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Abstract In this paper, we show that if a lower-order Hankel tensor is positive semi-
definite (or positive definite, or negative semi-definite, or negative definite, or SOS),
then its associated higher-order Hankel tensor with the same generating vector, where
the higher order is a multiple of the lower order, is also positive semi-definite (or
positive definite, or negative semi-definite, or negative definite, or SOS, respectively).
Furthermore, in this case, the extremal H-eigenvalues of the higher order tensor are
bounded by the extremal H-eigenvalues of the lower order tensor, multiplied with
some constants. Based on this inheritance property, we give a concrete sum-of-squares
decomposition for each strong Hankel tensor. Then we prove the second inheritance
property of Hankel tensors, i.e., a Hankel tensor has no negative (or non-positive, or
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positive, or nonnegative) H-eigenvalues if the associated Hankel matrix of that Hankel
tensor has no negative (or non-positive, or positive, or nonnegative, respectively) eigen-
values. In this case, the extremal H-eigenvalues of the Hankel tensor are also bounded
by the extremal eigenvalues of the associated Hankel matrix, multiplied with some
constants. The third inheritance property of Hankel tensors is raised as a conjecture.

Keywords Hankel tensor · Inheritance property · Positive semi-definite tensor ·
Sum-of-squares · Convolution

Mathematics Subject Classification 15A18 · 15A69 · 65F10 · 65F15

1 Introduction

Hankel structures are widely employed in data analysis and signal processing. Not
only Hankel matrices but also higher-order Hankel tensors arise frequently in many
disciplines such as exponential data fitting [3,7,15,16], frequency domain subspace
identification [20], multidimensional seismic trace interpolation [22], and so on. Fur-
thermore, the positive semi-definite Hankel matrices are most related to the moment
problems, and one can refer to [1,8,19]. In moment problems, some necessary or
sufficient conditions for the existence of a desired measure are given as the positive
semi-definiteness of a series of Hankel matrices.

The term tensor in this paper is used to mean a multi-way array.We call the number
of indices as the order of a tensor, that is, the order of a tensor of size n1×n2×· · ·×nm
is m. Particularly, if the tensor is square, i.e., n := n1 = n2 = · · · = nm , then we call
it an mth-order n-dimensional tensor.

An mth-order Hankel tensor H ∈ C
n1×n2×···×nm is a multi-way array whose

entries are function values of the sums of indices, i.e.,

Hi1,i2,...,im = hi1+i2+···+im , ik = 0, 1, . . . , nk − 1, k = 1, 2, . . . ,m,

where the vector h = (hi )
n1+···+nm−m
i=0 is called the generating vector of this Hankel

tensor H [7,12,18,24]. The generating vector and the size parameters totally deter-
mines the Hankel tensor. Furthermore, if the size parameters change, then the same
vector can generate several Hankel tensors with variant orders and sizes. What kinds
of common properties will Hankel tensors generated by the same vector but with dif-
ferent orders share? These common properties will be called inheritance properties in
this paper.

The multiplication of a tensor T and a matrix M along kth mode (see [9, Chapter
12.4]) is defined by

(T ×k M)i1...ik−1 jk ik+1...im :=
n−1∑

ik=0

Ti1i2...im Mik jk .

When the matrix degrades into a vector, Qi [17] introduced some simple but useful
notations
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T xm := T ×1 x ×2 x · · · ×m x,

T xm−1 := T ×2 x · · · ×m x.

If there is a scalar λ ∈ C and a nonzero vector x ∈ C
n such that

T xm−1 = λx[m−1],

where x[m−1] = [xm−1
1 , xm−1

2 , . . . , xm−1
n ]�, then we call λ an eigenvalue of T and

x a corresponding eigenvector. Further when x is a real eigenvector, we call λ an
H-eigenvalue of T . An mth-order n-dimensional square tensor induces a degree-m
multivariate polynomial of n variables:

pT (x) := T xm =
n−1∑

i1,...,im=0

Ti1i2...im xi1xi2 . . . xim .

Suppose that m is even. If pT (x) is always nonnegative (positive, non-positive, or
negative) for all nonzero real vectors x, then the tensor T is called a positive semi-
definite (positive definite, negative semi-definite, or negative definite, respectively)
tensor [17]. If pT (x) can be represented as a sum of squares, then we call the tensor
T an SOS tensor [13]. Apparently, an SOS tensor must be positive semi-definite, but
the converse is generally not true.

We organize our paper in line with these spectral inheritance properties. However,
other spectral inheritance properties, such as tensor decompositions (theVandermonde
and the SOS decompositions) and the convolution formula, will also be introduced as
tools for investigating the spectral inheritance properties of Hankel tensors.

It is obvious that the positive definiteness is not well-defined for odd order tensors,
since T (−x)m = −T xm . Qi [17] proved that an even-order tensor is positive semi-
definite if and only of it has no negative H-eigenvalues. Thus we shall use the property
“no negative H-eigenvalue” instead of the positive semi-definiteness when studying
the inheritance properties of odd order Hankel tensors. The basic question about the
inheritance of the positive semi-definiteness is:

– If a lower-order Hankel tensor has no negative H-eigenvalues, does a higher-order
Hankel tensor with the same generating vector possess no negative H-eigenvalues?

We will consider two situations, i.e.,

– the lower order m is even and the higher order qm is a multiple of m, and
– the lower order is 2,

which provide the basic question with positive answers. Moreover, we guess that it is
also true when the lower order m is odd. As cannot prove it or find a counterexample,
we leave it as a conjecture.

In fact, Qi [18] showed an inheritance property of Hankel tensors. The generating
vector of aHankel tensor also generates aHankelmatrix, which is called the associated
Hankel matrix of that Hankel tensor [18]. It was shown in [18] that if the Hankel tensor
is of even order and its associated Hankel matrix is positive semi-definite, then the
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Hankel tensor is also positive semi-definite. In [18], a Hankel tensor is called a strong
Hankel tensor if its associated Hankel matrix is positive semi-definite. Thus, an even
order strong Hankel tensor is positive semi-definite. This actually is the even order
case of the second situation. In this paper, we will show that the inheritance property
holds in the second situation for odd orders.

The converse of the inheritance properties is not true. A simple case of the converse
of the inheritance properties is as follows. Suppose a higher even orderHankel tensor is
positive semi-definite. Is the Hankel matrix which shares the same generating vector
with the higher even order positive semi-definite Hankel tensor also positive semi-
definite? The answer is “no”. Actually, if the answer were “yes”, then all the even
order positive semi-definite Hankel tensors would be strong Hankel tensors. In the
literature, there aremany examples of even order positive semi-definite Hankel tensors
which are not strong Hankel tensors:

– the 4th-order 2-dimensional Hankel tensor [18] generated by

[
1, 0,− 1

6 , 0, 1
]�

,

– the 4th-order 4-dimensional Hankel tensor [6] generated by

[
8, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 8

]�
,

– the 6th-order 3-dimensional Hankel tensor [11] generated by

[
h0, 0, 0, 0, 0, 0, h6, 0, 0, 0, 0, 0, h12

]�
,

where
√
h0h12 ≥ (

560 + 70
√
70

)
h6 > 0.

