Positive semi-definiteness and sum-of-squares property of fourth order four dimensional Hankel tensors

Yannan Chen ${ }^{\text {a }}$, Liqun Qi ${ }^{\text {b,* }}$, Qun Wang ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, China
${ }^{\text {b }}$ Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

A R TICLE INFO

Article history:

Received 14 April 2015
Received in revised form 13 January 2016

MSC:

15A18
15A69

Keywords:

Hankel tensor
Generating vector
Sum of squares
Positive semi-definiteness
PNS-free

Abstract

A symmetric positive semi-definite (PSD) tensor, which is not sum-of-squares (SOS), is called a PSD non-SOS (PNS) tensor. Is there a fourth order four dimensional PNS Hankel tensor? The answer for this question has both theoretical and practical significance. Under the assumptions that the generating vector \mathbf{v} of a Hankel tensor \mathcal{A} is symmetric and the fifth element v_{4} of \mathbf{v} is fixed at 1 , we show that there are two surfaces M_{0} and N_{0} with the elements $v_{2}, v_{6}, v_{1}, v_{3}, v_{5}$ of \mathbf{v} as variables, such that $M_{0} \geq N_{0}, \mathcal{A}$ is SOS if and only if $v_{0} \geq M_{0}$, and \mathcal{A} is PSD if and only if $v_{0} \geq N_{0}$, where v_{0} is the first element of \mathbf{v}. If $M_{0}=N_{0}$ for a point $P=\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}$, there are no fourth order four dimensional PNS Hankel tensors with symmetric generating vectors for such $v_{2}, v_{6}, v_{1}, v_{3}, v_{5}$. Then, we call such P a PNS-free point. We prove that a 45 -degree planar closed convex cone, a segment, a ray and an additional point are PNS-free. Numerical tests check various grid points and report that they are all PNS-free.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In 1888, young Hilbert [1] proved that for homogeneous polynomials, only in the following three cases, a positive semi-definite (PSD) form definitely is a sum-of-squares (SOS) polynomial: (1) $m=2$; (2) $n=2$; (3) $m=4$ and $n=3$, where m is the degree of the polynomial and n is the number of variables. Hilbert proved that in all the other possible combinations of n and even m, there are PSD non-SOS (PNS) homogeneous polynomials. The most well-known PNS homogeneous polynomial is the Motzkin function [2] with $m=6$ and $n=3$. Other examples of PNS homogeneous polynomials were found in [3-6].

A homogeneous polynomial is uniquely corresponding to a symmetric tensor [7]. For a symmetric tensor, m is its order and n is its dimension. One important class of symmetric tensors is the Hankel tensor. Hankel tensors have important applications in signal processing [8-10], automatic control [11], and geophysics [12,13]. For example, Papy et al. [14,15] proposed a novel Hankel tensor model to analyze time-domain signals in nuclear magnetic resonance spectroscopy, which is used for brain tumor detection [16]. A fast computational framework for products of a Hankel tensor and vectors is addressed in Ding et al. [17]. In geophysics, Trickett et al. [13] established a new multidimensional seismic trace interpolator by using Hankel tensors.

In mathematical science, Luque and Thibon [18] studied the Hankel hyperdeterminants. Xu [19] studied the spectra of Hankel tensors and gave some upper bounds and lower bounds for the smallest and the largest eigenvalues. In [20], two

[^0]classes of PSD Hankel tensors were identified. They are even order strong Hankel tensors and even order complete Hankel tensors. It was proved in [21] that complete Hankel tensors are strong Hankel tensors, and even order strong Hankel tensors are SOS tensors. It was also shown there that there are SOS Hankel tensors and PSD Hankel tensors, which are not strong Hankel tensors. Thus, a question was raised in [21]: Are all PSD Hankel tensors SOS tensors [22,23]? If there are no PSD non-SOS Hankel tensors, the problem for determining a given even order Hankel tensor is PSD or not can be answered by solving a semi-definite linear programming problem [21,24,25].

We may call the problem raised by the above question as the Hilbert-Hankel problem. In a certain sense, it is the Hilbert problem with a Hankel constraint. According to Hilbert [1,6], one case with low values of m and n, in which there are PNS homogeneous polynomials, is that $m=6$ and $n=3$. In [26], the Hilbert-Hankel problem with order six and dimension three was studied. Four special cases were analyzed. Thousands of random examples were checked. No PNS Hankel tensors of order six and dimension three were found in [26]. Theoretically, it is still an open problem whether there are PNS Hankel tensors of order six and dimension three or not.

According to Hilbert [1,6], another case with low values of m and n, in which there are PNS homogeneous polynomials, is that $m=n=4$. In this paper, we consider this special case in a Hankel context. Let $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{12}\right)^{\top} \in \mathfrak{R}^{13}$. A fourth order four dimensional Hankel tensor $\mathcal{A}=\left(a_{i_{1} i_{2} i_{3} i_{4}}\right)$ is defined by

$$
a_{i_{1} i_{2} i_{3} i_{4}}=v_{i_{1}+i_{2}+i_{3}+i_{4}-4},
$$

for $i_{1}, i_{2}, i_{3}, i_{4}=1,2,3,4$. The corresponding vector \mathbf{v} that defines the Hankel tensor \mathcal{A} is called the generating vector of \mathcal{A}. For $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top} \in \mathfrak{R}^{4}$, a Hankel tensor \mathcal{A} uniquely defines a Hankel polynomial

$$
\begin{equation*}
f(\mathbf{x}) \equiv \mathcal{A} \mathbf{x}^{\otimes 4}=\sum_{i_{1}, i_{2}, i_{3}, i_{4}=1}^{4} a_{i_{1} i_{2} i_{3} i_{4}} x_{i_{1}} x_{i_{2}} x_{i_{3}} x_{i_{4}}=\sum_{i_{1}, i_{2}, i_{3}, i_{4}=1}^{4} v_{i_{1}+i_{2}+i_{3}+i_{4}-4} x_{i_{1}} x_{i_{2}} x_{i_{3}} x_{i_{4}} . \tag{1}
\end{equation*}
$$

If $f(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \mathfrak{R}^{4}$, the Hankel tensor \mathcal{A} is called positive semi-definite (PSD). If $f(\mathbf{x})$ can be represented as a sum of squares of quadratic homogeneous polynomials, the Hankel tensor \mathscr{A} is called sum-of-squares (SOS). Clearly, \mathcal{A} is PSD if it is SOS.

In the next section, we present some necessary conditions for the positive semi-definiteness of fourth order four dimensional Hankel tensors.

