im)∈ΔA

|aii2···im |xm
i +

∑
(i1,...,im)/∈I

ai1i2···imxi1xi2 · · ·xim

=

n∑
i=1

⎛
⎜⎝aii···i−

∑
(i2,...,im) �=(i,...,i)

(i,i2,...,im)∈ΔA

|aii2···im |

⎞
⎟⎠xm

i

+

n∑
i=1

∑
(i2,...,im) �=(i,...,i)

(i,i2,...,im)∈ΔA

|aii2···im |xm
i +

n∑
i=1

∑
(i2,...,im) �=(i,...,i)

(i,i2,...,im)∈ΔA

aii2···imxixi2 · · ·xim

+
n∑

i=1

∑
(i2,...,im) �=(i,...,i)

(i,i2,...,im)/∈ΔA

aii2···imxixi2 · · ·xim .

Define

h(x)=

n∑
i=1

∑
(i2,...,im) �=(i,...,i)

(i,i2,...,im)∈ΔA

|aii2···im |xm
i +

n∑
i=1

∑
(i2,...,im) �=(i,...,i)

(i,i2,...,im)∈ΔA

aii2···imxixi2 · · ·xim .

We now show that h is a sums-of-squares polynomial.
To see h is indeed sums-of-squares, from Lemma 2.1, it suffices to show that

ĥ(x) :=
n∑

i=1

∑
(i2,...,im) �=(i,...,i)

(i,i2,...,im)∈ΔA

|aii2···im |xm
i −

n∑
i=1

∑
(i2,...,im) �=(i,...,i)

(i,i2,...,im)∈ΔA

|aii2···im |xixi2 · · ·xim

is a polynomial which always takes nonnegative values. As ĥ is a homogeneous polyno-
mial with degree m on R

n, let Ĥ be a symmetric tensor with order m and dimension n
such that ĥ(x)= Ĥxm. Since A is symmetric, the nonzero entries of Ĥ are the same as
the corresponding entries of A. Now, let λ be an arbitrary H-eigenvalue of Ĥ, from the
Gershgorin’s Theorem for eigenvalues of tensors [36], we have∣∣∣∣∣∣∣λ−

∑
(i2,...,im) �=(i,...,i)

(i,i2,...,im)∈ΔA

|aii2···im |

∣∣∣∣∣∣∣≤
∑

(i2,...,im) �=(i,...,i)

(i,i2,...,im)∈ΔA

|aii2···im |.

So, we must have λ≥0. This shows that all H-eigenvalues of Ĥ must be nonnegative,
and so, Ĥ is positive semi-definite [36]. Thus, ĥ is a polynomial which always takes
nonnegative values.

Now, as A is a weakly diagonally dominated tensor and m is even,

n∑
i=1

⎛
⎜⎝aii···i−

∑
(i2,...,im) �=(i,...,i)

(i,i2,...,im)∈ΔA

|aii2···im |

⎞
⎟⎠xm

i
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is an SOS polynomial. Moreover, from the definition of ΔA, for each (i1, . . . ,im) /∈ΔA,
ai1···im ≥0 and xi1 · · ·xim is a square term. Then,

n∑
i=1

∑
(i2,...,im) �=(i,...,i)

(i,i2,...,im)/∈ΔA

aii2···imxixi2 · · ·xim

is also a sums-of-square polynomial. Thus, A has an SOS tensor decomposition.

As a diagonally dominated tensor is weakly diagonally dominated, the following
corollary follows immediately.

Corollary 3.1. Let A be a symmetric diagonally dominated tensor with even order
m and dimension n. Then, A has an SOS tensor decomposition.

3.3. The absolute tensor of an even order symmetric positive semi-
definite Z-tensor has an SOS decomposition. Let A be an order m dimension n
tensor. If all off-diagonal elements of A are non-positive, then A is called a Z-tensor [44].
A Z-tensor A=(ai1,...,im) can be written as

A=D−C, (3.1)

where D is a diagonal tensor where its ith diagonal elements equals aii...i, i=1, . . . ,n,
and C is a nonnegative tensor (or a tensor with nonnegative entries) such that diagonal
entries all equal to zero. We now define the absolute tensor of A by

|A|= |D|+C.

Note that all even order symmetric positive semi-definite Z-tensors have SOS de-
compositions [14, 15], a natural interesting question would be: do all absolute tensors
of even order symmetric positive semi-definite Z-tensors have SOS decompositions?
Below, we provide an answer for this question.

Theorem 3.3. Let A be a symmetric Z-tensor with even order m and dimension n
defined as in Equation (3.1). If A is positive semi-definite, then |A| has an SOS tensor
decomposition.

Proof. Let A=(ai1...im) be a symmetric positive semi-definite Z-tensor. From
Equation (3.1), we have A=D−C, where D is a diagonal tensor where the diagonal
entries of D is di :=ai...i,i∈ [n] and C=(ci1i2···im) is a nonnegative tensor with zero
diagonal entries. Define three index sets as follows:

I= {(i1,i2, . . . ,im)∈ [n]m | i1= i2= · · ·= im};
Ω= {(i1,i2, . . . ,im)∈ [n]m | ci1i2···im 	=0 and (i1,i2, . . . ,im) /∈ I};
Δ= {(i1,i2, . . . ,im)∈Ω | ci1i2···im >0 or at least one index in

(i1,i2, . . . ,im) exists odd times}.

Let f(x)= |A|xm and define a polynomial f̂ by

f̂(x)=

n∑
i=1

dix
m
i −

∑
(i1,i2,...,im)∈Δ

|ci1i2···im |xi1xi2 · · ·xim .
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From Lemma 2.1, to see polynomial f(x)= |A|xm is a sums-of-squares polynomial, we

only need to show that f̂ always takes nonnegative value. To see this, as A is positive
semi-definite, we have di≥0. Since ci1i2···im ≥0, ij ∈ [n], j∈ [m], it follows that

f̂(x) =
∑n

i=1dix
m
i −∑(i1,i2,...,im)∈Δ ci1i2···imxi1xi2 · · ·xim

=
∑n

i=1dix
m
i −∑(i1,i2,...,im)∈Ω ci1i2···imxi1xi2 · · ·xim

+
∑

(i1,i2,...,im)∈Ω\Δ ci1i2···imxi1xi2 · · ·xim

= Axm+
∑

(i1,i2,...,im)∈Ω\Δ ci1i2···imxi1xi2 · · ·xim

≥ 0.

Here, the last inequality follows from the fact that m is even, A is positive semi-definite
and xi1xi2 · · ·xim is a square term if (i1,i2, . . . ,im)∈Ω\Δ. Thus, the desired result fol-
lows.

3.4. SOS tensor decomposition for even order symmetric extended Z-
tensors. In this subsection, we introduce a new class of symmetric tensor which
extends symmetric Z-tensors to the cases where the off-diagonal elements can be posi-
tive, and examine its SOS tensor decomposition.

Let f be a polynomial on R
n with degree m. Let fm,i be the coefficient of f

associated with xm
i , i∈ [n]. We say f is an extended Z-polynomial if there exist s∈N

with s≤n and index sets Γl⊆{1, . . . ,n}, l=1, . . . ,s with
⋃s

l=1Γl={1, . . . ,n} and Γl1 ∩
Γl2 =∅ for all l1 	= l2 such that

f(x)=

n∑
i=1

fm,ix
m
i +

s∑
l=1

∑
αl∈Ωl

fαl
xαl ,

where

Ωl= {α∈ ([n]∪{0})n | |α|=m,xα=xi1xi2 · · ·xim ,{i1, . . . ,im}⊆Γl,
and α 	=mei, i=1, . . . ,n}

for each l=1, . . . ,s and either one of the following two conditions holds:

(1) fαl
=0 for all but one αl∈Ωl;

(2) fαl
≤0 for all αl∈Ωl.