The following is a summary of the inheritance properties of Hankel tensors, studied
in this paper.

The first inheritance property ofHankel tensors is that if a lower-orderHankel tensor
is positive semi-definite (positive definite, negative semi-definite, negative definite, or
SOS), then its associated higher-order Hankel tensor with the same generating vector,
where the higher order is a multiple of the lower order, is also positive semi-definite
(positive definite, negative semi-definite, negative definite, or SOS, respectively). The
inheritance property established in [18] can be regarded as a special case of this inher-
itance property. Furthermore, in this case, we show that the extremal H-eigenvalues of
the higher order tensor are bounded by the extremal H-eigenvalues of the lower order
tensor, multiplied with some constants.

In [12], it was proved that strong Hankel tensors are SOS tensors, but no con-
crete SOS decomposition was given. In this paper, by using the inheritance property
described above,we give a concrete sum-of-squares decomposition for a strongHankel
tensor.

The second inheritance property of Hankel tensors we will establish in this paper
is an extension of the inheritance property established in [18] to the odd-order case.
Normally, positive semi-definiteness and the SOS property are only well-defined for
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even order tensors. By [17], an even order symmetric tensor is positive semi-definite
if and only if it has no negative H-eigenvalues. In this paper, we will show that if
the associated Hankel matrix of a Hankel tensor has no negative (or non-positive,
or positive, or nonnegative) eigenvalues, then the Hankel tensor has also no negative
(non-positive, positive, or nonnegative, respectively) H-eigenvalues. In this case, we
show that the extremal H-eigenvalues of the Hankel tensor are also bounded by the
extremal eigenvalues of the associated Hankel matrix, multiplied with some constants.

Finally, we raise the third inheritance property of Hankel tensors as a conjecture.
This paper is organized as follows. In Sect. 2, we first introduce some basic concepts

and properties of Hankel tensors. Then by using a convolution formula, we show that
if a lower-order Hankel tensor is positive semi-definite (or positive definite, negative
semi-definite, negative definite, or SOS), then its associated higher-order Hankel ten-
sor with the same generating vector and a multiple order, is also positive semi-definite
(positive definite, negative semi-definite, negative definite, or SOS, respectively). In
this case, some inequalities to bound the extremal H-eigenvalues of the higher order
tensor by the extremal H-eigenvalues of the lower order tensor, multiplied with some
constants, are given. Based on this inheritance property, we give a concrete sum-
of-squares decomposition for each strong Hankel tensor. In Sect. 3, we investigate
some structure-preserving Vandermonde decompositions of some particular Hankel
tensors, and we prove that each strong Hankel tensor admits an augmented Vander-
monde decomposition with all positive coefficients. With this tool, we show that if the
associated Hankel matrix of a Hankel tensor has no negative (non-positive, positive, or
nonnegative) eigenvalues, then the Hankel tensor has also no negative (non-positive,
positive, or nonnegative, respectively)H-eigenvalues, i.e., the second inheritance prop-
erty of Hankel tensors holds. In this case, we show that the extremal H-eigenvalues
of the Hankel tensor are also bounded by the extremal eigenvalues of the associated
Hankel matrix, multiplied with some constants. Numerical examples are given in Sect.
4. The third inheritance property of Hankel tensors is raised in Sect. 5 as a conjecture.

2 The first inheritance property of Hankel tensors

This section is devoted to the first inheritance property of Hankel tensors. We will
prove that if a lower-order Hankel tensor is positive semi-definite or SOS, then a
Hankel tensorwith the same generating vector and a highmultiple order is also positive
semi-definite or SOS, respectively.

2.1 Hankel tensor-vector products

We shall have a close look at the nature of the Hankel structure first. In matrix theory,
the multiplications of most structured matrices, such as Toeplitz, Hankel, Vander-
monde, and Cauchy matrices, with vectors have their own analytic interpretations.
Olshevsky and Shokrollahi [14] listed several important connections between funda-
mental analytic algorithms and structuredmatrix-vectormultiplications. They claimed
that there is a close relationship between Hankel matrices and discrete convolutions.
And we will see shortly that this is also true for Hankel tensors.
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We first introduce some basic facts about discrete convolutions. Let two vectors
u ∈ C

n1 and v ∈ C
n2 . Then their convolutionw = u∗v ∈ C

n1+n2−1 is a longer vector
defined by

wk =
k∑

j=0

u jvk− j , k = 0, 1, . . . , n1 + n2 − 2,

where u j = 0 when j ≥ n1 and v j = 0 when j ≥ n2. Denote pu(ξ) and pv(ξ) as the
polynomials whose coefficients are u and v, respectively, i.e.,

pu(ξ) = u0 + u1ξ + · · · + un1−1ξ
n1−1, pv(ξ) = v0 + v1ξ + · · · + vn2−1ξ

n2−1.

Then we can verify easily that u ∗ v consists of the coefficients of the product pu(ξ) ·
pv(ξ). Another important property of discrete convolutions is that

u ∗ v = V−1
(
V

[
u
0

]
. ∗ V

[
v
0

] )

for an arbitrary (n1 + n2 − 1)-by-(n1 + n2 − 1) nonsingular Vandermonde matrix V .
In applications, the Vandermonde matrix is often taken as the Fourier matrices, since
we have fast algorithms for discrete Fourier transforms. Similarly, if there are more
vectors u1,u2, . . . ,um , then their convolution is equal to

u1 ∗ u2 ∗ · · · ∗ um = V−1
(
V

[
u1
0

]
. ∗ V

[
u2
0

]
. ∗ · · · . ∗ V

[
um
0

] )
, (2.1)

where V is a nonsingular Vandermonde matrix.
Ding, Qi, and Wei [7] proposed a fast scheme for multiplying a Hankel tensor by

vectors. The main approach is embedding a Hankel tensor into a larger anti-circulant
tensor, which can be diagonalized by the Fourier matrices. A special mth-order
N -dimensional Hankel tensor C is called an anti-circulant tensor, if its generat-
ing vector has a period N . Let the first N components of its generating vector be
c = [c0, c1, . . . , cN−1]�. Then the generating vector of C has the form

[c0, c1, . . . , cN−1, . . . , c0, c1, . . . , cN−1, c0, c1, . . . , cN−m]� ∈ C
m(N−1)+1.