We may see that the role of v_{j} is symmetric in $f(\mathbf{x})$. In Section 3, we assume that

$$
\begin{equation*}
v_{j}=v_{12-j} \tag{2}
\end{equation*}
$$

for $j=0, \ldots, 5$. Under this assumption, by the results of Section 2, if \mathscr{A} is PSD, we have $v_{0}=v_{12} \geq 0$ and $v_{4}=v_{8} \geq 0$. Moreover, if $v_{4}=v_{8}=0$ and \mathscr{A} is PSD, \mathcal{A} is SOS. Thus, we may only consider the case that $v_{4}=v_{8}>0$. Since \mathcal{A} is PSD or SOS or PNS if and only if $\alpha \mathcal{A}$ is PSD or SOS or PNS respectively, where α is an arbitrary positive number, we may simply assume that

$$
\begin{equation*}
v_{4}=v_{8}=1 \tag{3}
\end{equation*}
$$

Next, we show that there is a function $\eta\left(v_{5}, v_{6}\right)$ such that $\eta\left(v_{5}, v_{6}\right) \leq 1$ if \mathcal{A} is PSD. We propose that there are two functions $M_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right) \geq N_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)$, defined for $\eta\left(v_{5}, v_{6}\right)<1$, such that \mathcal{A} is SOS if and only if $v_{0} \geq M_{0}$, and \mathcal{A} is PSD if and only if $v_{0} \geq N_{0}$. If $M_{0}=N_{0}$ for some $v_{2}, v_{6}, v_{1}, v_{3}, v_{5}$, then there are no fourth order four dimensional PNS Hankel tensors for such $v_{2}, v_{6}, v_{1}, v_{3}, v_{5}$ under the symmetric assumption (2). We call such a point $P=\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top} \in \mathfrak{R}^{5}$ a PNS-free point of fourth order four dimensional Hankel tensors, or simply a PNS-free point. We call the set of points in \mathfrak{R}^{5}, satisfying $\eta\left(v_{5}, v_{6}\right)<1$, the effective domain of fourth order four dimensional Hankel tensors, or simply the effective domain, and denote it by S. We show that if all the points in S are PNS-free, then there are no fourth order four dimensional PNS Hankel tensors with symmetric generating vectors.

In Section 4, we show that a point P in S is PNS-free if there is a value M, such that when $v_{0}=M, f_{0}(\mathbf{x}) \equiv f(\mathbf{x})$ has an SOS decomposition, and $f_{0}(\overline{\mathbf{x}})=0$ for $\overline{\mathbf{x}}=\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{x}_{4}\right)^{\top} \in \mathfrak{R}^{4}$ with $\bar{x}_{1}^{2}+\bar{x}_{4}^{2} \neq 0$. We call such a value M, such an SOS decomposition of $f_{0}(\mathbf{x})$, and such a vector $\overline{\mathbf{x}}$ the critical value, the critical SOS decomposition and the critical minimizer of \mathcal{A} at P, respectively. Then, we show that the segment $L=\left\{\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}=(1,1, t, t, t)^{\top}: t \in[-1,1]\right\}$ is PNS-free. We conjecture that this segment is the minimizer set of both M_{0} and N_{0}. Then, we show that the 45° planar closed convex cone $C=\left\{\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}=(a, b, 0,0,0)^{\top}: a \geq b \geq 1\right\}$, the ray $R=\left\{\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}=(a, 0,0,0,0)^{\top}: a \leq 0\right\}$ and the point $A=(1,0,0,0,0)^{\top}$ are also PNS-free. We illustrate L, C, R and A in Fig. 1.

In Section 5, numerical tests check various grid points, and find that $M_{0}=N_{0}$ there. Thus, they are also PNS-free. Therefore, numerical tests indicate that there are no fourth order four dimensional PNS Hankel tensors with symmetric generating vectors.

Some final remarks are made in Section 6.

Fig. 1. The segment L, the planar closed convex cone C, the ray R and the point A.

2. Fourth order four dimensional hankel tensors

We write out (1) explicitly in terms of the coordinates of its generating vector \mathbf{v} :

$$
\begin{align*}
f(\mathbf{x})= & v_{0} x_{1}^{4}+4 v_{1} x_{1}^{3} x_{2}+v_{2}\left(4 x_{1}^{3} x_{3}+6 x_{1}^{2} x_{2}^{2}\right)+v_{3}\left(4 x_{1} x_{2}^{3}+4 x_{1}^{3} x_{4}+12 x_{1}^{2} x_{2} x_{3}\right) \\
& +v_{4}\left(x_{2}^{4}+6 x_{1}^{2} x_{3}^{2}+12 x_{1} x_{2}^{2} x_{3}+12 x_{1}^{2} x_{2} x_{4}\right)+v_{5}\left(4 x_{2}^{3} x_{3}+12 x_{1} x_{2} x_{3}^{2}+12 x_{1} x_{2}^{2} x_{4}+12 x_{1}^{2} x_{3} x_{4}\right) \\
& +v_{6}\left(4 x_{1} x_{3}^{3}+4 x_{2}^{3} x_{4}+6 x_{1}^{2} x_{4}^{2}+6 x_{2}^{2} x_{3}^{2}+24 x_{1} x_{2} x_{3} x_{4}\right) \\
& +v_{7}\left(4 x_{2} x_{3}^{3}+12 x_{2}^{2} x_{3} x_{4}+12 x_{1} x_{3}^{2} x_{4}+12 x_{1} x_{2} x_{4}^{2}\right)+v_{8}\left(x_{3}^{4}+6 x_{2}^{2} x_{4}^{2}+12 x_{2} x_{3}^{2} x_{4}+12 x_{1} x_{3} x_{4}^{2}\right) \\
& +v_{9}\left(4 x_{3}^{3} x_{4}+4 x_{1} x_{4}^{3}+12 x_{2} x_{3} x_{4}^{2}\right)+v_{10}\left(4 x_{2} x_{4}^{3}+6 x_{3}^{2} x_{4}^{2}\right)+4 v_{11} x_{3} x_{4}^{3}+v_{12} x_{4}^{4} . \tag{4}
\end{align*}
$$

The following theorem gives some necessary conditions for fourth order four dimensional Hankel tensors being PSD. Particularly, we note that four key elements of its generating vector $v_{0}, v_{4}, v_{8}, v_{12}$ must be nonnegative.
Theorem 1. Suppose that $\mathcal{A}=\left(a_{i_{1} i_{2} i_{3} i_{4}}\right)$ is a Hankel tensor generated by its generating vector $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{12}\right)^{\top} \in \mathfrak{R}^{13}$. If \mathcal{A} is a PSD (or positive definite, or SOS, or strong) Hankel tensor, then we have

$$
\begin{equation*}
v_{i} \geq 0 \tag{5}
\end{equation*}
$$

for $i=0,4,8,12$,

$$
\begin{equation*}
v_{i}+6 v_{i+2}+v_{i+4} \geq 4\left|v_{i+1}+v_{i+3}\right| \tag{6}
\end{equation*}
$$

for $i=0,4,8$,

$$
\begin{equation*}
v_{i}+6 v_{i+4}+v_{i+8} \geq 4\left|v_{i+2}+v_{i+6}\right| \tag{7}
\end{equation*}
$$

for $i=0,4$, and

$$
\begin{equation*}
v_{0}+6 v_{6}+v_{12} \geq 4\left|v_{3}+v_{9}\right| \tag{8}
\end{equation*}
$$

Proof. Let \mathbf{e}_{k} be the k th column of a 4-by-4 identity matrix, for $k=1,2,3,4$. Substituting $\mathbf{x}=\mathbf{e}_{k}$ to (4) for $k=1,2,3,4$, by $f\left(\mathbf{e}_{k}\right) \geq 0$, we have (5) for $i=0,4,8,12$.

Substituting $\mathbf{x}=\mathbf{e}_{k}+\mathbf{e}_{k+1}$ to (4) for $k=1,2,3, \operatorname{by} f\left(\mathbf{e}_{k}+\mathbf{e}_{k+1}\right) \geq 0$, we have

$$
v_{i}+4 v_{i+1}+6 v_{i+2}+4 v_{i+3}+v_{i+4} \geq 0
$$

for $i=0,4,8$. Substituting $\mathbf{x}=\mathbf{e}_{k}-\mathbf{e}_{k+1}$ to (4) for $k=1,2$, 3, by $f\left(\mathbf{e}_{k}-\mathbf{e}_{k+1}\right) \geq 0$, we have

$$
v_{i}-4 v_{i+1}+6 v_{i+2}-4 v_{i+3}+v_{i+4} \geq 0
$$

for $i=0,4,8$. Combining these two inequalities, we have (6) for $i=0,4,8$.
Similarly, by $f\left(\mathbf{e}_{k}+\mathbf{e}_{k+2}\right) \geq 0$ and $f\left(\mathbf{e}_{k}-\mathbf{e}_{k+2}\right) \geq 0$ for $k=1$, 2, we have (7) for $i=0,4$. By $f\left(\mathbf{e}_{1}+\mathbf{e}_{4}\right) \geq 0$ and $f\left(\mathbf{e}_{1}-\mathbf{e}_{4}\right) \geq 0$, we have (8). The theorem is proved.