We now say a symmetric tensor A is an extended Z-tensor if its associated
polynomial fA(x)=Axm is an extended Z-polynomial.

From the definition, it is clear that any Z-tensor is an extended Z-tensor with s=1
and Γ1={1, . . . ,n}. On the other hand, an extended Z-tensor allows a few elements
of the off-diagonal elements to be positive, and so, an extended Z-tensor need not
to be a Z-tensor. For example, consider a symmetric tensor A where its associated
polynomial fA(x)=Axm=x6

1+x6
2+x6

3+x6
4+4x3

1x
3
2+6x2

3x
4
4. It can be easily see that A

is an extended Z-tensor but not a Z-tensor (as there are positive off-diagonal elements).
In [31], partially Z-tensors are introduced. There is no direct relation between these two
concepts, except that both of them contain Z-tensors. But they do have intersection
which is larger than the set of all Z-tensors. Actually, the example just discussed is not
a Z-tensor, but it is an extended Z-tensor and a partially Z-tensor as well.

We now see that any positive semi-definite extended Z-tensor has an SOS tensor
decomposition. To achieve this, we recall the following useful lemma, which provides us
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with a simple criterion for determining whether a homogeneous polynomial with only
one mixed term is a sum of-squares-polynomial or not.

Lemma 3.1 (see [9]). Let b1,b2, . . . ,bn≥0 and d∈N. Let a1,a2, . . . ,an∈N be such that∑n
i=1=2d. Consider the homogeneous polynomial f(x) defined by

f(x)= b1x
2d
1 + · · ·+bnx

2d
n −μxa1

1 · · ·xan
n .

Let μ0=2d
∏

ai 	=0,1≤i≤n(
bi
ai
)

ai
2d . Then, the following statements are equivalent:

(i) f is a nonnegative polynomial, i.e., f(x)≥0 for all x∈R
n;

(ii) either |μ|≤μ0 or μ<μ0 and all ai are even;

(iii) f is an SOS polynomial.

Theorem 3.4. Let A be an even order positive semi-definite extended Z-tensor.
Then, A has an SOS tensor decomposition.

Proof. Let fA(x)=Axm. As A is a positive semi-definite symmetric extended Z-
tensor, there exist s∈N and index sets Γl⊆{1, . . . ,n}, l=1, . . . ,s with

⋃s
l=1Γl={1, . . . ,n}

and Γl1 ∩Γl2 =∅ for all l1 	= l2 such that for all x∈R
n

f(x)=
n∑

i=1

fm,ix
m
i +

s∑
l=1

∑
αl∈Ωl

fαl
xαl

such that, for each l=1, . . . ,s, either one of the following two condition holds: (1) fαl
=0

for all but one αl∈Ωl; (2) fαl
≤0 for all αl∈Ωl. Define, for each l=1, . . . ,s,

hl(x) :=
∑
i∈Γl

fm,ix
m
i +

∑
αl∈Ωl

fαl
xαl .

It follows that each hl is an extended Z-polynomial. Moreover, from the construc-
tion,

∑s
l=1hl=fA and so, infx∈Rn

∑s
l=1hl(x)=0. Note that each hl is also a ho-

mogeneous polynomial, and hence infx∈Rn hl(x)≤0. Noting that each hl is indeed
a polynomial on (xi)i∈Γl

,
⋃s

l=1Γl={1, . . . ,n} and Γl1 ∩Γl2 =∅ for all l1 	= l2, we have
infx∈Rn

∑s
l=1hl(x)=

∑s
l=1 infx∈Rn hl(x). This enforces that infx∈Rn hl(x)=0. In par-

ticular, each hl is a polynomial which takes nonnegative values. We now see that hl,
1≤ l≤s, are SOS polynomial. Indeed, if fαl

=0 for all but one αl∈Ωl, then hl is a
homogeneous polynomial with only a mixed term, and so, Lemma 3.1 implies that hl

is a SOS polynomial. On the other hand, if fαl
≤0 for all αl∈Ωl, hl corresponds to a

Z-tensor, and so, hl is also a SOS polynomial in this case because any positive semi-
definite Z-tensor has an SOS tensor decomposition [14]. Thus, fA=

∑s
l=1hl is also a

SOS polynomial, and hence the conclusion follows.

Remark 3.1. A close inspection of the above proof indicates that we indeed show
that the associated polynomial fA(x)=Axm satisfies fA=

∑s
l=1hl where each hl is an

SOS polynomial in (xi)i∈Γl
.

3.5. Even order symmetric B0-tensors have SOS decompositions. In this
part, we show that even order symmetric B0 tensors have SOS tensor decompositions.
Recall that a tensor A=(ai1i2···im) with order m and dimension n is called a B0-tensor
[37] if

n∑
i2,...,im=1

aii2···im ≥0
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and

1

nm−1

n∑
i2,...,im=1

aii2···im ≥aij2···jm for all (j2, . . . ,jm) 	=(i,... ,i).

To establish that a B0-tensor has an SOS tensor decomposition, we first present the
SOS tensor decomposition of the all-one-tensor. We say E is an all-one-tensor if with
each of its elements of E is equal to one.

Lemma 3.2. Let E be an even order all-one-tensor. Then, E has an SOS tensor
decomposition.

Proof. Let E=(ei1i2···im) be an all-one-tensor with even order m and dimension
n. For all x∈R

n, one has

Exm =
∑

i1,i2,...,im∈[n]ei1i2···imxi1xi2 · · ·xim

=
∑

i1,i2,...,im∈[n]xi1xi2 · · ·xim

= (x1+x2+ · · ·+xn)
m

≥ 0,

which implies that E has an SOS tensor decomposition.

Let J ⊂ [n]. EJ is called a partially all-one-tensor if its elements are defined such
that ei1i2···im =1, i1,i2, . . . ,im∈J and ei1i2···im =0 for the others. Similar to Lemma 3.2,
it is easy to check that all even order partially all-one-tensors have SOS decompositions.

We also need the following characterization of B0-tensors established in [37].

Lemma 3.3. Suppose that A is a B0-tensor with order m and dimension n. Then
either A is a diagonally dominated symmetric M -tensor itself, or we have

A=M+
s∑

k=1

hkEJk ,

where M is a diagonally dominated symmetric M -tensor, s is a positive integer, hk>0
and Jk⊆{1, . . . ,n}, for k=1, . . . ,s, and Jk∩Jl=∅, for k 	= l.

From Theorem 3.2, Lemma 3.2, and Lemma 3.3, we have the following result.

Theorem 3.5. All even order symmetric B0-tensors have SOS tensor decompositions.

Before we move on to the next part, we note that, stimulated by B0-tensors in [37],
symmetric double B-tensors, symmetric quasi-double B0-tensors and symmetric MB0-
tensors have been studied in [24, 25]. Below, we briefly explain that, using a similar
method of proof as above, these three classes of tensors all have SOS decompositions.
To do this, let us recall the definitions of these three classes of tensors.