Thus we often call the vector c the compressed generating vector of the anti-circulant
tensor C . Ding, Qi, and Wei proved in [7, Theorem 3.1] that an mth-order N -
dimensional anti-circulant tensor can be diagonalized by the N -by-N Fourier matrix,
i.e.,

C = D ×1 FN ×2 FN · · · ×m FN ,

where FN = (
exp( 2π ıN jk)

)N−1
j,k=0 (ı = √−1) is the N -by-N Fourier matrix, and D is

a diagonal tensor with diagonal entries ifft(c) = F−1
N c (here, “ifft” is an abbreviation

of “inverse fast Fourier transform”). Then given m vectors y1, y2, . . . , ym ∈ C
N , we

can calculate the anti-circulant tensor-vector product by
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C ×1 y1 ×2 y2 · · · ×m ym = (F−1
N c)�

(
FNy1. ∗ FNy2. ∗ · · · . ∗ FNym

)
,

where “.∗” is a Matlab-type notation for multiplying two vectors component-by-
component, and FNyk and F−1

N c can be realized via fft and ifft, respectively.
Let H be an mth-order Hankel tensor of size n1 × n2 × · · · × nm and h be its

generating vector. Taking the vector h as the compressed generating vector, we can
form an anti-circulant tensorCH of orderm and dimension N = n1+· · ·+nm−m+1.
Interestingly, we find that the Hankel tensor H is exactly the first leading principal
subtensor of CH , that is, H = CH (1 : n1, 1 : n2, . . . , 1 : nm). Hence, the Hankel
tensor-vector productH ×1 x1 ×2 x2 · · · ×m xm is equal to the anti-circulant tensor-
vector product

CH ×1

[
x1
0

]
×2

[
x2
0

]
· · · ×m

[
xm
0

]
,

where 0 denotes an all-zero vector of appropriate size. Thus it can be computed via

H ×1 x1 ×2 x2 · · · ×m xm = (F−1
N h)�

(
FN

[
x1
0

]
. ∗ FN

[
x2
0

]
. ∗ · · · . ∗ FN

[
xm
0

] )
.

Particularly, whenH is square and all the vectors are the same, i.e., n := n1 = · · · =
nm and x := x1 = · · · = xm , the homogeneous polynomial can be evaluated via

H xm = (F−1
N h)�

(
FN

[
x
0

] )[m]
, (2.2)

where N = mn−m+1, and v[m] = [vm1 , vm2 , . . . , vmN ]� stands for the componentwise
mth power of the vector v. Moreover, this scheme has an analytic interpretation.

Comparing (2.2) and (2.1), we can write immediately that

H xm = h�(x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
m

) =: h�x∗m, (2.3)

since FN = F�
N . Employing this convolution formula for Hankel tensor-vector prod-

ucts,we can derive the inheritability of positive semi-definiteness and theSOSproperty
of Hankel tensors from the lower order to the higher order.

2.2 Lower-order implies higher-order

Use Hm to denote an mth-order n-dimensional Hankel tensor with the generating
vector h ∈ R

mn−m+1, where m is even and n = qk − q + 1 for some integers
q and k. Then by the convolution formula (2.3), we have Hmxm = h�x∗m for an
arbitrary vector x ∈ C

n . Assume that Hqm is a (qm)th-order k-dimensional Hankel
tensor that shares the same generating vector h with Hm . Similarly, it holds that
Hqmyqm = h�y∗qm for an arbitrary vector y ∈ C

k .
If Hm is positive semi-definite, then it is equivalent to Hmxm = h�x∗m ≥ 0 for

all x ∈ R
n . Note that y∗qm = (y∗q)∗m . Thus for an arbitrary vector y ∈ R

k , we have

123



176 W. Ding et al.

Hqmyqm = h�y∗qm = h�(y∗q)∗m = Hm(y∗q)m ≥ 0.

Therefore, the higher-order but lower-dimensional Hankel tensorHqm is also positive
semi-definite. Furthermore, ifHm is positive definite, i.e.,Hmxm > 0 for all nonzero
vector x ∈ R

n , then Hqm is also positive definite. We may also derive the negative
definite and negative semi-definite cases similarly.

If Hm is SOS, then there are some multivariate polynomials p1, p2, . . . , pr such
that for any x ∈ R

n

Hmxm = h�x∗m = p1(x)2 + p2(x)2 + · · · + pr (x)2.

Thus we have for any y ∈ R
k

Hqmyqm = Hm(y∗q)m = p1(y∗q)2 + p2(y∗q)2 + · · · + pr (y∗q)2. (2.4)

From the definition of discrete convolutions, we know that y∗q is also a multivari-
ate polynomial about y. Therefore, the higher-order Hankel tensor Hqm is also SOS.
Moreover, the SOS rank, i.e., the minimum number of squares in the sum-of-squares
representations [5], of Hqm is no larger than the SOS rank of Hm . Hence, we sum-
marize the inheritance properties of positive semi-definiteness and the SOS property
in the following theorem.

Theorem 2.1 If an mth-order Hankel tensor is positive/negative (semi-)definite, then
the (qm)th-order Hankel tensor with positive integer q and the same generating vector
is also positive/negative (semi-)definite. If an mth-order Hankel tensor is SOS, then
the (qm)th-order Hankel tensor with the same generating vector is also SOS with no
larger SOS rank.

Let T be an mth-order n-dimensional tensor and x ∈ C
n . Recall that T xm−1

is a vector with (T xm−1)i = ∑n
i2,...,im=1Ti i2...im xi2 . . . xim . If there is a real

scalar λ and a nonzero x ∈ R
n such that T xm−1 = λx[m−1], where x[m−1] :=

[xm−1
1 , xm−1

2 , . . . , xm−1
n ]�, then we call λ an H-eigenvalue of the tensor T and x a

corresponding H-eigenvector. This concept was first introduced by Qi [17], and H-
eigenvalues are shown to be essential for investigating tensors. By [17, Theorem 5],
we know that an even order symmetric tensor is positive (semi-)definite if and only
if all its H-eigenvalues are positive (nonnegative). Applying the convolution formula,
we can further obtain a quantitative result about the extremal H-eigenvalues of Hankel
tensors. Let ‖·‖p be the p-normof vectors, i.e., ‖x‖p = (|x1|p+|x2|p+· · ·+|xn|p)1/p.
Theorem 2.2 Let Hm and Hqm be two Hankel tensors with the same generating
vector of order m and qm, respectively, where m is even. Denote the minimal and the
maximal H-eigenvalue of a tensor as λmin(·) and λmax(·), respectively. Then

λmin(Hqm) ≥
{
c1 · λmin(Hm), if Hqm is positive semi-definite,
c2 · λmin(Hm), otherwise;

and

λmax(Hqm) ≤
{
c1 · λmax(Hm), ifHqm is negative semi-definite,
c2 · λmax(Hm), otherwise,
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where c1 = miny∈Rk ‖y∗q‖mm/‖y‖qmqm and c2 = maxy∈Rk ‖y∗q‖mm/‖y‖qmqm are positive
constants depending on m, n, and q.