Whereafter, we say that a PSD Hankel tensor is SOS if a key element of its generating vector $v_{0}, v_{4}, v_{8}, v_{12}$ vanishes. Before we show this, the following lemma is useful.

Lemma 1. If a polynomial in one variable is always nonnegative:

$$
p(t)=a_{0} t^{2 k+1}+a_{1} t^{2 k}+\cdots+a_{2 k+1} \geq 0, \quad \forall t \in \mathfrak{R}
$$

Then $a_{0}=0$.
Proof. If $a_{0}>0$, we let $t \rightarrow-\infty$ and get $p(t) \rightarrow-\infty$, which contradicts that $p(t)$ is nonnegative.
If $a_{0}<0$, we let $t \rightarrow+\infty$ and get $p(t) \rightarrow-\infty$, which also contradicts that $p(t)$ is nonnegative.
Hence, there must be $a_{0}=0$.
Theorem 2. Suppose the fourth order four dimensional Hankel tensor \mathcal{A} is PSD and its generating vector is \mathbf{v}. If $v_{0} v_{12}=0$, then $v_{j}=0$, for $j=1, \ldots, 11$, and \mathcal{A} is SOS.

Proof. Without loss of generality, we assume that $v_{0}=0$.
To prove $v_{1}=0$, we take $\mathbf{x}_{1}=(t, 1,0,0)^{\top}$. Then, the homogeneous polynomial (4) reduces to

$$
f\left(\mathbf{x}_{1}\right)=4 v_{1} t^{3}+6 v_{2} t^{2}+4 v_{3} t+v_{4}
$$

From Lemma 1, we have $v_{1}=0$ since $f\left(\mathbf{x}_{1}\right)$ is nonnegative. Similarly, we can prove $v_{2}=v_{3}=0$ if we take $\mathbf{x}_{2}=(t, 0,1,0)^{\top}$ and $\mathbf{x}_{3}=(t, 0,0,1)^{\top}$ respectively.

From Theorem 1, we know $v_{4} \geq 0$. When we take $\mathbf{x}_{4}=\left(t^{2}, t,-\frac{1}{\sqrt{6}}, 0\right)^{\top}$, the homogeneous polynomial (4) reduces to

$$
f\left(\mathbf{x}_{4}\right)=-(2 \sqrt{6}-2) v_{4} t^{4}+\mathcal{O}\left(t^{3}\right)
$$

Let $t \rightarrow \infty$. Since $f\left(\mathbf{x}_{4}\right)$ is always nonnegative, we have $v_{4} \leq 0$. Hence, there must be $v_{4}=0$.
If we take $\mathbf{x}_{5}=\left(t^{3}, 0, t, 1\right)^{\top}$, the homogeneous polynomial (4) is

$$
f\left(\mathbf{x}_{5}\right)=12 v_{5} t^{7}+\mathcal{O}\left(t^{6}\right)
$$

From Lemma 1, we have $v_{5}=0$ since $f\left(\mathbf{x}_{5}\right)$ is nonnegative.
We take $\mathbf{x}_{6}=(t, 0,1,0)^{\top}$. Then, the homogeneous polynomial (4) is

$$
f\left(\mathbf{x}_{6}\right)=4 v_{6} t+v_{8}
$$

From Lemma 1, we have $v_{6}=0$ since $f\left(\mathbf{x}_{6}\right)$ is nonnegative. Similarly, we can prove $v_{7}=0$ when we take $\mathbf{x}_{7}=(0, t, 1,0)^{\top}$. We take $\mathbf{x}_{8}=\left(t^{4}, 0, t, 1\right)^{\top}$. Then we have

$$
f\left(\mathbf{x}_{8}\right)=12 v_{8} t^{5}+\mathcal{O}\left(t^{4}\right)
$$

From Lemma 1, we have $v_{8}=0$ since the polynomial $f\left(\mathbf{x}_{8}\right)$ is nonnegative.
We could prove $v_{9}=0, v_{10}=0$ and $v_{11}=0$ if we take $\mathbf{x}_{9}=(t, 0,0,1)^{\top}, \mathbf{x}_{10}=(0, t, 0,1)^{\top}$ and $\mathbf{x}_{11}=(0,0, t, 1)^{\top}$, respectively.

Finally, since $v_{0}=v_{1}=\cdots=v_{11}=0$, we have

$$
f(\mathbf{x})=v_{12} x_{4}^{4}
$$

By Theorem 1, we get $v_{12} \geq 0$. Hence, the Hankel tensor \mathcal{A} is obviously SOS.
Theorem 3. Suppose the fourth order four dimensional Hankel tensor \mathcal{A} is PSD and its generating vector is \mathbf{v}. If $v_{4} v_{8}=0$, then $v_{j}=0$ for $j=1,2, \ldots, 11$, and \mathcal{A} is SOS.
Proof. By symmetry, we only need to prove this theorem under the condition $v_{4}=0$.
If we take $\mathbf{x}_{1}=(1, t, 0,0)^{\top}$, the homogeneous polynomial (4) reduces to

$$
f\left(\mathbf{x}_{1}\right)=4 v_{3} t^{3}+6 v_{2} t^{2}+4 v_{1} t+v_{0}
$$

From Lemma 1, we have $v_{3}=0$ since $f\left(\mathbf{x}_{1}\right)$ is nonnegative. Similarly, we can prove $v_{5}=v_{6}=0$ if we take $\mathbf{x}_{2}=(0, t, 1,0)^{\top}$ and $\mathbf{x}_{3}=(0, t, 0,1)^{\top}$ respectively.

To prove $v_{7}=0$, we take $\mathbf{x}_{4}=\left(0, t^{2}, t, 1\right)^{\top}$. Then, the homogeneous polynomial (4) reduces to

$$
f\left(\mathbf{x}_{4}\right)=16 v_{7} t^{5}+\mathcal{O}\left(t^{4}\right)
$$

From Lemma 1, we have $v_{7}=0$ since $f\left(\mathbf{x}_{4}\right)$ is nonnegative.
From Theorem 1, we know $v_{8} \geq 0$. When we take $\mathbf{x}_{5}=\left(0,-t^{2}, t, 1\right)^{\top}$, the homogeneous polynomial (4) reduces to

$$
f\left(\mathbf{x}_{5}\right)=-5 v_{8} t^{4}+\mathcal{O}\left(t^{3}\right)
$$

Let $t \rightarrow \infty$. Since $f\left(\mathbf{x}_{5}\right)$ is always nonnegative, we have $v_{8} \leq 0$. Hence, there must be $v_{8}=0$.

If we take $\mathbf{x}_{6}=(0,0, t, 1)^{\top}$, the homogeneous polynomial (4) is

$$
f\left(\mathbf{x}_{6}\right)=4 v_{9} t^{3}+\mathcal{O}\left(t^{2}\right) .
$$

From Lemma 1, we have $v_{9}=0$ since $f\left(\mathbf{x}_{6}\right)$ is nonnegative. Similarly, we could prove $v_{10}=0$ and $v_{11}=0$ if we take $\mathbf{x}_{7}=(0, t, 0,1)^{\top}$ and $\mathbf{x}_{8}=(0,0, t, 1)^{\top}$, respectively.