For a real symmetric tensor B=(bi1i2···im) with order m and dimension n, denote

βi(B)= max
j2,...,jm∈[n],(i,j2,...,jm)/∈I

{0,bij2···jm};

Δi(B)=
∑

j2,...,jm∈[n],(i,j2,...,jm)/∈I

(βi(B)−bij2···jm);−3mm

Δi
j(B)=Δj(B)−(βj(B)−bjii···i), i 	= j.
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As defined in [24, Definition 3], B is called a double B-tensor if, bii···i>βi(B), for all
i∈ [n] and for all i,j∈ [n],i 	= j such that

bii···i−βi(B)≥Δi(B)

and

(bii···i−βi(B))(bjj···j−βj(B))>Δi(B)Δj(B).

If bii···i>βi(B), for all i∈ [n] and

(bii···i−βi(B))(bjj···j−βj(B)−Δi
j(B))≥ (βj(B)−bji···i)Δi(B),

then tensor B is called a quasi-double B0-tensor (see [25, Definition 2]).
Let A=(ai1i2···im) such that

ai1i2···im = bi1i2···im −βi1(B), for all i1∈ [n].

If A is an M -tensor, then B is called an MB0-tensor (see [25, Definition 3]). It was
shown in [25] that all quasi-double B0-tensors are MB0-tensors.

In [24], Li et al. proved that, for any symmetric double B-tensor B, either B is a
doubly strictly diagonally dominated (DSDD) Z-tensor, or B can be decomposed to
the sum of a DSDD Z-tensor and several positive multiples of partially all-one-tensors
(see [24, Theorem 6]). From [24, Theorem 4], we know that an even order symmetric
DSDD Z-tensor is positive definite. This together with the fact that any positive semi-
definite Z-tensor has an SOS tensor decomposition [14] implies that any even order
symmetric double B-tensor B has an SOS tensor decomposition. Moreover, from [25,
Theorem 7], we know that, for any symmetricMB0-tensor, it is either an M -tensor itself
or it can be decomposed as the sum of an M -tensor and several positive multiples of
partially all-one-tensors. As even order symmetric M -tensors are positive semi-definite
Z-tensors [44] which have, in particular, SOS decomposition, we see that any even order
symmetric MB0 tensor also has an SOS tensor decomposition. Combining these and
noting that any quasi-double B0-tensor is an MB0-tensor, we arrive at the following
conclusion.

Theorem 3.6. Even order symmetric double B-tensors, even order symmetric quasi
double B0-tensors and even order symmetric MB0-tensors all have SOS tensor decom-
positions.

3.6. Even order symmetric H-tensors with nonnegative diagonal ele-
ments have SOS decompositions. In this part, we show that any even order
symmetric H-tensor with nonnegative diagonal elements has an SOS tensor decompo-
sition. Recall that an mth order n dimensional tensor A=(ai1i2···im), it’s comparison
tensor is defined by M(A)=(mi1i2···im) such that

mii···i= |aii···i|, and mi1i2···im =−|ai1i2···im |,

for all i,i1, . . . ,im∈ [n],(i1,i2, . . . ,im) /∈ I. Then, tensor A is called an H-tensor [6] if there
exists a tensor Z with nonnegative entries such thatM(A)=sI−Z and s≥ρ(Z), where
I is the identity tensor and ρ(Z) is the spectral radius of Z defined as the maximum
of modulus of all eigenvalues of Z. If s>ρ(Z), then A is called a nonsingular H-
tensor. A characterization for nonsingular H-tensors was given in [6] which states A
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is a nonsingular H-tensor if and only if there exists an enteritis positive vector y=
(y1,y2, . . . ,yn)∈R

n such that

|aii···i|ym−1
i >

∑
(i,i2,...,im)/∈I

|aii2···im |yi2yi3 · · ·yim , ∀ i∈ [n].

We note that the above definitions were first introduced in [6]. These were further
examined in [17,26] where the authors in [26] referred nonsingular H-tensors simply as
H-tensors and the authors in [17] referred nonsingular H-tensors as strong H-tensors.

Theorem 3.7. Let A=(ai1i2···im) be a symmetric H-tensor with even order m di-
mension n. Suppose that all the diagonal elements of A are nonnegative. Then, A has
an SOS tensor decomposition.

Proof. We first show that any nonsingular H-tensor with positive diagonal ele-
ments has an SOS tensor decomposition. Let A=(ai1i2···im) be a nonsingular H-tensor
with even order m dimension n such that aii···i>0, i∈ [n]. Then, there exists a vector
y=(y1, . . . ,yn)

T ∈R
n with yi>0, i=1, . . . ,n, such that

aii···iym−1
i >

∑
(i,i2,...,im)/∈I

|aii2···im |yi2yi3 · · ·yim , ∀ i∈ [n]. (3.2)

To prove the conclusion, by Lemma 2.1, we only need to prove

f̂A(x)=
∑
i∈[n]

aii···ixm
i −

∑
(i1,i2,...,im)∈ΔA

|ai1i2···im |xi1xi2 · · ·xim ≥0, ∀ x∈R
n.

From Equation (3.2), we know that

f̂A(x)≥
∑
i∈[n]

⎛
⎝ ∑

(i,i2,...,im)/∈I

|aii2···im |y1−m
i yi2yi3 · · ·yimxm

i

⎞
⎠

−
∑

(i1,i2,...,im)∈ΔA

|ai1i2···im |xi1xi2 · · ·xim . (3.3)

Here, for any fixed tuple (i01,i
0
2, . . . ,i

0
m)∈ΔA, assume (i01,i

0
2, . . . ,i

0
m) is constituted by

k distinct indices j01 ,j
0
2 , . . . ,j

0
k, k≤m, which appear s1,s2, . . . ,sk times in (i01,i

0
2, . . . ,i

0
m)

respectively, sl∈ [m],l∈ [k]. Then, one has s1+s2+ · · ·+sk=m. Without loss of gen-
erality, we denote a= |ai01i02···i0m |>0. Let π(i01,i

0
2, . . . ,i

0
m) be the set consisting of all

permutations of (i01,i
0
2, . . . ,i

0
m). So, on the right side of Equation (3.3), there are some

terms corresponding to the fixed tuple (i01,i
0
2, . . . ,i

0
m) such that∑

(j01 ,i2,...,im)∈π(i01,i
0
2,...,i

0
m)

|aj01 i2···im |y1−m
j01

yi2yi3 · · ·yimxm
j01

+
∑

(j02 ,i2,...,im)∈π(i01,i
0
2,...,i

0
m)

|aj02 i2···im |y1−m
j02

yi2yi3 · · ·yimxm
j02

...

+
∑

(j0k,i2,...,im)∈π(i01,i
0
2,...,i

0
m)

|aj0ki2···im |y1−m
j0k

yi2yi3 · · ·yimxm
j0k
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−
∑

(i1,i2,...,im)∈π(i01,i
0
2,...,i

0
m)

|ai1i2···im |xi1xi2 · · ·xim

=

(
m−1

s1−1

)(
m−s1
s2

)(
m−s1−s2

s3

)
· · ·
(
m−s1−s2 · · ·−sk−1

sk

)
ays1−m

j01
ys2
j02
· · ·ysk

j0k
xm
j01

+

(
m−1

s2−1

)(
m−s2
s1

)(
m−s1−s2

s3

)
· · ·
(
m−s1−s2 · · ·−sk−1

sk

)
ays2−m

j02
ys1
j01
ys3
j03
· · ·ysk

j0k
xm
j02

...