Proof Since Hm and Hqm are even order symmetric tensors, from [17, Theorem 5]
we have

λmin(Hm) = min
x∈Rn

Hmxm

‖x‖mm
, λmin(Hqm) = min

y∈Rk

Hqmyqm

‖y‖qmqm
,

where n = qk − q + 1.
IfHqm is positive semi-definite, i.e.,Hqmyqm ≥ 0 for all y ∈ R

k , then we denote
c1 = miny∈Rk ‖y∗q‖mm/‖y‖qmqm , which is a constant depending only on m, n, and q.
Then by the convolution formula proposed above, we have

λmin(Hqm) ≥ c1 · min
y∈Rk

Hqmyqm

‖y∗q‖mm
= c1 · min

y∈Rk

Hm(y∗q)m

‖y∗q‖mm
≥ c1 · min

x∈Rn

Hmxm

‖x‖mm
= c1 · λmin(Hm).

IfHqm is not positive semi-definite, then we denote c2 = maxy∈Rk ‖y∗q‖mm/‖y‖qmqm .
Let ŷ be a vector in Rk such that λmin(Hqm) = Hqm ŷqm/‖̂y‖qmqm < 0. Then

λmin(Hqm) ≥ c2 · Hqm ŷqm

‖̂y∗q‖mm
= c2 · Hm (̂y∗q)m

‖̂y∗q‖mm
≥ c2 · min

x∈Rn

Hmxm

‖x‖mm
=c2 · λmin(Hm).

Thuswe obtain a lower bound of theminimal H-eigenvalue ofHqm , nomatter whether
this tensor is positive semi-definite or not. The proof of the upper bound of themaximal
H-eigenvalue of Hqm is similar. 	


2.3 SOS decomposition of strong Hankel tensors

When the lower order m in Theorem 2.1 equals 2, i.e., matrix case, the (2q)th-order
Hankel tensor sharing the same generating vector with this positive semi-definite
Hankel matrix is called a strong Hankel tensor. We shall discuss strong Hankel tensors
in detail in later sections. Now we focus on how to write out an SOS decomposition
of a strong Hankel tensor following the formula (2.4). Li, Qi, and Xu [12] showed that
even order strong Hankel tensors are SOS. However, their proof is not constructive,
and no concrete SOS decomposition is given.

For an arbitrary Hankel matrix H generated by h, we can compute its Takagi fac-
torization efficiently by the algorithm proposed by Browne, Qiao, and Wei [4], where
only the generating vector rather than thewhole Hankel matrix is required to store. The
Takagi factorization can be written as H = UDU�, where U = [u1,u2, . . . ,ur ] is a
column unitary matrix (U∗U = I ) and D = diag(d1, d2, . . . , dr ) is a diagonal matrix.
When the matrix is real, the Takagi factorization is exactly the singular value decom-
position of the Hankel matrix H . Furthermore, when H is positive semi-definite, the
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diagonal matrix D has nonnegative diagonal entries. Thus the polynomial x�Hx can
be expressed as a sum of squares p1(x)2 + p2(x)2 + · · · + pr (x)2, where

pk(x) = d1/2k u�
k x, k = 1, 2, . . . , r.

Following the formula (2.4), the 2q-degree polynomialH2qy2q can also be written
as a sum of squares q1(y)2 + q2(y)2 + · · · + qr (y)2, where

qk(y) = d1/2k u�
k y

∗q , k = 1, 2, . . . , r.

Recall that any homogenous polynomial is associated with a symmetric tensor. And
an interesting observation is that the homogenous polynomial qk(y) is associated
with a qth-order Hankel tensor generated by d1/2k uk . Thus we determine an SOS

decomposition of a strong Hankel tensor H2q by r vectors d1/2k uk (k = 1, 2, . . . , r ).
And we summarize the above procedure in Algorithm 1.

Algorithm 1 An SOS decomposition of a strong Hankel tensor.
Input: The generating vector h of a strong Hankel tensor;
Output: An SOS decomposition q1(y)2 + q2(y)2 + · · · + qr (y)2 of this Hankel tensor;
1: Compute the Takagi factorization of the Hankel matrix generated by h: H = UDU�;

2: qk = d1/2k uk for k = 1, 2, . . . , r ;
3: Then qk generates a qth-order Hankel tensorQk as the coefficient tensor of each term qk (·) in the SOS

decomposition for k = 1, 2, . . . , r ;

Example 2.1 The first example is a 4th-order 3-dimensional Hankel tensorH gener-
ated by [1, 0, 1, 0, 1, 0, 1, 0, 1]� ∈ R

9. The Takagi factorization of the Hankel matrix
generated by the same vector is

⎡

⎢⎢⎢⎢⎣

1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

1√
3

0

0 1√
2

1√
3

0

0 1√
2

1√
3

0

⎤

⎥⎥⎥⎥⎥⎥⎦
·
[
3 0
0 2

]
·
[

1√
3

0 1√
3

0 1√
3

0 1√
2

0 1√
2

0

]
.

Thus by Algorithm 1, an SOS decomposition of H y4 is obtained:

( [
y1 y2 y3

] ·
⎡

⎣
1 0 1
0 1 0
1 0 1

⎤

⎦ ·
⎡

⎣
y1
y2
y3

⎤

⎦
)2

+
( [

y1 y2 y3
] ·

⎡

⎣
0 1 0
1 0 1
0 1 0

⎤

⎦ ·
⎡

⎣
y1
y2
y3

⎤

⎦
)2

= (y21 + y22 + y23 + 2y1y3)2 + (2y1y2 + 2y2y3)2.

However, the SOS decomposition is not unique, since H y4 can also be written as
1
2 (y1 + y2 + y3)4 + 1

2 (y1 − y2 + y3)4.
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3 The second inheritance property of Hankel tensors

In this section, we prove the second inheritance property of Hankel tensors, i.e., if the
associated Hankel matrix of a Hankel tensor has no negative (non-positive, positive,
or nonnegative) eigenvalues, then that Hankel tensor has no negative (non-positive,
positive, or nonnegative, respectively) H-eigenvalues. A basic tool to prove this is the
augmented Vandermonde decomposition with positive coefficients.

3.1 Strong Hankel tensors

Recall that the associated Hankel matrix of a strong Hankel tensor is positive semi-
definite. When m is even, we immediately know that an even order strong Hankel
tensor must be positive semi-definite by Theorem 2.1, which has been proved in [18,
Theorem 3.1].

Qi [18] also introduced the Vandermonde decomposition of a Hankel tensor

H =
r∑

k=1

αkv◦m
k , (3.1)

where vk is in the Vandermonde form
[
1, ξk, ξ2k , . . . , ξn−1

k

]�, v◦m := v ◦ v ◦ · · · ◦ v︸ ︷︷ ︸
m

is a rank-one tensor, and the outer product is defined by

(v1 ◦ v2 ◦ · · · ◦ vm)i1i2...im = (v1)i1(v2)i2 · · · (vm)im .

The Vandermonde decomposition is equivalent to the factorization of the generating
vector of H , i.e.,

⎡

⎢⎢⎢⎢⎢⎣

h0
h1
h2
...

hr

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

1 1 · · · 1
ξ1 ξ2 · · · ξr
ξ21 ξ22 · · · ξ2r
...

...
...

...

ξmn−m
1 ξmn−m

2 · · · ξmn−m
r

⎤

⎥⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎣

α1
α2
...