The prove of $v_{1}=0$ and $v_{2}=0$ could be similarly obtained if we take $\mathbf{x}_{9}=(1, t, 0,0)^{\top}$ and $\mathbf{x}_{10}=(1,0, t, 0)^{\top}$ respectively.

Finally, since $v_{j}=0$ for $j=1, \ldots, 11$, we have

$$
f(\mathbf{x})=v_{0} x_{1}^{4}+v_{12} x_{4}^{4} .
$$

By Theorem 1 , we get $v_{0} \geq 0$ and $v_{12} \geq 0$. Hence, the Hankel tensor \mathscr{A} is obviously SOS.

3. Symmetric generating vectors

Now, we make assumptions (2) and (3). At the beginning, we consider a mini problem which is the Hankel polynomial with $x_{1}=x_{4}=0$. This problem helps us to analyze the effective domain of two important surfaces M_{0} and N_{0}.

3.1. Function η

We consider a two variable quartic polynomial

$$
g\left(y_{1}, y_{2}\right)=\alpha y_{1}^{4}+4 \beta y_{1}^{3} y_{2}+6 \gamma y_{1}^{2} y_{2}^{2}+4 \beta y_{1} y_{2}^{3}+\alpha y_{2}^{4} .
$$

Its PSD property is completely characterized by the following theorem.
Theorem 4. The quartic polynomial $g\left(y_{1}, y_{2}\right)$ is PSD if and only if

$$
\alpha \geq \eta(\beta, \gamma):= \begin{cases}4|\beta|-3 \gamma & \text { if } \gamma \leq|\beta|, \\ \frac{3 \gamma-\sqrt{9 \gamma^{2}-8 \beta^{2}}}{2} & \text { if } \gamma>|\beta| .\end{cases}
$$

Proof. First, if $g\left(y_{1}, y_{2}\right)$ is PSD, from $g(1,-1) \geq 0$ and $g(1,1) \geq 0$, we have $\alpha \geq 4|\beta|-3 \gamma$. Thus, in any case, $\eta(\beta, \gamma) \geq 4|\beta|-3 \gamma$.

Second, suppose that $\alpha \geq 4|\beta|-3 \gamma$. If $\gamma \leq 0$, we get

$$
g\left(y_{1}, y_{2}\right)=(\alpha-4|\beta|+3 \gamma)\left(y_{1}^{4}+y_{2}^{4}\right)+4|\beta|\left(y_{1}+y_{2}\right)^{2}\left(y_{1}^{2}-y_{1} y_{2}+y_{2}^{2}\right)-3 \gamma\left(y_{1}^{2}-y_{2}^{2}\right)^{2} \geq 0 .
$$

If $0<\gamma \leq|\beta|$, we rewrite $g\left(y_{1}, y_{2}\right)$ as follows

$$
g\left(y_{1}, y_{2}\right)=(\alpha-4|\beta|+3 \gamma)\left(y_{1}^{4}+y_{2}^{4}\right)+\left(y_{1}+y_{2}\right)^{2}\left[(4|\beta|-3 \gamma)\left(y_{1}^{2}+y_{2}^{2}\right)-(4|\beta|-6 \gamma) y_{1} y_{2}\right] .
$$

Since $(4|\beta|-6 \gamma)^{2}-4(4|\beta|-3 \gamma)^{2}=-48|\beta|(|\beta|-\gamma) \leq 0$, it yields that $g\left(y_{1}, y_{2}\right) \geq 0$.
Finally, we consider the case $\gamma>|\beta|$. Let $\bar{\alpha}=\frac{3 \gamma-\sqrt{9 \gamma^{2}-8 \beta^{2}}}{2}>0$. Then, we have

$$
g\left(y_{1}, y_{2}\right)=(\alpha-\bar{\alpha})\left(y_{1}^{4}+y_{2}^{4}\right)+\bar{\alpha}\left(y_{1}^{2}+\frac{2 \beta}{\bar{\alpha}} y_{1} y_{2}+y_{2}^{2}\right)^{2} .
$$

Obviously, if $\alpha \geq \bar{\alpha}, g\left(y_{1}, y_{2}\right)$ is SOS and PSD.
Next, we show that $y_{1}^{2}+\frac{2 \beta}{\bar{\alpha}} y_{1} y_{2}+y_{2}^{2}=0$ has nonzero real roots. For the convenience, we denote $t=\frac{y_{1}}{y_{2}}$ and prove that $t^{2}+\frac{2 \beta}{\bar{\alpha}} t+1=0$ has real roots. It is easy to see that $t=0$ is not its root. Since $\gamma>|\beta|$, we have

$$
\frac{|\beta|}{\bar{\alpha}}=\frac{2|\beta|}{3 \gamma-\sqrt{9 \gamma^{2}-8 \beta^{2}}}=\frac{2|\beta|\left(3 \gamma+\sqrt{9 \gamma^{2}-8 \beta^{2}}\right)}{8 \beta^{2}} \geq \frac{8|\beta| \gamma}{8 \beta^{2}} \geq 1 .
$$

Hence, $|\beta| \geq \bar{\alpha}$. The discriminant of the quadratic in t is

$$
\left(\frac{2 \beta}{\bar{\alpha}}\right)^{2}-4=4 \frac{\beta^{2}-\bar{\alpha}^{2}}{\bar{\alpha}^{2}} \geq 0 .
$$

Therefore, there are nonzero $\left(y_{1}, y_{2}\right)$ such that $g\left(y_{1}, y_{2}\right)=(\alpha-\bar{\alpha})\left(y_{1}^{4}+y_{2}^{4}\right)$. Obviously, if $g\left(y_{1}, y_{2}\right)$ is PSD, we have $\alpha \geq \bar{\alpha}$. Thus, we say $\eta(\beta, \gamma)=\bar{\alpha}$ if $\gamma>|\beta|$.

Then we have another necessary condition for a fourth order four dimensional Hankel tensor \mathcal{A} to be PSD under assumptions (2) and (3).

Corollary 1. Under assumptions (2) and (3), if A is PSD, then $\eta\left(v_{5}, v_{6}\right) \leq 1$.
Proof. Let $x_{1}=x_{4}=0, x_{2}=y_{1}$ and $x_{3}=y_{2}$. By Theorem 4, we have the conclusion.

3.2. Surfaces M_{0} and N_{0}

We now introduce the key idea of this paper, to establish two surfaces M_{0} and N_{0}, in the following theorem.
Theorem 5. Suppose that assumptions (2) and (3) hold. Then, there are two functions $M_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right) \geq$ $N_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)>0$ defined for

$$
\begin{equation*}
\eta\left(v_{5}, v_{6}\right)<1, \tag{9}
\end{equation*}
$$

such that \mathcal{A} is SOS if and only if $v_{0} \geq M_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)$, and \mathfrak{A} is PSD if and only if $v_{0} \geq N_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)$. If for all v_{5} and v_{6} satisfying (9), we have $M_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)=N_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)$, then there are no fourth order four dimensional PNS Hankel tensors under assumption (2).