+

(
m−1

sk−1

)(
m−sk
s1

)(
m−sk−s1

s2

)
· · ·
(
m−sk−s1 · · ·−sk−2

sk−1

)
aysk−m

j0k
ys1
j01
· · ·ysk−1

j0k−1
xm
j0k

−
(
m

s1

)(
m−s1
s2

)(
m−s1−s2

s3

)
· · ·
(
m−s1−s2 · · ·−sk−1

sk

)
axs1

j01
xs2
j02
· · ·xsk

j0k

=
(m−1)!ays1

j01
ys2
j02
· · ·ysk

j0k

s1!s2! · · ·sk!

[
s1

(
xj01

yj01

)m

+s2

(
xj02

yj02

)m

+ · · ·+sk

(
xj0k

yj0k

)m

−m

(
xj01

yj01

)s1(
xj02

yj02

)s2

· · ·
(
xj0k

yj0k

)sk]
≥0,

where the last inequality follows the arithmetic-geometric inequality and the fact y>0.
Thus, each tuple (i1,i2, . . . ,im)∈ΔA corresponds to a nonnegative value on the right side

of Equation (3.3), which implies that f̂(x)≥0 for all x∈R
n. Hence, by Lemma 2.1, A

has an SOS tensor decomposition.
Now, let A be a general H-tensor with nonnegative diagonal elements. Then, for

each ε>0, Aε :=A+εI is a nonsingularH-tensor with positive diagonal elements. Thus,
Aε→A, and for each ε>0, Aε has an SOS tensor decomposition. As SOSm,n is a closed
convex cone, we see that A also has an SOS tensor decomposition and the desired results
follows.

4. The SOS-Rank of SOS tensor decomposition
In this section, we study the SOS-rank of SOS tensor decomposition. We formally

define the SOS-rank of SOS tensor decomposition as follows. Let A be a tensor with
even order m and dimension n. Suppose A has an SOS tensor decomposition. As
shown in Proposition 2.1, SOSm,n=SOShm,n, where SOSm,n is the SOS tensor cone

and SOShm,n is the cone consisting of all mth-order n-dimensional symmetric tensors
such that fA(x) := 〈A,xm〉 is a polynomial which can be written as sums of finitely
many homogeneous polynomials. Thus, there exists r∈N such that the homogeneous
polynomial fA(x)=Axm can be decomposed by

fA(x)=f2
1 (x)+f2

2 (x)+ · · ·+f2
r (x), ∀ x∈R

n,

where fi(x), i∈ [r] are homogeneous polynomials with degree m
2 . The minimum value

r is called the SOS-rank of A, and is denoted by SOSrank(A).
Let C be a convex cone in the SOS tensor cone, that is, C⊆SOSm,n. We define the

SOS-width of the convex cone C by

SOS-width(C)=sup{SOSrank(A) :A∈C}.
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Here, we do not care about the minimum of the SOS-rank of all the possible tensors
in the cone C as it will always be zero. Recall that it was shown by Choi et al. in [4,
Theorem 4.4] that, an SOS homogeneous polynomial can be decomposed as sums of at
most Λ many squares of homogeneous polynomials where

Λ :=

√
1+8a−1

2
and a=

(
n+m−1

m

)
. (4.1)

This immediately gives us that

Proposition 4.1. Let A be a tensor with even order m and dimension n,
m,n∈N. Suppose A has an SOS tensor decomposition. Then, its SOS-rank sat-
isfies SOSrank(A)≤Λ, where Λ is given in Equation (4.1). In particular, SOS-
width(SOSm,n)≤Λ.

In the matrix case, that is, m=2, the upper bound Λ equals the dimension n of the
symmetric tensor which is tight in this case. On the other hand, in general, the upper
bound is of the order nm/2 and need not to be tight. However, for a class of structured
tensors with bounded exponent (BD-tensors) that have SOS decompositions, we show
that their SOS-rank is less or equal to the dimension n which is significantly smaller
than the upper bound in the above proposition. Moreover, in this case, the SOS-width
of the associated BD-tensor cone can be determined explicitly. To do this, let us recall
the definition of polynomials with bounded exponent and define the BD-tensors. Let
e∈N. Recall that f is said to be a degree m homogeneous polynomials on R

n with
bounded exponent e if

f(x) :=
∑
α

fαx
α=
∑
α

fαx
α1
1 · · ·xαn

n ,

where 0≤αj ≤ e and
∑n

j=1αj =m. We note that degree 4 homogeneous polynomials
on R

n with bounded exponent 2 is nothing but the bi-quadratic forms in dimension n.
Let us denote BDe

m,n to be the set consists of all degree m homogeneous polynomials
on R

n with bounded exponent e.
An interesting result for characterizing when a positive semi-definite (PDF) homoge-

neous polynomial with bounded exponent has SOS tensor decomposition was established
in [3] and can be stated as follows.

Lemma 4.1. Let n∈N with n≥3. Suppose e,m are even numbers and m≥4.

(1) If n≥4, then BDe
m,n∩PSDm,n⊆SOSm,n if and only if m≥ en−2;

(2) If n=3, then BDe
m,n∩PSDm,n⊆SOSm,n if and only if m=4 or m≥3e−4.

Now, we say a symmetric tensor A is a BD-tensor with order m, dimension n and
exponent e if f(x)=Axm is a degree m homogeneous polynomial on R

n with bounded
exponent e. We also define BDm,n to be the set consisting of all symmetric BD-tensors
with order m, dimension n and exponent e. It is clear that BDe

m,n is a convex cone.

Theorem 4.1. Let n∈N with n≥3. Suppose e,m are even numbers and m≥4. Let
A be a BD-tensor with order m, dimension n and exponent e. Suppose that A has an
SOS tensor decomposition. Then, we have SOSrank(A)≤n. Moreover, we have

SOS-width(BDe
m,n∩SOSm,n)=

{
1 if m= en
n otherwise.
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Proof. As A is a BD-tensor and it has SOS decomposition, the preceding lemma
implies that either (i) n≥4 and m≥ en−2 (ii) n=3 and m=4 or (iii) n=3 and m≥
3e−4. We now divide the discussion into these three cases.

Suppose that case (i) holds, i.e., n≥4 and m≥ en−2. From the construction, we
have m≤ en. If m= en, then A has the form axe

1 · · ·xe
n. Here, a≥0 because A has

SOS decomposition and e is an even number. In this case, SOSrank(A)=1. Now, let
m= en−2. Then,

Axm=xe
1 · · ·xe

n

⎛
⎝ ∑

(i,j)∈F

aijx
−1
i x−1

j

⎞
⎠ ,

for some aij ∈R, (i,j)∈F and for some F ⊆{1, . . . ,n}×{1, . . . ,n}. As e is an even number
and A has SOS decomposition, we have∑

(i,j)∈F

aijx
−1
i x−1

j ≥0 for all xi 	=0 and xj 	=0.