αr

⎤

⎥⎥⎥⎦ .

Since the above Vandermonde matrix is nonsingular if and only if r = mn − m + 1
and ξ1, ξ2, . . . , ξr are mutually distinct, every Hankel tensor must have such a Vander-
monde decomposition with the number of terms r in (3.1) no larger than mn−m + 1.
When the Hankel tensor is positive semi-definite, we desire that all the coefficients
αk are positive, so that each term in (3.1) is a rank-one positive semi-definite Hankel
tensor when m is even. Moreover, a real square Hankel tensorH is called a complete
Hankel tensor, if all the coefficients αk in one of its Vandermonde decompositions are
positive [18].

Nevertheless, the set of all complete Hankel tensors is not “complete”. Li, Qi, and
Xu showed in [12, Corollary1] that the mth-order n-dimensional complete Hankel
tensor cone is not closed and its closure is themth-order n-dimensional strong Hankel
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tensor cone. An obvious counterexample is e◦m
n , where en = [0, . . . , 0, 1]�. Since all

the Vandermonde vectors begin with unity and αk (k = 1, 2, . . . , r ) are positive, the
positive semi-definite Hankel tensor e◦m

n is not a complete Hankel tensor.
Fortunately, αe◦m

n is the only kind of rank-one non-complete Hankel tensors.

Proposition 3.1 If v◦m is a rank-one Hankel tensor, then

v = α[1, ξ, ξ2, . . . , ξn−1]� or α[0, 0, . . . , 0, 1]�.

Proof If v0 �= 0, then we can assume that v0 = 1 without loss of generality.
Denote v1 = ξ . Then from the definition of Hankel tensors, we have vm−2

0 v1vk−1 =
vm−1
0 vk . Hence, we can easily write vk = ξ k for k = 0, 1, . . . , n − 1, i.e.,
v = [1, ξ, ξ2, . . . , ξn−1]�.

If v0 = 0 and k < n − 1, then we have (i) v
(m−1)/2
k−1 vkv

(m−1)/2
k+1 = vmk for m is

odd, and (ii) v
m/2
k−1v

m/2
k+1 = vmk for m is even and k < n − 1. It implies that uk = 0 for

k = 0, 1, . . . , n − 2, so v = α[0, 0, . . . , 0, 1]�. 	

We will shortly show that if we add the term e◦m

n into the basis, then all the strong
Hankel tensors can be decomposed into an augmented Vandermonde decomposition

H =
r−1∑

k=1

αkv◦m
k + αre◦m

n .

Note that 1
ξn−1 [1, ξ, ξ2, . . . , ξn−1]� → en when ξ → ∞. The cone of Hankel tensors

with an augmented Vandermonde decomposition is actually the closure of the cone
of complete Hankel tensors. When a Hankel tensor H has such an augmented Van-
dermonde decomposition, its associated Hankel matrix H also has a corresponding
decomposition

H =
r−1∑

k=1

αk ṽ◦2
k + αre◦2

(n−1)m/2+1,

where ṽk = [
1, ξk, ξ2k , . . . , ξ

(n−1)m/2
k

]� and v◦2 is exactly vv�, and vice versa.
Therefore, if a positive semi-definite Hankel tensor has an augmented Vandermonde
decomposition with all positive coefficients, then it is also a strong Hankel tensor, that
is, its associated Hankel matrix must be positive semi-definite. Furthermore, when we
obtain an augmented Vandermonde decomposition of its associated Hankel matrix, we
can induce an augmented Vandermonde decomposition of the original Hankel tensor
straightforwardly. Hence, we begin with the positive semi-definite Hankel matrices.

3.2 A general vandermonde decompostion of Hankel matrices

We shall introduce the algorithm for a general Vandermonde decomposition of an
arbitrary Hankel matrix proposed by Boley, Luk, and Vandevoorde [2] in this sub-
section. Let’s begin with a nonsingular Hankel matrix H ∈ C

r×r . After we solve the
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Yule-Walker equation [9, Chapter 4.7]:

⎡

⎢⎢⎢⎢⎢⎣

h0 h1 h2 · · · hr−1
h1 h2 h3 · · · hr
...

...
... . .

. ...

hr−2 hr−1 hr · · · h2r−3
hr−1 hr hr+1 · · · h2r−2

⎤

⎥⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎢⎣

a0
a1
a2
...

ar−1

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

hr
hr+1

...

h2r−2
γ

⎤

⎥⎥⎥⎥⎥⎦
,

we obtain an r term recurrence for k = r, r + 1, . . . , 2r − 2, i.e.,

hk = ar−1hk−1 + ar−2hk−2 + · · · + a0hk−r .

Denote C the companion matrix [9, Chapter 7.4.6] corresponding to the polynomial
p(λ) = λr − ar−1λ

r−1 − · · · − a0λ0, i.e.,

C =

⎡

⎢⎢⎢⎢⎢⎣

0 1
0 1

. . .
. . .

0 1
a0 a1 · · · ar−2 ar−1

⎤

⎥⎥⎥⎥⎥⎦
.

Let the Jordan canonical formofC beC = V� JV−�,where J = diag{J1, J2, . . . , Js}
and Jl is the kl × kl Jordan block corresponding to eigenvalue λl . Moreover, the non-
singular matrix V has the form

V = [
v, J�v, (J�)2v, . . . , (J�)r−1v

]
,

where v = [e�
k1,1

, e�
k2,1

, . . . , e�
ks ,1

]� is a vector partitioned conformably with J and
ekl ,1 is the first kl -dimensional unit coordinate vector. This kind of V is often called
a confluent Vandermonde matrix. When the multiplicities of all the eigenvalues of C
equal one, the matrix V is exactly a Vandermonde matrix.

Denote h0 as the first column of H and w = V−�h0. There exists a unique block
diagonal matrix D = diag{D1, D2, . . . , Ds}, which is also partitioned conformably
with J , satisfying

Dv = w and DJ� = J D.

Moreover, each block Dl is a kl -by-kl upper anti-triangular Hankel matrix. If we
partitionw = [w1,w2, . . . ,ws]� conformablywith J , then the lth block is determined
by

Dl =

⎡

⎢⎢⎢⎣

(wl)1 (wl)2 · · · (wl)kl
(wl)2 · · · (wl)kl 0

... . .
.

. .
. ...

(wl)kl 0 · · · 0

⎤

⎥⎥⎥⎦ .
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Finally, we obtain a general Vandermonde decomposition of the full-rank Hankel
matrix

H = V�DV .

If the leading r × r principal submatrix, i.e., H(1 : r, 1 : r), of an n × n rank-
r Hankel matrix H is nonsingular, then H admits the Vandermonde decomposition
H = (Vr×n)

�Dr×r Vr×n , which is induced by the decomposition of the leading r × r
principal submatrix.