Proof. Using assumptions (2) and (3), we rewrite (4) as

$$
f(\mathbf{x})=v_{0}\left(x_{1}^{4}+x_{4}^{4}\right)+\bar{v}_{4}\left(x_{2}^{4}+x_{3}^{4}\right)+f_{1}(\mathbf{x})+f_{2}(\mathbf{x})
$$

where

$$
f_{1}(\mathbf{x})=\eta\left(v_{5}, v_{6}\right)\left(x_{2}^{4}+x_{3}^{4}\right)+4 v_{5}\left(x_{2}^{3} x_{2}+x_{2} x_{3}^{3}\right)+6 v_{6} x_{2}^{2} x_{3}^{2}
$$

and

$$
\bar{v}_{4}=1-\eta\left(v_{5}, v_{6}\right)
$$

Then $\bar{v}_{4}>0$ by (9). By Theorem 4, $f_{1}(\mathbf{x})$ is PSD. Since $f_{1}(\mathbf{x})$ has only two variables, it is also SOS by Hilbert [1,6].
We now consider terms in $f_{2}(\mathbf{x})$. Each monomial in $f_{2}(\mathbf{x})$ has at least one factor as a power of x_{1} or x_{4}. We may order the monomials of $f_{2}(\mathbf{x})$. For example, consider $12 v_{5} x_{1} x_{2} x_{3}^{2}$. Assume that it is ordered as the k th monomial of $f_{2}(\mathbf{x})$. Then by the arithmetic-geometric inequality, we may see that

$$
-12 v_{5} x_{1} x_{2} x_{3}^{2} \leq 3\left|v_{5}\right|\left(\frac{1}{\epsilon_{k}^{3}} x_{1}^{4}+\epsilon_{k} x_{2}^{4}+2 \epsilon_{k} x_{3}^{4}\right)
$$

where ϵ_{k} is a small positive number. We may let ϵ_{k} be small enough such that the sum of the coefficients for χ_{2}^{4} on the right hand side of the above inequality for all possible k is less than \bar{v}_{4}. By symmetry, the sum of the coefficients for x_{3}^{4} on the right hand side of the above inequality for all possible k is less than \bar{v}_{4}. We see that

$$
12 v_{5} x_{1} x_{2} x_{3}^{2}+3\left|v_{5}\right|\left(\frac{1}{\epsilon_{k}^{3}} x_{1}^{4}+\epsilon_{k} x_{2}^{4}+2 \epsilon_{k} x_{3}^{4}\right)
$$

is a PSD diagonal minus tail form. By [27], it is SOS. Thus, as long as v_{0} is big enough, when (9) is satisfied, $f(\mathbf{x})$ is SOS. From this, we see that M_{0} and N_{0} exist, such that they are defined as long as (9) is satisfied, $M_{0} \geq N_{0}$, \mathcal{A} is SOS if and only if $v_{0} \geq M_{0}$, and \mathscr{A} is PSD if and only if $v_{0} \geq N_{0}$.

By Theorem 4, we now only need to consider the case that $\eta\left(v_{5}, v_{6}\right)=1$. Suppose that for all v_{5} and v_{6} satisfying (9), we have $M_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)=N_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)$. Since the sets for PSD Hankel tensors and SOS Hankel tensors are closed [21], this implies that for all v_{5} and v_{6} satisfying $\eta\left(v_{5}, v_{6}\right)=1$, we also have $M_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)=$ $N_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)$, as long as N_{0} is defined there. Thus, in this case, by Theorem 3, there are no fourth order four dimensional PNS Hankel tensors under assumption (2).

For the variables of M_{0} and N_{0}, we put v_{2} and v_{6} before v_{1}, v_{3} and v_{5}, as v_{2}, v_{6} play a more important role in the PSD and SOS properties of \mathcal{A}, comparing with v_{1}, v_{3} and v_{5}.

We now regard $P=\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}$ as a point in \mathfrak{R}^{5}. If $M_{0}(P)=N_{0}(P), P$ is called a PNS-free point. We call

$$
S=\left\{\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top} \in \mathfrak{R}^{5}: \eta\left(v_{5}, v_{6}\right)<1\right\}
$$

the effective domain. Theorem 5 says that if all the points in the effective domain are PNS-free, then there are no fourth order four dimensional PNS Hankel tensors with symmetric generating vectors. In the next sections, we will study more on PNS-free points.

Table 1
The values of $M_{0}\left(v_{2}, v_{6}, 0,0,0\right)=N_{0}\left(v_{2}, v_{6}, 0,0,0\right)$ on some grid points.

$v_{2} \backslash v_{6}$	-0.2	-0.1	0	0.5	1	1.5	2	4
-4.0	3.54 e 4	8.74 e 3	3.76 e 3	4.78 e 2	3.12e2	3.92e2	6.23 e 2	6.37e3
-2.0	2.98 e 4	6.77 e 3	2.73e3	2.75e2	1.25e2	1.70 e 2	3.57e2	6.11 e3
-1.0	2.72e4	5.85e3	2.26 e 3	1.91e2	6.15 e 1	9.26 e 1	2.73 e 2	6.06 e 3
-0.5	2.59 e 4	5.42e3	2.04 e 3	1.53 e 2	3.78 e 1	6.41 e 1	2.48e2	6.06 e 3
0.0	2.46e4	4.99 e 3	1.82 e 3	1.20 e 2	1.96 e 1	4.50 e 1	2.39 e 2	6.07e3
0.5	2.34 e 4	4.57 e 3	1.62 e 3	8.90 e 1	7.058	4.18 e 1	2.45 e 2	6.09 e 3
1.0	2.21 e 4	4.17 e 3	1.42 e 3	6.21 e 1	1.000	4.93 e 1	2.56e2	6.11 e 3
1.5	2.09 e 4	3.78 e 3	1.23 e 3	3.90 e 1	4.191	5.69 e 1	2.67e2	6.14 e 3
2.0	1.98 e 4	3.41e3	1.06 e 3	2.02e1	8.00 e 0	6.46 e 1	2.78e2	6.16e3
3.0	1.75 e 4	2.70 e 3	7.28 e 2	7.16e0	1.66e1	8.01 e 1	3.01e2	6.21 e 3
4.0	1.53 e 4	2.04 e 3	4.41 e 2	1.23 e 1	2.60 e 1	9.60 e 1	3.23 e 2	6.25 e 3

4. Theoretical proofs of some PNS-free regions

4.1. Critical SOS decomposition

For the convenience, we present formally three ingredients used in theoretical proofs of this section. If a point belongs to the effective domain and enjoys these ingredients, it is PNS-free.

Definition 1. Suppose that assumptions (2) and (3) hold and $P=\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top} \in S$. Suppose that there is a number M such that \mathcal{A} is SOS if $v_{0}=M$, and a point $\overline{\mathbf{x}}=\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{x}_{4}\right)^{\top} \in \mathfrak{R}^{4}$ such that $\bar{x}_{1}^{2}+\bar{x}_{4}^{2}>0$ and $f_{0}(\overline{\mathbf{x}})=0$, where $f_{0}(\mathbf{x}) \equiv f(\mathbf{x})$ with $v_{0}=M$. Then we call M the critical value of \mathcal{A} at P, the SOS decomposition $f_{0}(\mathbf{x})$ the critical SOS decomposition of \mathcal{A} at P, and $\overline{\mathbf{x}}$ the critical minimizer of \mathscr{A} at P.

Theorem 6. Let $P \in S$. Then P is $P N S$-free if \mathcal{A} has a critical value M, a critical SOS decomposition $f_{0}(\mathbf{x})$ and a critical minimizer $\overline{\mathbf{x}}$ at P.