Thus, by continuity, Q(t1, . . . ,tn)=
∑

(i,j)∈F aijtitj is a positive semi-definite quadratic
form, and so, is at most sums of n many squares of linear functions in t1, . . . ,tn. Let

Q(t1, . . . ,tn)=
∑n

k=1

[
qk(t1, . . . ,tn)

]2
where qk are linear functions. Then,

Axm=xe
1 · · ·xe

n

(
n∑

i=1

[
qk(x

−1
1 , . . . ,x−1

n )
]2)

=

n∑
i=1

(
xe
1 · · ·xe

n

[
qk(x

−1
1 , . . . ,x−1

n )
]2)

,

Note that

xe
1 · · ·xe

n

[
qk(x

−1
1 , . . . ,x−1

n )
]2

=
[
x

e
2
1 · · ·x

e
2
n qk(x

−1
1 , . . . ,x−1

n )
]2

is a square. Thus, SOSrank(A)≤n in this case.
Suppose that case (ii) holds, i.e., n=3 and m=4. Then by Hilbert’s theorem [13],

SOSrank(A)≤3=n.
Suppose that case (iii) holds, i.e., n=3 and m≥3e−4. In the case of m= en−

2=3e−2 and m= en=3e, using similar argument as in the case (i), we see that the
conclusion follows. The only remaining case is when m=3e−4. In this case, as A is a
BD-tensor with order m, dimension 3 and exponent e and A has SOS decomposition,
we have

Axm=xe
1x

e
2x

e
3G(x−1

1 ,x−1
2 ,x−1

3 ),

where G is a positive semi-definite form and is of 3 dimension and degree 4. It then
from Hilbert’s theorem [13] that G(t1,t2,t3) can be expressed as at most the sum of 3
squares of 3-dimensional quadratic forms. Thus, using similar line of argument as in
Case (i) and noting that e≥4 (as m=3e−4 and m≥4), we have SOSrank(A)≤n=3.

Combining these three cases, we see that

SOSrank(A)≤n and SOSrank(A)=1

if m= en. In particular, we have

SOS-width(BDe
m,n∩SOSm,n)≤n and SOS-width(BDe

m,n∩SOSm,n)=1
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if m= en. To see the conclusion, we consider the homogeneous polynomial

f0(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xe
1 · · ·xe

n(
∑n

i=1x
−2
i ) if n≥3 and m= en−2

x2
1x

2
2+x2

2x
2
3+x2

3x
2
1 if n=3 and m=4

xe
1x

e
2x

e
3(x

−2
1 x−2

2 +x−2
2 x−2

3 +x−2
3 x−2

1 ) if n=3 and m=3e−4

and its associated BD-tensor A0 such that f0(x)=A0x
m. It can be directly verified

that

SOSrank(A0)=

⎧⎨
⎩

n if n≥3 and m= en−2,
3 if n=3 and m=4,
3 if n=3 and m=3e−4.

For example, in the case n≥3 and m= en−2, to see SOSrank(A0)=n, we only need
to show SOSrank(A0)≥n. Suppose on the contrary that SOSrank(A0)≤n−1. Then,
there exists r≤n−1 and homogeneous polynomial fi with degree m/2= e

2n−1 such
that

xe
1 · · ·xe

n

(
n∑

i=1

x−2
i

)
=

r∑
i=1

fi(x)
2.

This implies that for each x=(x1, . . . ,xn) with xi 	=0, i=1, . . . ,n

n∑
i=1

x−2
i =

r∑
i=1

[
fi(x)

x
e
2
1 · · ·x

e
2
n

]2

Letting ti=x−1
i , by continuity, we see that the quadratic form

∑n
i=1 t

2
i can be written

as a sum of at most r many squares of rational functions in (t1, . . . ,tn). Then, the
Cassels–Pfister Theorem [8, Theorem 17.3] (see also [8, Corollary 17.6]), implies that
the quadratic form

∑n
i=1 t

2
i can be written as a sum of at most r many sums of squares

of polynomial functions in (t1, . . . ,tn), which is impossible.
In the case n=3 and m=4, we only need to show SOSrank(A0)≥3. Suppose on

the contrary that SOSrank(A0)≤2. Then, there exist ai,bi,ci,di,ei,fi∈R, i=1,2, such
that

x2
1x

2
2+x2

2x
2
3+x2

3x
2
1=(a1x

2
1+b1x

2
2+c1x

2
3+d1x1x2+e1x1x3+f1x2x3)

2

+(a2x
2
1+b2x

2
2+c2x

2
3+d2x1x2+e2x1x3+f2x2x3)

2.

Comparing with the coefficients gives us that a1=a2= b1= b2= c1= c2=0 and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d21+d22=1

e21+e22=1

f2
1 +f2

2 =1

d1e1+d2e2=0

d1f1+d2f2=0

e1f1+e2f2=0.

From the last three equations, we see that one of d1,d2,e1,e2,f1,f2 must be zero. Let
us assume say d1=0. Then, the first equation shows d2=±1 and hence, e2=0 (by the
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fourth equation). This implies that e1=±1 and f2=0. Again, we have f1=±1 and
hence

e1f1+e2f2=(±1)(±1)+0=±1 	=0.

This leads to a contradiction.

For the last case, suppose again by contradiction that SOSrank(A0)≤2. Then,
there exist two homogeneous polynomial fi with degree m/2= 3e

2 −2 such that

xe
1x

e
2x

e
3(x

−2
1 x−2

2 +x−2
2 x−2

3 +x−2
3 x−2

1 )=

2∑
i=1

fi(x)
2.

This implies that for each x=(x1, . . . ,xn) with xi 	=0, i=1, . . . ,n

x−2
1 x−2

2 +x−2
2 x−2

3 +x−2
3 x−2

1 =

2∑
i=1

[
fi(x)

x
e
2
1 · · ·x

e
2
3

]2
.

Letting ti=x−1
i , using a similar line argument in the case m= en−2, we see that

the polynomial t21t
2
2+ t22t

2
3+ t23t

2
1 can be written as sums of 2 squares of polynomials

in (t1,t2,t3). This is impossible by the preceding case. Therefore, the conclusion fol-
lows.

Below, let us mention that calculating the exact SOS-rank of SOS tensor decom-
position is not a trivial task even for the identity tensor, and this relates to some
open question in algebraic geometry in the literature. To explain this, we recall
that the identity tensor I with order m and dimension n is given by Ii1···im =1 if
i1= · · ·= im and Ii1···im =0 otherwise. The identity tensor I induces the polynomial
fI(x)=Ixm=xm

1 + · · ·+xm
n . It is clear that, I has an SOS tensor decomposition when

m is even and the corresponding SOS-rank of I is less than or equal to n. It was con-
jectured by Reznick [39] that fI(x) cannot be written as sums of (n−1) many squares,
that is, SOSrank(I)=n. The positive answer for this conjecture in the special case of
m=n=4 was provided in [42, 43]. On the other hand, the answer for this conjecture
in the general case is still open to the best of our knowledge. Moreover, this conjec-
ture relates to another conjecture of Reznick [39] in the same paper where he showed
that the polynomial fR(x)=xn

1 + · · ·+xn
n−nx1 · · ·xn can be written as sums of (n−1)

many squares whenever n=2k for some k∈N, and he conjectured that the estimate of
the numbers of squares is sharp. Indeed, he also showed that this conjecture is true
whenever the previous conjecture of “fI(x) cannot be written as sums of (n−1) many
squares” is true.