Nevertheless, this generalized Vandermonde decomposition is insufficient for dis-
cussing the positive definiteness of a real Hankel matrix, since the factors V and D
could be complex even though H is a real matrix. We shall modify this decomposition
into a general real Vandermonde decomposition. Assume that two eigenvalues λ1 and
λ2 of C form a pair of conjugate complex numbers. Then the corresponding parts in
D and V are also conjugate, respectively. That is,

[
V�
1 V�

2

] ·
[
D1

D2

]
·
[
V1
V2

]
= [

V�
1 V̄�

1

] ·
[
D1

D̄1

]
·
[
V1
V̄1

]
.

Note that

[
u + vı u − vı

] ·
[
a + bı

a − bı

]
·
[
u� + v�ı
u� − v�ı

]
= [

u v
] · 2

[
a −b

−b −a

]
·
[
u�
v�

]
.

Denote the j th column of V�
1 as u j + v j ı and the j th entry of the first column of D1

is a j + b j ı , where ı = √−1 and u j , v j , a j , b j are all real. Then

[
V�
1 V�

2

] ·
[
D1

D2

]
·
[
V1
V2

]

= [
u1 v1 . . . uk1 vk1

] ·

⎡

⎢⎢⎢⎣

�1 �2 · · · �k1
�2 · · · �k1 O
... . .

.
. .
. ...

�kl O · · · O

⎤

⎥⎥⎥⎦ ·

⎡

⎢⎢⎢⎢⎢⎣

u�
1

v�
1
...

u�
k1

v�
k1

⎤

⎥⎥⎥⎥⎥⎦
,

where the 2-by-2 block � j is

� j = 2

[
a j −b j

−b j −a j

]
.

If we perform the same transformations to all the conjugate eigenvalue pairs, then
we obtain a real decomposition of the real Hankel matrix H = V̂� D̂V̂ . Here, each
diagonal block of D̂ corresponding to a real eigenvalue ofC is an upper anti-triangular
Hankel matrix, and each corresponding to a pair of conjugate eigenvalues is an upper
anti-triangular block Hankel matrix with 2-by-2 blocks.
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We claim that if the Hankel matrix H is positive semi-definite, then all the eigen-
values of C are real and of multiplicity one. This can be seen by recognizing that the
following three cases of the diagonal blocks of D̂ cannot be positive semi-definite:
(1) an anti-upper triangular Hankel block whose size is larger than 1, (2) a 2-by-2

block � j = 2
[

a j −b j
−b j −a j

]
, and (3) a block anti-upper triangular Hankel block with

the blocks in case (2). Therefore, when a real rank-r Hankel matrix H is positive
semi-definite and its leading r × r principal submatrix is positive definite, the block
diagonal matrix D̂ in the generalized real Vandermonde decomposition must be diag-
onal. Hence this Hankel matrix admits a Vandermonde decomposition with r terms
and positive coefficients:

H =
r∑

k=1

αkvkv�
k , αk > 0, vk = [

1, ξk, . . . , ξ
n−1
k

]�
.

This result for positive definite Hankel matrices is known [23, Lemma 0.2.1].

3.3 An augmented vandermonde decomposition of Hankel tensors

However, the associated Hankel matrix of a Hankel tensor does not necessarily have
a full-rank leading principal submatrix. Thus we shall study whether a positive semi-
definite Hankel matrix can always decomposed into the form

H =
r−1∑

k=1

αkvkv�
k + αrene�

n , αk ≥ 0.

We first need a lemma about the rank-one modifications on a positive semi-definite
matrix. Denote the range and the kernel of a matrix A as Ran(A) and Ker(A), respec-
tively.

Lemma 3.1 Let A be a positive semi-definite matrix with rank(A) = r . Then there
exists a unique α > 0 such that A − αuu� is positive semi-definite with rank(A −
αuu�) = r − 1, if and only if u is in the range of A.

Proof The condition rank(A − αuu�) = rank(A) − 1 obviously indicates that u ∈
Ran(A). Thus we only need to prove the “if” part of the statement.

Let the nonzero eigenvalues of A be λ1, λ2, . . . , λr and the corresponding eigen-
vectors be x1, x2, . . . , xr , respectively. Since u ∈ Ran(A), we can write u =
μ1x1 + μ2x2 + · · · + μrxr . Note that rank(A − αuu�) = rank(A) − 1 also implies
dim Ker(A − αuu�) = dimKer(A) + 1, and equivalently there exists a unique sub-
space span{p} such that Ap = αu(u�p) �= 0. Write p = η1x1 + η2x2 + · · · + ηrxr .
Then there exists a unique linear combination and a unique scalar α satisfying

ηi = μi/λi (i = 1, 2, . . . , r), α = (
μ2
1/λ1 + · · · + μ2

r /λr
)−1

.
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Then we verify the positive semi-definiteness of A − αuu�. For any x = ξ1x1 +
ξ2x2 + · · · + ξrxr in the range of A, we have

x�Ax = ξ21λ1 + · · · + ξ2r λr , u�x = μ1ξ1 + · · · + μr ξr .

Alongwith the expression of α, the Hölder inequality indicates that x�Ax ≥ α(u�x)2,
i.e., the rank-(r − 1) matrix A − αuu� is also positive semi-definite. 	


The following theorem tells that the leading (r − 1) × (r − 1) principal submatrix
of a rank-r positive semi-definite Hankel matrix is always full-rank, even when the
leading r × r principal submatrix is rank deficient.

Theorem 3.1 Let H ∈ R
n×n be a positive semi-definite Hankel matrix with

rank(H) = r . If the last column H(:, n) is linearly dependent of the first n − 1
columns H(:, 1 : n − 1), then the leading r × r principal submatrix H(1 : r, 1 : r) is
positive definite. If H(:, n) is linearly independent of H(:, 1 : n − 1), then the leading
(r − 1) × (r − 1) principal submatrix H(1 : r − 1, 1 : r − 1) is positive definite.

Proof We apply the mathematical induction on the dimension n. First, the statement
is apparently true for 2 × 2 positive semi-definite Hankel matrices. Assume that the
statement holds for (n − 1) × (n − 1) Hankel matrices, then we consider the n × n
case.

Case 1: When the last column H(:, n) is linearly dependent of the first n − 1
columns H(:, 1 : n−1), the submatrix H(1 : n−1, 1 : n−1) is also a rank-r positive
semi-definite Hankel matrix. Then from the induction hypothesis, H(1 : r, 1 : r) is
full rank if H(1 : n − 1, n − 1) is linearly dependent of H(1 : n − 1, 1 : n − 2),
and H(1 : r − 1, 1 : r − 1) is full rank otherwise. We shall show that the column
H(1 : n − 1, n − 1) is always linearly dependent of H(1 : n − 1, 1 : n − 2).

Assuming on the contrary, the leading (r − 1) × (r − 1) principal submatrix H(1 :
r − 1, 1 : r − 1) is positive definite, and the rank of H(1 : n − 2, 1 : n − 1) is r − 1.
Since the column H(:, n) is linear dependent of the previous (n−1) columns, the rank
of H(1 : n − 2, :) is also r − 1. Thus the rectangular Hankel matrix H(1 : n − 2, :)
has a Vandermonde decomposition

H(1 : n − 2, :) =
r−1∑

k=1

αk

⎡

⎢⎢⎢⎣

1
ξk
...