Proof. Suppose that \mathcal{A} has a critical value M, a critical SOS decomposition $f_{0}(\mathbf{x})$ and a critical minimizer $\overline{\mathbf{x}}$ at P. Then we have $M \geq M_{0}(P)$ by the definition of M_{0}. If $v_{0}<M$, then

$$
f(\overline{\mathbf{x}})=\left(v_{0}-M\right)\left(\bar{x}_{1}^{4}+\bar{x}_{4}^{4}\right)+f_{0}(\overline{\mathbf{x}})<0
$$

This implies that $N_{0}(P) \geq M$ by the definition of N_{0}. But $N_{0}(P) \leq M_{0}(P)$. Thus, $M_{0}(P)=N_{0}(P)=M$, i.e., P is PNS-free.
We believe that all the effective domain S is PNS-free. In the next four subsections, we theoretically prove that some regions of S are PNS-free.

4.2. A PNS-free segment

Professor Man Kam Kwong pointed out that $N_{0}(1,1,0,0,0)=1, N_{0}(2,1,0,0,0)=8$ and $N_{0}(4,0,0,0,0)=441$, are integers. See also Table 1 in Section 6 . He suggested us to considered these three points more carefully. Stimulated by Prof. Kwong's comments, we derive the results of Sections 4.2 and 4.3.

We have the following theorem.
Theorem 7. Suppose that $P=\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}=(1,1, t, t, t)^{\top}$, where $t \in[-1,1]$. Then, P is PNS-free, with the critical value 1 and the critical minimizer $(1,0,-1,0)^{\top}$.

Proof. For $P=\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}=(1,1, t, t, t)^{\top}$, where $t \in[-1,1]$, and $M=1$, we have

$$
f_{0}(\mathbf{x})=\frac{1+t}{2}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{4}+\frac{1-t}{2}\left(x_{1}-x_{2}+x_{3}-x_{4}\right)^{4}
$$

is SOS, and

$$
f_{0}(1,0,-1,0)=0
$$

Hence, P is PNS-free.
By numerical experiments, we have the following conjecture.
Conjecture 1. The segment $L=\left\{\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}=(1,1, t, t, t)^{\top}: t \in[-1,1]\right\}$, is the minimizer set of both M_{0} and N_{0}.

4.3. A PNS-free planar cone

Theorem 8. Suppose that $P=\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}=\left(v_{2}, v_{6}, 0,0,0\right)^{\top}$ with $v_{2} \geq v_{6} \geq 1$. Then, P is $P N S$-free.
If we parameterize $v_{6}=b$ and $v_{2}=(\theta+3 b-1)\left(\theta^{2}+(3 b-2) \theta-3 b+4\right)$. Then, the critical value at P is

$$
M=(\theta+3 b-1)^{2}\left(3 \theta^{2}+(10 b-6) \theta+3 b^{2}-10 b+9\right)
$$

and the critical minimizer is $\overline{\mathbf{x}}=(1,0,-(\theta+3 b-1), 0)^{\top}$.
Proof. Note that for $v_{2} \geq v_{6} \geq 1$, we may let $v_{6}=b$ and $v_{2}=(\theta+3 b-1)\left(\theta^{2}+(3 b-2) \theta-3 b+4\right)$, where the parameter

$$
\theta \geq \bar{\theta}=(b-1)^{\frac{1}{3}}(b+1)^{\frac{2}{3}}+(b-1)^{\frac{2}{3}}(b+1)^{\frac{1}{3}}-2 b+1
$$

In fact, $\bar{\theta}$ is the largest real root of the cubic equation $v_{2}-v_{6}=0$.
With the critical value as $M=(\theta+3 b-1)^{2}\left(3 \theta^{2}+(10 b-6) \theta+3 b^{2}-10 b+9\right)$, the critical SOS decomposition at P is as follows

$$
\begin{aligned}
f_{0}(\mathbf{x})= & \frac{1}{v_{0}}\left(v_{0} x_{1}^{2}+2 v_{2} x_{1} x_{3}+\alpha_{1} x_{3}^{2}\right)^{2}+\frac{1}{v_{0}}\left(v_{0} x_{4}^{2}+2 v_{2} x_{2} x_{4}+\alpha_{1} x_{2}^{2}\right)^{2} \\
& +\alpha_{2}\left((\theta+3 b-1) x_{1} x_{3}+x_{3}^{2}\right)^{2}+\alpha_{2}\left((\theta+3 b-1) x_{2} x_{4}+x_{2}^{2}\right)^{2} \\
& +\frac{6}{b}\left(x_{1} x_{2}+x_{3} x_{4}+b x_{2} x_{3}+b x_{1} x_{4}\right)^{2}+\frac{6\left(b^{2}-1\right)}{b}\left(x_{1} x_{2}+x_{3} x_{4}\right)^{2}+6\left(v_{2}-b\right)\left[x_{1}^{2} x_{2}^{2}+x_{3}^{2} x_{4}^{2}\right]
\end{aligned}
$$

where the involved parameters are as follows:

$$
\begin{aligned}
& \alpha_{1}=-\left(\theta^{2}+(4 b-2) \theta+3 b^{2}-4 b+1\right) \\
& \alpha_{2}=\frac{2\left(\theta^{2}+(4 b-2) \theta+b^{2}-4 b+4\right)}{3 \theta^{2}+(10 b-6) \theta+3 b^{2}-10 b+9}
\end{aligned}
$$

Since $f_{0}(1,0,-(\theta+3 b-1), 0)=0$, the corresponding critical minimizer is $\overline{\mathbf{x}}=(1,0,-(\theta+3 b-1), 0)^{\top}$. Hence, $P=\left(v_{2}, v_{6}, 0,0,0\right)^{\top}$ with $v_{2} \geq v_{6} \geq 1$ is PNS-free.

The cone $C=\left\{\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}=(a, b, 0,0,0)^{\top}: a \geq b \geq 1\right\}$ is a 45° planar closed convex cone. Its end point is just the mid point of the segment $L=\left\{\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}=(1,1, t, t, t)^{\top}: t \in[-1,1]\right\}$, discussed in the last subsection.

4.4. A PNS-free ray

In this subsection, we show that the ray $R=\left\{\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}=(a, 0,0,0,0)^{\top}: a \leq 0\right\}$ is PNS-free. Let $a=-\rho$, where $\rho \geq 0$ is a constant. We report that, at a point $P=(-\rho, 0,0,0,0)^{\top}, \mathcal{A}$ has the critical value

$$
M=3 \sqrt[3]{\theta_{1}+32 \sqrt{\theta_{2}}}+\frac{\theta_{3}}{3 \sqrt[3]{\theta_{1}+32 \sqrt{\theta_{2}}}}+6 \rho^{2}+138 \rho+609
$$

where

$$
\begin{aligned}
& \theta_{1}:=-\rho^{6}+272 \rho^{5}+12608 \rho^{4}+204032 \rho^{3}+1558528 \rho^{2}+5750784 \rho+8290304 \\
& \theta_{2}:=-(\rho+6)^{2}(\rho+4)^{3}\left(\rho^{2}+4 \rho-16\right)^{3} \\
& \theta_{3}:=9(\rho+8)\left(\rho^{3}+152 \rho^{2}+1728 \rho+5120\right)
\end{aligned}
$$