5. Applications

In this section, we provide some applications for the SOS tensor decomposition
of the structure tensors such as finding the minimum H-eigenvalue of an even order
extended Z-tensor and testing the positive definiteness of a multivariate form. We
also provide some numerical examples/experiments to support the theoretical findings.
Throughout this section, all numerical experiments are performed on a desktop, with
3.47 GHz quad-core Intel E5620 Xeon 64-bit CPUs and 4 GB RAM, equipped with
MATLAB 2015.
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5.1. Finding the minimum H-eigenvalue of an even order symmetric ex-
tended Z-tensor. Finding the minimum eigenvalue of a tensor is an important topic
in tensor computation and multilinear algebra, and has found numerous applications
including automatic control and image processing [36]. Recently, it was shown that the
minimum H-eigenvalue of an even order symmetric Z-tensor [14, 15] can be found by
solving a sums-of-squares optimization problem, which can be equivalently reformulated
as a semi-definite programming problem, and so, can be solved efficiently. In [15], some
upper and lower estimates for the minimum H-eigenvalue of general symmetric tensors
with even order are provided via sums-of-squares programming problems. Examples
show that the estimate can be sharp in some cases.

On the other hand, it was unknown in [14, 15] that whether similar results can
continue to hold for some classes of symmetric tensors which are not Z-tensors, that
is, for symmetric tensors with possible positive entries on the off-diagonal elements. In
this section, as applications of the derived SOS decomposition of structured tensors, we
show that the class of even order symmetric extended Z-tensor serves as one such class.
To present the conclusion, the following Lemma plays an important role in our later
analysis.

Lemma 5.1 (see [36]). Let A be a symmetric tensor with even order m and dimension
n. Denote the minimum H-eigenvalue of A by λmin(A). Then, we have

λmin(A)=min
x 	=0

Axm

‖x‖mm
= min

‖x‖m=1
Axm, (5.1)

where ‖x‖m=(
∑n

i=1 |xi|m)
1
m .

Theorem 5.1 (Finding the minimum H-eigenvalue of an even order symmetric ex-
tended Z-tensor). Let m be an even number. Let A be a symmetric extended Z-tensor
with order m and dimension n. Then, we have

λmin(A)= max
μ,r∈R

{μ :fA(x)−r(‖x‖mm−1)−μ∈Σ2
m[x]},

where fA(x)=Axm and Σ2
m[x] is the set of all SOS polynomials with degree at most m.

Proof. Consider the following problem

(P ) min{Axm :‖x‖mm=1}

and denote its global minimizer by a=(a1, . . . ,an)
T ∈R

n. Clearly,
∑n

i=1a
m
i =1. Then,

λmin(A)=fA(a)=Aam. It follows that for all x∈R
n\{0}

fA(x)−λmin(A)

n∑
i=1

xm
i =fA(x)−fA(a)

n∑
i=1

xm
i

=

n∑
i=1

xm
i

(
fA(

x

(
∑n

i=1x
m
i )

1
m

)−fA(a)
)
≥0,

where the last inequality holds as m is even and x= x

(
∑n

i=1x
m
i )

1
m

belongs to the feasible

set of (P). This shows that g(x) :=fA(x)−λmin(A)
∑n

i=1x
m
i is a homogeneous polyno-

mial which always take nonnegative values. As A is an extended Z-tensor, there exist
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s∈N and index sets Γl⊆{1, . . . ,n}, l=1, . . . ,s with
⋃s

l=1Γl={1, . . . ,n} and Γl1 ∩Γl2 =∅
such that for all x∈R

n

fA(x)=
n∑

i=1

fm,ix
m
i +

s∑
l=1

∑
αl∈Ωl

fαl
xαl (5.2)

such that, for each l=1, . . . ,s, either one of the following two condition holds: (1) fαl
=0

for all but one αl∈Ωl; (2) fαl
≤0 for all αl∈Ωl. Thus,

g(x)=
n∑

i=1

(fm,i−λmin(A))xm
i +

s∑
l=1

∑
αl∈Ωl

fαl
xαl ,

is an extended Z-polynomial which always takes nonnegative values. Let B be a symmet-
ric tensor such that g(x)=Bxm. Then, B is a positive semi-definite extended Z-tensor
and so is SOS by Theorem 3.4. Thus, g(x) is an SOS polynomial with degree m. Note
that g(x)=fA(x)−λmin(A)

∑n
i=1x

m
i =fA(x)−λmin(A)(

∑n
i=1x

m
i −1)−λmin(A). This

shows that

λmin(A)≤ max
μ,r∈R

{μ :fA(x)−r(‖x‖mm−1)−μ∈Σ2
m[x]}.

To see the reverse inequality, take any (μ,r) with fA(x)−r(‖x‖mm−1)−μ∈Σ2
m[x].

Then, for all x∈R
n,

fA(x)−r(‖x‖mm−1)−μ≥0.

This shows that r≥μ and fA(x)≥ r‖x‖mm for all x∈R
n. This shows that λmin(A)≥ r≥

μ, and so, the conclusion follows.

Remark 5.1. Let A be an extended Z-tensor. As in Equation (5.2), its associated
polynomial fA can be written as fA(x)=

∑n
i=1fm,ix

m
i +
∑s

l=1

∑
αl∈Ωl

fαl
xαl . Then,

Remark 3.1 implies that

λmin(A)= max
μ,r∈R

{μ :fA(x)−r(‖x‖mm−1)−μ∈Σ2
m[x]}

= max
μ,r∈R

{μ :fA(x)−r‖x‖mm∈Σ2
m[x],r−μ≥0}

= max
μ,r∈R

{μ :
∑
i∈Γl

fm,ix
m
i +

∑
αl∈Ωl

fαl
xαl −r‖x(l)‖mm∈Σ2

m[x(l)],l=1, . . . ,s

r−μ≥0}

where, for each l=1, . . . ,s, x(l)=(xi)i∈Γl
and Σ2

m[x(l)] is the set of all SOS polynomials
in x(l).

As explained in [14,15], the sums-of-squares problem

max
μ,r∈R

{μ :fA(x)−r(‖x‖mm−1)−μ∈Σ2
m[x]}

can be equivalently rewritten as a semi-definite programming problem (SDP), and so,
can be solved efficiently. Indeed, this conversion can be done by using the commonly
used MATLAB Toolbox YALMIP [28, 29]. On the other hand, the size of the equiv-
alent SDP problem of the relaxation problem increase dramatically when the dimen-
sion/order of the tensor increases. For example, as illustrate in Table 5.1, for a 4th-
order 50-dimensional tensor, the equivalent SDP problem has 1326 variables and 316251
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constraints. Fortunately, a robust SDP software (SDPNAL [45]) has been established
recently which enables us to solve large-scale SDP (dimension up to 5000 and num-
ber of constraint of the SDP up to 1 million). This enables us to find the minimum
H-eigenvalue for medium-size tensor. Later on, we will explain how to use SDPNAL
together with the observation in Remark 5.1 to find the minimum H-eigenvalue for
large-size tensor.

We first illustrate how to compute the minimum H-eigenvalue of an extended Z-
tensor A using the above sums-of-squares problem via MATLAB Toolbox YALMIP
[28, 29] via two small-size problems. We will show the performance of the method for
various larger-size problems later.

Example 5.1. Consider the symmetric tensor A with order 6 and dimension 4 where

A111111=A222222=A333333=A444444=1,

Ai1···i6 =
1

5
, for all (i1, . . . ,i6)=σ(1,1,1,2,2,2),

Ai1···i6 =
2

5
, for all (i1, . . . ,i6)=σ(3,3,4,4,4,4),

and Ai1···i6 =0 otherwise. Here σ(i1, . . . ,i6) denotes all the possible permutation of
(i1, . . . ,i6). The associated polynomial

fA(x)=Axm=x6
1+x6

2+x6
3+x6

4+4x3
1x

3
2+6x2

3x
4
4

is an extended Z-polynomial. So, A is an extended Z- tensor. It can be easily verified
that A is not a Z-tensor. To compute its minimum H-eigenvalue, we note that the
corresponding sums-of-squares optimization problem reads

max
μ,r∈R

{μ :fA(x)−r(‖x‖66−1)−μ∈Σ2
6[x]}.