ξn−3
k

⎤

⎥⎥⎥⎦
[
1 ξk · · · ξn−2

k ξn−1
k

]
.

Since H(n−1, n−1) = H(n−2, n), the square Hankel matrix H(1 : n−1, 1 : n−1)
has a corresponding decomposition

H(1 : n − 1, 1 : n − 1) =
r−1∑

k=1

αk

⎡

⎢⎢⎢⎣

1
ξk
...

ξn−2
k

⎤

⎥⎥⎥⎦
[
1 ξk · · · ξn−2

k

]
.
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This contradicts with rank
(
H(1 : n−1, 1 : n−1)

) = r . Therefore, H(1 : n−1, n−1)
must be linearly dependent of H(1 : n − 1, 1 : n − 2). Hence, the leading principal
submatrix H(1 : r, 1 : r) is positive definite.

Case 2: When the last column H(:, n) is linearly independent of the first n − 1
columns H(:, 1 : n − 1), it is equivalent to that en is in the range of H . Thus, from
Lemma 3.1, there exists a scalar αr such that H − αrene�

n is rank-(r − 1) and also
positive semi-definite. Referring back to Case 1, we know that the leading principal
submatrix H(1 : r − 1, 1 : r − 1) is positive definite. 	


Following the above theorem, when H(:, n) is linearly dependent of H(:, 1 : n−1),
the leading r × r principal submatrix H(1 : r, 1 : r) is positive definite. Thus H has
a Vandermonde decomposition with all positive coefficients

H =
r∑

k=1

αkvkv�
k , αk > 0, vk = [

1, ξk, . . . , ξ
n−1
k

]�
.

When H(:, n) is linearly independent of H(:, 1 : n− 1), the leading (r − 1)× (r − 1)
principal submatrix H(1 : r − 1, 1 : r − 1) is positive definite. Thus H has an
augmented Vandermonde decomposition with positive coefficients:

H =
r−1∑

k=1

αkvkv�
k + αrene�

n , αk > 0, vk = [
1, ξk, . . . , ξ

n−1
k

]�
.

Combining the definition of strong Hankel tensors and the analysis at the end of Sect.
3.1, we arrive at the following theorem.

Theorem 3.2 Let H be an mth-order n-dimensional Hankel tensor and the rank of
its associated Hankel matrix be r . Then it is a strong Hankel tensor if and only if it
admits a Vandermonde decomposition with positive coefficients:

H =
r∑

k=1

αkv◦m
k , αk > 0, vk = [

1, ξk, . . . , ξ
n−1
k

]�
, (3.2)

or an augmented Vandermonde decomposition with positive coefficients:

H =
r−1∑

k=1

αkv◦m
k + αre◦m

n , αk > 0, vk = [
1, ξk, . . . , ξ

n−1
k

]�
. (3.3)

After Theorem 3.2, the strong Hankel tensor cone is understood thoroughly. The
polynomials induced by strong Hankel tensors are not only positive semi-definite and
sum-of-squares, as proved in [18, Theorem 3.1] and [12, Corollary 2], but also sum-
of-mth-powers. The detailed algorithm for computing an augmented Vandermonde
decomposition of a strong Hankel tensor is displayed as follows.
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Algorithm 2 Augmented Vandermonde decomposition of a strong Hankel tensor.
Input: The generating vector h of a strong Hankel tensor;
Output: Coefficients αk ; Poles ξk ;
1: Compute the Takagi factorization of the Hankel matrix H generated by h: H = UDU�;
2: Recognize the rank r of H and whether en is in the range of U ;
3: If r < n, then
4: If en ∈ Ran(U ), then
5: ξr = Inf;

6: αr = (∑r
j=1U (n, j)2/D( j, j)

)−1;
7: Apply Algorithm 2 for the strong Hankel tensor generated by [h0, . . . , hmn−m−1, hmn−m −αr ]

to compute αk and ξk for k = 1, 2, . . . , r − 1;
8: ElseIf en /∈ Ran(U ), then
9: a = U (1 : r, 1 : r)−�D(1 : r, 1 : r)−1U (1 : r, 1 : r)−1h(r : 2r − 1);
10: EndIf
11: Else
12: a = U (1 : r, 1 : r)−�D(1 : r, 1 : r)−1U (1 : r, 1 : r)−1[h(r : 2r − 2)�, γ ]�, where γ is

arbitrary;
13: EndIf
14: Compute the roots ξ1, ξ2, . . . , ξr of the polynomial

p(ξ) = ξr − ar−1ξ
r−1 − · · · − a0ξ

0;

15: Solve the Vandermonde system

⎡

⎢⎢⎢⎣

1 1 · · · 1
ξ1 ξ2 · · · ξr
.
.
.

.

.

. · · ·
.
.
.

ξr−1
1 ξr−1

2 · · · ξr−1
r

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

α1
α2
.
.
.

αr

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

h0
h1
.
.
.

hr−1

⎤

⎥⎥⎥⎦ ;

16: return αk , ξk for k = 1, 2, . . . , r ;

Example 3.1 An mth-order n-dimensional Hilbert tensor (see [21]) is defined by

H (i1, i2, . . . , im) = 1

i1 + i2 + · · · + im + 1
, i1, . . . , im = 0, 1, . . . , n − 1.

Apparently, a Hilbert tensor is a special Hankel tensor with the generating vector[
1, 1

2 ,
1
3 , . . . ,

1
mn−m+1

]�. Moreover, its associated Hankel matrix is a Hilbert matrix,
which is well-known to be positive definite [21]. Thus a Hilbert tensor must be a strong
Hankel tensor.

We take the 4th-order 5-dimensional Hilbert tensor, which is generated by[
1, 1

2 ,
1
3 , . . . ,

1
17

]�, as the second example. Applying Algorithm 2 and taking γ = 1
18

in the algorithm, we obtain a standard Vandermonde decomposition of

H =
9∑

k=1

αkv◦4
k , vk = [

1, ξk, . . . , ξ
n−1
k

]�
,

where αk and ξk are displayed in the following table.
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k 1 2 3 4 5 6 7 8 9

ξk 0.9841 0.9180 0.8067 0.6621 0.5000 0.3379 0.1933 0.0820 0.0159
αk 0.0406 0.0903 0.1303 0.1562 0.1651 0.1562 0.1303 0.0903 0.0406

From the computational result, we can see that a Hilbert tensor is actually a non-
negative strong Hankel tensor with a nonnegative Vandermonde decomposition.

Then we test some strong Hankel tensors without standard Vandermonde decom-
positions.

Example 3.2 Randomly generate two real scalars ξ1, ξ2. Thenwe construct a 4th-order
n-dimensional strong Hankel tensor by

H =

⎡

⎢⎢⎢⎢⎢⎣

1
0
...

0
0

⎤

⎥⎥⎥⎥⎥⎦

◦4

+

⎡

⎢⎢⎢⎢⎢⎣

1
ξ1
...