The function $f_{0}(\mathbf{x})$ enjoys a critical SOS decomposition:

$$
f_{0}(\mathbf{x})=\sum_{k=1}^{5} q_{k}^{2}(\mathbf{x})
$$

where

$$
\begin{aligned}
& q_{1}(\mathbf{x})=x_{3}^{2}+6 x_{2} x_{4}+\alpha_{1} x_{1}^{2}+\alpha_{2} x_{4}^{2} \\
& q_{2}(\mathbf{x})=x_{2}^{2}+6 x_{1} x_{3}+\alpha_{2} x_{1}^{2}+\alpha_{1} x_{4}^{2} \\
& q_{3}(\mathbf{x})=\alpha_{3} x_{2} x_{4}+\alpha_{4} x_{1}^{2}+\alpha_{5} x_{4}^{2} \\
& q_{4}(\mathbf{x})=\alpha_{3} x_{1} x_{3}+\alpha_{5} x_{1}^{2}+\alpha_{4} x_{4}^{2} \\
& q_{5}(\mathbf{x})=\alpha_{6} x_{1}^{2}-\alpha_{6} x_{4}^{2}
\end{aligned}
$$

The involved parameters are listed as follows:

$$
\begin{aligned}
& \alpha_{1}=-\frac{(\rho+23) M_{1}(-\rho)-9 \rho^{3}-21 \rho^{2}+105 \rho+9}{M_{1}(-\rho)+3 \rho^{2}+6 \rho-33} \\
& \alpha_{2}=-3 \rho, \\
& \alpha_{3}=\sqrt{-30-2 \alpha_{15}}, \\
& \alpha_{4}=\frac{6\left(1-\alpha_{15}\right)}{\alpha_{33}}, \\
& \alpha_{5}=\frac{16 \rho}{\alpha_{33}}, \\
& \alpha_{6}=\sqrt{-6 \rho \alpha_{15}-\frac{192 \rho\left(\alpha_{15}-1\right)}{\alpha_{33}^{2}}} .
\end{aligned}
$$

Theorem 9. Suppose that assumptions (2) and (3) hold. Then, for any constant $\rho \geq 0, P=(-\rho, 0,0,0,0)^{\top}$ is $P N S$-free.
Proof. We only need to prove that there is a critical minimizer. Let

$$
\overline{\mathbf{x}}=\left(\alpha_{33}, \alpha_{35}+\alpha_{36},-\alpha_{35}-\alpha_{36},-\alpha_{33}\right)^{\top}
$$

Then, we get $q_{3}(\overline{\mathbf{x}})=q_{4}(\overline{\mathbf{x}})=q_{5}(\overline{\mathbf{x}})=0$ immediately. Moreover, we have

$$
q_{1}(\overline{\mathbf{x}})=q_{2}(\overline{\mathbf{x}})=\left(\alpha_{35}+\alpha_{36}\right)^{2}-6\left(\alpha_{35}+\alpha_{36}\right) \alpha_{33}+\alpha_{15} \alpha_{33}^{2}-3 \rho \alpha_{33}^{2}=0 .
$$

We check the validation of the last equality by a mathematical software Maple. Hence, $f_{0}(\overline{\mathbf{x}})=0$ and $\overline{\mathbf{x}}$ is a critical minimizer at P. Hence, we get the conclusion by Theorem 6 .

4.5. A PNS-free point

We now show that the point $A=(1,0,0,0,0)^{\top}$ is PNS-free. In fact, the critical value at A is

$$
M=477+3 \sqrt[3]{3906351+9120 \sqrt{57}}+\frac{74403}{\sqrt[3]{3906351+9120 \sqrt{57}}}
$$

The critical SOS decomposition of $f_{0}(\mathbf{x})$ is as follows

$$
f_{0}(\mathbf{x})=\sum_{k=1}^{7} q_{k}(\mathbf{x})^{2}
$$

where

$$
\begin{aligned}
& q_{1}(\mathbf{x})=x_{3}^{2}+6 x_{2} x_{4}-21 x_{1}^{2}+\alpha_{1} x_{4}^{2}, \\
& q_{2}(\mathbf{x})=x_{2}^{2}+6 x_{1} x_{3}-21 x_{4}^{2}+\alpha_{1} x_{1}^{2}, \\
& q_{3}(\mathbf{x})=2 \sqrt{3} x_{2} x_{4}+\alpha_{2} x_{1}^{2}+\alpha_{3} x_{4}^{2}, \\
& q_{4}(\mathbf{x})=2 \sqrt{3} x_{1} x_{3}+\alpha_{2} x_{4}^{2}+\alpha_{3} x_{1}^{2}, \\
& q_{5}(\mathbf{x})=\alpha_{4} x_{1}^{2}-\alpha_{4} x_{4}^{2}, \\
& q_{6}(\mathbf{x})=\beta_{1} x_{1} x_{2}+\beta_{2} x_{1} x_{4}, \\
& q_{7}(\mathbf{x})=\beta_{1} x_{3} x_{4}+\beta_{2} x_{1} x_{4} .
\end{aligned}
$$

Some involved parameters are listed as follows:

$$
\begin{aligned}
& \beta_{1}=\frac{\sqrt{-6\left(M_{2}-36\right)\left(3 M_{2}-4336\right)}}{\sqrt{M_{2}^{2}-1302 M_{2}+25056}}, \\
& \beta_{2}=\frac{\beta_{1}\left(3 \beta_{1}^{2}+116\right)}{\beta_{1}^{2}+12} \\
& \alpha_{1}=3-\frac{1}{2} \beta_{1}^{2} \\
& \alpha_{2}=22 \sqrt{3}-\frac{\sqrt{3}}{6} \beta_{1} \beta_{2}
\end{aligned}
$$

Fig. 2. The contour profile of $M_{0}\left(v_{2}, v_{6}, 0,0,0\right)=N_{0}\left(v_{2}, v_{6}, 0,0,0\right)$.

$$
\begin{aligned}
& \alpha_{3}=-\frac{8 \sqrt{3}}{3}+\frac{\sqrt{3}}{2} \beta_{1}^{2} \\
& \alpha_{4}=\sqrt{-42 \alpha_{1}+2 \alpha_{2} \alpha_{3}+\beta_{2}^{2}}
\end{aligned}
$$

Theorem 10. Suppose that assumptions (2) and (3) hold. Then, $A=(1,0,0,0,0)^{\top}$ is $P N S$-free.
Proof. Using the mathematical software Maple, we calculate

$$
f(\mathbf{x})-\sum_{k=1}^{7} q_{k}^{2}(\mathbf{x})=\frac{-\beta_{1}^{6}-120 \beta_{1}^{4}+\left(4 v_{0}-4944\right) \beta_{1}^{2}+48 v_{0}-69376}{4\left(\beta_{1}^{2}+12\right)}\left(x_{1}^{4}+x_{4}^{4}\right)
$$

Substituting the value of $v_{0}=M$ and β_{1}, we get $f_{0}(\mathbf{x})-\sum_{k=1}^{7} q_{k}^{2}(\mathbf{x})=0$.
Let $\overline{\mathbf{x}}=\left(\beta_{1}, \beta_{2},-\beta_{2},-\beta_{1}\right)^{\top}$. Obviously, we obtain $q_{5}(\overline{\mathbf{x}})=q_{6}(\overline{\mathbf{x}})=q_{7}(\overline{\mathbf{x}})=0$. We find that $q_{3}(\overline{\mathbf{x}})$ and $q_{4}(\overline{\mathbf{x}})$ vanish if we rewrite all the parameters using β_{1}. Using the value of each parameter, we find that $q_{1}(\overline{\mathbf{x}})=q_{2}(\overline{\mathbf{x}})=0$. Since $\bar{x}_{1}=\beta_{1} \approx 1.73, \overline{\mathbf{x}}$ is the critical minimizer. Therefore, this theorem is valid according to Theorem 6 .