Convert this sums-of-squares optimization problem into a semi-definite programming
problem using the MATLAB Toolbox YALMIP [28, 29], and solve it by using the SDP
software SDPNAL we obtain that λmin(A)=−1. The simple code using YALMIP is
appended as follows:

sdpsettings(’solver’,’sdpnal’)

sdpvar x1 x2 x3 x4 r mu

f = x1^6+x2^6+x3^6+x4^6+4*x1^3*x2^3+6*x3^2*x4^4;

g = [(x1^6+x2^6+x3^6+x4^6)-1];

F = [sos(f-mu-r*g)];

solvesos(F,-mu,[],[r;mu])

Moreover, note from the geometric mean inequality that |x3
1x

3
2|=(x6

1)
1
2 (x6

2)
1
2 ≤ 1

2x
6
1+

1
2x

6
1. It follows that

fA(x)+‖x‖66=2x6
1+2x6

2+2x6
3+2x6

4+4x3
1x

3
2+6x2

3x
4
4≥0 for all x∈R

n.

On the other hand, consider x̄=( 6

√
1
2 ,− 6

√
1
2 ,0,0). We see that fA(x̄)+‖x̄‖66=0. This

shows that λmin(A)=min{fA(x) :‖x‖6=1}=−1. This verifies the correctness of our
computed minimum H-eigenvalue.

Example 5.2. Let α,β∈R and consider the symmetric tensor A with order 6 and
dimension 4 where

A111111=A222222=A333333=A444444=1,
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Ai1···i6 =α, for all (i1, . . . ,i6)=σ(1,1,1,2,2,2),

Ai1···i6 =β, for all (i1, . . . ,i6)=σ(3,3,3,4,4,4),

and Ai1···i6 =0 otherwise. Here σ(i1, . . . ,i6) denotes all the possible permutation of
(i1, . . . ,i6). The associated polynomial

fA(x)=Axm=x6
1+x6

2+x6
3+x6

4+20αx3
1x

3
2+20βx3

3x
3
4

is an extended Z-polynomial. So, A is an extended Z- tensor. It can be easily verified
that if either α>0 or β>0, then A is not a Z-tensor.

To compute its minimum H-eigenvalue, we randomly generate 100 instance of
(α,β)∈ [−5,5]× [−5,5]. For each (α,β), we convert the corresponding sums-of-squares
optimization problem

max
μ,r∈R

{μ :fA(x)−r(‖x‖66−1)−μ∈Σ2
6[x]}

into a semi-definite programming problem using the MATLAB Toolbox YALMIP [28,
29], and solve it by using the SDP software SDPNAL. We then compare the computed
minimum H-eigenvalue with the true minimum H-eigenvalue of A. Indeed, similar to
the preceding example, we can verify that λmin(A)=m(α,β) where

m(α,β) :=

{
1−10|α| if |α|≥ |β|,
1−10|β| if |α|< |β|.

For all the 100 generated (α,β), the maximum difference of the computed H-minimum
eigenvalue and the true H-minimum eigenvalue is 6.2039e−05.

Medium-size examples. We now consider a few medium-size examples which
involves symmetric extended Z-tensor with order up to 30 or dimension up to 60.

Example 5.3. Let m=10k with k∈N. Consider the symmetric tensor A with order
m and dimension 4 where

A1···1=A2···2=A3···3=A4···4=1,

Ai1···im =α, for all (i1, . . . ,im)=σ(1, . . . ,1︸ ︷︷ ︸
m/2

,2, . . . ,2︸ ︷︷ ︸
m/2

),

Ai1···im =β, for all (i1, . . . ,im)=σ(3, . . . ,3︸ ︷︷ ︸
m/5

,4, . . . ,4︸ ︷︷ ︸
4m/5

),

Ai1···im =β, for all (i1, . . . ,im)=σ(3, . . . ,3︸ ︷︷ ︸
4m/5

,4, . . . ,4︸ ︷︷ ︸
m/5

),

with α=2
(

m
m/2

)−1
and β=−

(
m

m/5

)−1
, and Ai1···im =0 otherwise. Here σ(i1, . . . ,im) de-

notes all the possible permutation of (i1, . . . ,im). The associated polynomial

fA(x)=Axm=xm
1 +xm

2 +xm
3 +xm

4 +2x
m
2
1 x

m
2
2 −x

m
5
3 x

4m
5

4 −x
4m
5

3 x
m
5
4 ,

is an extended Z-polynomial. So, A is an extended Z-tensor. It can be easily verified
that A is not a Z-tensor. Moreover, using weighted geometric mean inequality, we can
directly verify that the true minimum H-eigenvalue is 0.
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We compute the minimum H-eigenvalue by solving the corresponding sums-of-
squares problem for the case m=20,30, and compare with the true minimum H-
eigenvalue. The results are summarized in Table 5.1.

Example 5.4. Let n=4k with k∈N. Consider the symmetric tensor A with order 4
and dimension n where

A1111=A2222= · · ·=Annnn=n,

Ai1i2i3i4 =
1

6
, for all (i1,i2,i3,i4)=σ(4i−3,4i−2,4i−1,4i),i=1, . . . ,

n

4
,

and Ai1i2i3i4 =0 otherwise. Here σ(i1, . . . ,i4) denotes all the possible permutation of
(i1, . . . ,i4). The associated polynomial

fA(x)=Axm=n(x4
1+ · · ·+x4

n)+4

n/4∑
i=1

x4i−3x4i−2x4i−1x4i

is an extended Z-polynomial. So, A is an extended Z-tensor. It can be easily verified
that A is not a Z-tensor. Moreover, using geometric mean inequality, we can directly
verify that the true minimum H-eigenvalue is n−1.

We compute the minimum H-eigenvalue by solving the corresponding sums-of-
squares problem for the case n=20,40,50,60, and compare with the true minimum
H-eigenvalue. The results are summarized in Table 5.1.

The following table summarizes the numerical results of Example 5.2 and Example
5.3 where we compute the minimum H-eigenvalue by first converting the corresponding
sums-of-squares problem to an SDP problem using YALMIP and solving this SDP
problem using SDPNAL. In particular, the data of the following table are explained as
follows.

• m: the order of the symmetric tensor,

• n: the dimension of the symmetric tensor,

• NV : the number of variables of the equivalent SDP problem,

• NC: the number of constraints in the equivalent SDP problem,

• Com. E.: the calculated minimum H-eigenvalue,

• Tr. E.: the true minimum H-eigenvalue

• Time (YAL.): the CPU-time for converting the sums-of-squares problem to
SDP (measured in seconds).

• Time (SDP.): the CPU-time for solving SDP via SDPNAL (measured in sec-
onds).

We observe that, for all the above numerical examples, the minimum H-eigenvalues
can be found successfully for medium-size tensors.

5.2. Large size examples. Finally, we illustrate our method with an example
that using SDPNAL together with the observation in Remark 5.1 enabling us to solve
some large size tensors (dimension up to 2000).