ξn−2
1

ξn−1
1

⎤

⎥⎥⎥⎥⎥⎦

◦4

+

⎡

⎢⎢⎢⎢⎢⎣

1
ξ2
...

ξn−2
2

ξn−1
2

⎤

⎥⎥⎥⎥⎥⎦

◦4

+

⎡

⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤

⎥⎥⎥⎥⎥⎦

◦4

.

For instance, we set the size n = 10 and apply Algorithm 2 to obtain an augmented
Vandermonde decomposition of H . We repeat this experiment for 10, 000 times,
and the average relative error between the computational solutions ξ̂1, ξ̂2 and the
exact solution ξ1, ξ2 is 4.7895× 10−12. That is, our algorithm recover the augmented
Vandermonde decomposition ofH accurately.

3.4 The second inheritance property of Hankel tensors

Employing the augmented Vandermonde decomposition, we can prove the following
theorem.

Theorem 3.3 If a Hankel matrix has no negative (non-positive, positive, or nonneg-
ative) eigenvalues, then all of its associated higher-order Hankel tensors have no
negative (non-positive, positive, or nonnegative, respectively) H-eigenvalues.

Proof This statement for even order case is a direct corollary of Theorem 2.1.
Suppose that the Hankel matrix has no negative eigenvalues. When the order m is

odd, decompose an mth-order strong Hankel tensor H into H = ∑r−1
k=1 αkv◦m

k +
αre◦m

n with αk ≥ 0 (k = 1, 2, . . . , r ). Then for an arbitrary vector x, the first entry of
H xm−1 is

(H xm−1)1 =
r−1∑

k=1

(vk)1 · αk(v�
k x)

m−1 =
r−1∑

k=1

αk(v�
k x)

m−1 ≥ 0.

If H has no H-eigenvalues, then the theorem is proven. Assume it has at least one
H-eigenvalue λ and let x be a corresponding H-eigenvector. Then when x1 �= 0, from
the definition we have
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λ = (H xm−1)1/x
m−1
1 ≥ 0,

since m is odd. When x1 = 0, we know that (H xm−1)1 must also be zero, thus all
the item αk(v�

k x)
m−1 = 0 for k = 1, 2, . . . , r − 1. So the tensor-vector product

H xm−1 =
r−1∑

k=1

vk · αk(v�
k x)

m−1 + en · αr x
m−1
n = en · αr x

m−1
n ,

and it is apparent that x = en and λ = αr xm−1
n , where the H-eigenvalue λ is nonneg-

ative. The other cases can be proved similarly. 	

When the Hankel matrix has no negative eigenvalue, it is positive semi-definite,

i.e., the associated Hankel tensors are strong Hankel tensors, which may be of either
even or odd order. Thus, we have the following corollary.

Corollary 3.1 [12] Strong Hankel tensors have no negative H-eigenvalues.

We also have a quantitative version of the second inheritance property.

Theorem 3.4 Let H be an mth-order n-dimensional Hankel tensor, and H be its
associated Hankel matrix. If H is positive semi-definite, then

λmin(H ) ≥ c · λmin(H),

where c = miny∈Rn ‖y∗m
2 ‖22/‖y‖mm if m is even, and c = miny∈Rn ‖y∗m−1

2 ‖22/‖y‖m−1
m−1

if m is odd, both dependent on m and n. If H is negative semi-definite, then

λmax(H ) ≤ c · λmax(H).

Proof When the minimal eigenvalue of H equals 0, the above equality holds for any
nonnegative c. Moreover, when the order m is even, Theorem 2.2 gives the constant
c. Thus, we need only to discuss the situation that H is positive definite and m is odd.

Since H is positive definite, the Hankel tensor H has a standard Vandermonde
decomposition with positive coefficients:

H =
r∑

k=1

αkv◦m
k , αk > 0, vk = [

1, ξk, . . . , ξ
n−1
k

]�
,

where ξ1, ξ2, . . . , ξr are mutually distinct. Then by the proof of Theorem 3.3, for any
nonzero x ∈ R

n ,

(H xm−1)1 =
r∑

k=1

αk(v�
k x)

m−1 > 0,

since [v1, v2, . . . , vr ] spans the whole space. So if λ and x are an H-eigenvalue and a
corresponding H-eigenvector of H , then λ must be positive and the first entry x1 of
x must be nonzero.
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Let h ∈ R
m(n−1)+1 be the generating vector of both the Hankel matrix H and the

Hankel tensorH . Denote h1 = h
(
1 : (m − 1)(n− 1)+ 1

)
, which generates a Hankel

matrix H1 and an (m−1)st-order Hankel tensorH1. Note that H1 is a leading principal
submatrix of H and H1 is exactly the first row tensor of H , i.e., H (1, :, :, . . . , :).
Then we have

λ = (H xm−1)1

xm−1
1

= H1xm−1

xm−1
1

≥ H1xm−1

‖x‖m−1
m−1

.

Nowm−1 is an even number, then we know from Theorem 2.2 that there is a constant
c such that λmin(H1) ≥ c · λmin(H1). Therefore, for each existing H-eigenvalue λ of
H , we obtain

λ ≥ λmin(H1) ≥ c · λmin(H1) ≥ c · λmin(H).

The last inequality holds because H1 is a principal submatrix of H [9, Theorem 8.1.7].
	


When m is even, the parameter c in the theorem can be rewritten into

c = min
y∈Rn

‖y∗m
2 ‖22

‖y‖mm
= 1

N

(
min
y∈Rn

‖F̂Ny‖m
‖y‖m

)m

= Nm−1

‖F̂∗
N‖mm

,

where N = (n − 1)m/2+ 1 and F̂N = FN (:, 1 : n). Moreover, the matrix m-norm in
the above equation can be computed by algorithms such as in [10].

It is unclear whether we have a similar quantitative form of the extremal H-
eigenvalues of a Hankel tensor when its associated Hankel matrix has both positive
and negative eigenvalues.

4 The third inheritance property of Hankel tensors

We have proved two inheritance properties of Hankel tensors in this paper. We now
raise the third inheritance property of Hankel tensors as a conjecture.

Conjecture If a lower-order Hankel tensor has no negative H-eigenvalues, then its
associated higher-order Hankel tensor with the same generating vector, where the
higher order is a multiple of the lower order, also has no negative H-eigenvalues.

We see that the first inheritance property of Hankel tensors established in Sect. 2 is
only a special case of this inheritance property, i.e., the lower-order Hankel tensor is of
even-order. At this moment, we are unable to prove or to disprove this conjecture if the
lower-order Hankel tensor is of odd-order. However, if this conjecture is true, then it is
of significance. If the lower-order Hankel tensor is of odd-order while the higher-order
Hankel tensor is of even-order, then the third inheritance property would provide a
new way to identify some positive semi-definite Hankel tensors and a link between
odd-order symmetric tensors of no negative H-eigenvalues and positive semi-definite
symmetric tensors.
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