As one can observed in Table 5.1, most of the time are occupied in YALMIP in
converting the sums-of-squares problem into an SDP problem. This process involves
matching up the coefficients of all the involved

(
m+n−1

m

)
many monomials, and so, can

be time-consuming. On the other hand, by using the sums-of-squares problem discussed
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Problem m n NV NC Com. E. Tr. E. Time Time
(YAL.) (SDP.)

Ex. 5.2 20 4 1001 1001 -1.7634e-09 0 11.9487 0.5700
Ex. 5.2 30 4 3876 6936 1.1382e-12 0 198.8141 8.2700
Ex. 5.3 4 20 231 10626 19.0000 19 4.6951 0.4763
Ex. 5.3 4 40 861 135751 39.0000 39 440.8231 1.7727
Ex. 5.3 4 50 1326 316251 49.0000 49 2365.9043 5.1109
Ex. 5.3 4 60 1891 635376 59.0000 59 9322.0631 50.2934

Table 5.1. Test results for medium size tensors

in Remark 5.1 and letting k=max1≤l≤s |Γl|, the corresponding process only involves

s
(
m+k−1

m

)
many monomials which is much smaller than

(
m+n−1

m

)
when s is large and k

is small. For example, as in Example 5.3, we can set s=n/4, k=4 and m=4, and so,
s
(
m+k−1

m

)
is of the order n; while

(
m+n−1

m

)
=
(
n+3
4

)
which is of the order n4.

The following table summarizes the numerical results of Example 5.3 with dimension
from 500 to 2000, where we compute the minimum H-eigenvalue by first converting the
corresponding sums-of-squares problem discussed in Remark 5.1 to an SDP problem
using YALMIP and solving this SDP problem using SDPNAL. We observe that, for all
the instances, the minimum H-eigenvalues can be found successfully. The meaning of
the data are the same as in Table 5.1.

Problem m n NV NC Com. E. Tr. E. Time Time
(YAL.) (SDP.)

Ex. 5.3 4 500 1250 1375 499.0000 499 4.6299 6.8295
Ex. 5.3 4 1000 2500 2750 999.0000 999 8.8298 66.5566
Ex. 5.3 4 2000 5000 5500 1999.0000 1999 20.9729 563.6903

Table 5.2. Test results for large size tensors.

5.3. Testing positive definiteness of a multivariate form. For a multivari-
ate form Axm, we say it is positive definite if Axm>0 for all x 	=0. Testing positive
definiteness of a multivariate form Axm is an important problem in the stability study of
nonlinear autonomous systems via Lyapunov’s direct method in automatic control [36].
Researchers in automatic control have studied the conditions of such positive definite-
ness intensively. However, for n≥3 and m≥4, this is, in general, a hard problem in
mathematics. A method based on eigenvalues of tensors was proposed to solve the
problem in the case where m=4 [32].

In this part, we show that testing positive definiteness of a multivariate form Axm

where A is an extended Z-tensor can be computed by sums-of-squares problem via
Theorem 5.1. Indeed, a direct consequence of Theorem 5.1 and Lemma 5.1 gives us the
following useful test.

Corollary 5.1. Let A be an extended Z-tensor. Then, the associated multivariate
form Axm is positive definite if and only if

max
μ,r∈R

{μ :fA(x)−r(‖x‖mm−1)−μ∈Σ2
m[x]}>0,

where fA(x)=Axm and Σ2
m[x] is the set of all SOS polynomials with degree at most m.
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We now use the above corollary to test the positive definiteness of extended Z-
tensors. To do this, we first generate 100 extended Z-tensors as numerical examples.
These extended Z-tensors are randomly generated by the following procedure.

Procedure 1
(i) Given (m,n,s,k,M) with m is an even number and n=sk, where n and m are

the dimension and the order of the randomly generated tensor, respectively,
and M is a large positive constant.

(ii) Randomly generate a random positive integer L and a partition of the index set
{1, . . . ,n}, {Γ1, . . . ,Γs}, such that |Γi|=k, i=1, . . . ,s and Γi∩Γi′ =∅ for all i 	= i′.
For each i=1, . . . ,s−1, generate a random multi-index (li1, . . . ,l

i
m) with lij ∈Γi,

j=1, . . . ,m and a random number āli1···lim ∈ [0,1]. Generate one randomly mth-
order k-dimensional symmetric tensor B, such that all elements of B are in the
interval [0,1].

(iii) We define extended Z-tensor A=(ai1i2···im) such that

ai1···im =

⎧⎪⎪⎨
⎪⎪⎩

(−1)LM if i1= · · ·= im= i for all i=1, . . . ,n,
āli1···lim if (i1, . . . ,im)=σ(li1, . . . ,l

i
m),li1, . . . ,l

i
m∈Γi,i∈ [s−1]

−Bi1···im if i1, . . . ,im∈Γs,
0 otherwise.

Here σ(i1, . . . ,im) denotes all the possible permutation of (i1, . . . ,im).
From the construction of A, it can be verified that A is an extended Z-tensor. Let

fA(x)=Axm. We then solve the sums-of-squares problem

max
μ,r∈R

{μ :fA(x)−r(‖x‖mm−1)−μ∈Σ2
m[x]}

and use the preceding corollary to determine whether Axm is a positive definite mul-
tivariate form or not. Here, to speed up the algorithm, as we did for the large size
tensors, we first convert the sums-of-squares problem into an SDP by using Remark
5.1 and YALMIP. Then, we solve the equivalent SDP by using the software SDPNAL.
The correctness can be verified by looking at the randomly generated positive number
L. Indeed, from the construction, if L is an even number and M is a large positive
number, then the diagonal elements will strictly dominate the sum of the off-diagonal
elements, and so, Axm is a positive definite multivariate form. On the other hand, if
L is an odd number, then the diagonal elements will be negative, and so, Axm is not a
positive definite multivariate form in this case.

The following table summarizes the results for the correctness of testing the positive
definiteness of a multivariate form generated by an extended Z-tensor. As we can see
the results, in our numerical experiment, all the 100 randomly generated instance has
been correctly identified.

m n s k M PD NPD Correctness
4 20 4 5 100 48 52 100%
4 25 5 5 100 46 54 100%
4 40 4 10 100 52 48 100%
4 60 4 15 100 45 55 100%
4 100 4 25 100 44 56 100%

6. Conclusions and remarks
In this paper, we establish SOS tensor decomposition of various even order sym-

metric structured tensors available in the current literature. These include positive
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Cauchy tensors, weakly diagonally dominated tensors, B0-tensors, double B-tensors,
quasi-double B0-tensors, MB0-tensors, H-tensors, absolute tensors of positive semi-
definite Z-tensors, and extended Z-tensors. We also examine the SOS-rank of SOS
tensor decomposition and the SOS-width for SOS tensor cones. In particular, we pro-
vide an explicit sharp estimate for SOS-rank of tensors with bounded exponent and
SOS-width for the tensor cone consisting of all such tensors with bounded exponent
that have SOS decomposition. Finally, applications for the SOS decomposition of ex-
tended Z-tensors are discussed and several numerical examples are provided.

Below, we raise some open questions which might be interesting for future work:
Question 1: Can we evaluate the SOS-rank of symmetric B0-tensors?
Question 2: Can we evaluate the SOS-rank of symmetric Z-tensors?
Question 3: Can we evaluate the SOS-rank of symmetric diagonally dominated ten-
sors?
Question 4: Can we use the techniques in Section 5 to find the minimum H-eigenvalue
of an even order symmetric structured tensor other than extended Z-tensors?
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