5. Numerical experiments

We have proved in Section 4 that some regions are PNS-free. What about the other cases? We try to answer this problem by a numerical approach. We use the YALMIP software with an SOS module $[28,29]$ to compute $M_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)$, which is the smallest value of v_{0} such that the fourth order four dimensional Hankel tensor \mathcal{A} with the generating vector $\left(v_{0}, v_{1}, v_{2}, v_{3}, 1, v_{5}, v_{6}, v_{5}, 1, v_{3}, v_{2}, v_{1}, v_{0}\right)^{\top}$ is SOS. Gloptipoly [30] and SeDuMi [31] are employed to compute $N_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)$, which is the smallest value of v_{0} such that the Hankel tensor \mathcal{A} is PSD.

5.1. $M_{0}\left(v_{2}, v_{6}, 0,0,0\right)$ and $N_{0}\left(v_{2}, v_{6}, 0,0,0\right)$

First, we focus on two elements v_{2} and v_{6} of generating vectors and set $v_{1}=v_{3}=v_{5}=0$. By Theorem 4, owing to the effective domain, we have $b>-\frac{1}{3}$. We choose $v_{2}=-4,-2,-1,-0.5,0,0.5,1,1.5,2,3,4$ and $v_{6}=$ $-0.2,-0.1,0,0.5,1,1.5,2,4$ and compute M_{0} and N_{0} in these grid points respectively. By our experiments, we found that these two functions are equivalent on all of the grid points. Thus, no PNS tensors are detected here. The detailed value of M_{0} and N_{0} are reported in Table 1.

A more intuitional profile of $M_{0}=N_{0}$ is illustrated in Fig. 2. It is easy to see that $\left(v_{2}, v_{6}\right)=(1,1)$ is the minimizer of both M_{0} and N_{0} when we set $v_{1}=v_{3}=v_{5}=0$.

Fig. 3. The contour profile of $M_{0}\left(0, v_{6}, 0,0, v_{5}\right)$.

5.2. Nonzero odd elements of the generating vectors

We consider the case that the generating vector of a fourth order four dimensional Hankel tensor has nonzero odd elements. According to Theorem 5, we say that v_{5} and v_{6} must satisfy $\eta\left(v_{5}, v_{6}\right)<1$. So we study them first and set $v_{1}=v_{2}=v_{3}=0$. We compute a plenty of grid points with different v_{5} and v_{6}. The function $M_{0}\left(0, v_{6}, 0,0, v_{5}\right)$ is still equivalent to the function $N_{0}\left(0, v_{6}, 0,0, v_{5}\right)$. That is to say, no PNS tensors are found.

The contour of $M_{0}\left(0, v_{6}, 0,0, v_{5}\right)=M_{0}\left(0, v_{6}, 0,0, v_{5}\right)$ is shown in Fig. 3. We could see that the nonlinear contour of $M_{0}=N_{0}=500$ looks like a fire balloon.

Finally, we consider all of the elements of symmetric generating vectors of fourth order four dimensional Hankel tensors. The contours of $M_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)$ and $N_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)$ for various combinations of $v_{2}, v_{6}, v_{1}, v_{3}$ and v_{5} are reported in Fig. 4. In all of our tests, values of the function $M_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)$ in grid points are always equivalent to the corresponding values of the function $N_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)$. So, no fourth order four dimensional PNS Hankel tensors with symmetric generating vectors are detected.

From Figs. 3 and 4, we could say that the second element v_{1} of the generating vector of a Hankel tensor affects functions $M_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)$ and $N_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)$ slightly. When we fix $v_{4}=1$, the middle element v_{6} of the generating vector \mathbf{v} plays a more important role since it has direct impact on the effective domain.

6. Final remarks

In this paper, we investigated the problem whether there exist fourth order four dimensional PNS Hankel tensors with symmetric generating vectors. Theoretically, we proved that such PNS Hankel tensors do not exist on the segment $L=$ $\left\{\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}=(1,1, t, t, t)^{\top}: t \in[-1,1]\right\}$, the cone $C=\left\{\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}=(a, b, 0,0,0)^{\top}: a \geq b \geq 1\right\}$, the ray $R=\left\{\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}=(a, 0,0,0,0)^{\top}: a \leq 0\right\}$ and the point $A=(1,0,0,0,0)^{\top}$. The critical value on L is simply 1. It is interesting to note that the critical values on C are a polynomial in an auxiliary parameter θ with degree four. However, the critical values on R and A are irrational. This indicates that a complete proof that fourth order four dimensional PNS Hankel tensors with symmetric generating vectors do not exist may not be easy. However, numerical tests also indicate that such PNS Hankel tensors do not exist. Thus, we believe that there are no fourth order four dimensional PNS Hankel tensors with symmetric generating vectors.

Acknowledgments

We are grateful to Professor Man Kam Kwong. His comments helped us to improve our paper greatly. We are thankful to Dr. Guoyin Li for his comments. We also appreciate sincerely Principal Editor, Professor Michael Kwok-Po Ng and the anonymous referee for their comments and suggestions. The first author's work was supported by the National Natural Science Foundation of China (Grant No. 11401539) and the Development Foundation for Excellent Youth Scholars of Zhengzhou University (Grant No. 1421315070). The second author's work was partially supported by the Hong Kong Research Grant Council (Grant No. PolyU 502111, 501212, 501913 and 15302114).

Fig. 4. The contour profiles of $M_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)$ which are equivalent to $N_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)$.

References

[1] D. Hilbert, Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann. 32 (1888) 342-350.
[2] T.S. Motzkin, The arithmetic-geometric inequality, in: O. Shisha (Ed.), Inequalities, Academic Press, New York, 1967, pp. $205-224$.
[3] A.A. Ahmadi, P.A. Parrilo, A convex polynomial that is not sos-convex, Math. Program. 135 (2012) 275-292.
[4] G. Chesi, On the gap between positive polynomials and SOS of polynomials, IEEE Trans. Automat. Control 52 (2007) 1066-1072.
[5] M.D. Choi, T.Y. Lam, Extremal positive semidefinite forms, Math. Ann. 231 (1977) 1-18.
[6] B. Reznick, Some concrete aspects of Hilbert's 17th problem, Contemp. Math. 253 (2000) 251-272.
[7] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. 40 (2005) 1302-1324.
[8] R. Badeau, R. Boyer, Fast multilinear singular value decomposition for structured tensors, SIAM J. Matrix Anal. Appl. 30 (2008) $1008-1021$.
[9] R. Boyer, L. De Lathauwer, K. Abed-Meraim, Higher order tensor-based method for delayed exponential fitting, IEEE Trans. Signal Process. 55 (2007) 2795-2809.
[10] Y. Chen, L. Qi, Q. Wang, Computing extreme eigenvalues of large scale Hankel tensors, J. Sci. Comput. (2015) http://dx.doi.org/10.1007/s10915-015-0155-8.
[11] R.S. Smith, Frequency domain subspace identification using nuclear norm minimization and Hankel matrix realizations, IEEE Trans. Automat. Control 59 (2014) 2886-2896.
[12] V. Oropeza, M. Sacchi, Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis, Geophysics 76 (2011) V25-V32.
[13] S. Trickett, L. Burroughs, A. Milton, Interpolating using Hankel tensor completion, in: SEG Annual Meeting, 2013, pp. $3634-3638$.
[14] J.M. Papy, L. De Lauauwer, S. Van Huffel, Exponential data fitting using multilinear algebra: The single-channel and multi-channel case, Numer. Linear Algebra Appl. 12 (2005) 809-826.
[15] J.M. Papy, L. De Lauauwer, S. Van Huffel, Exponential data fitting using multilinear algebra: the decimative case, J. Chemometr. 23 (2009) $341-351$.
[16] S. Van Huffel, H. Chen, C. Decanniere, P. Van Hecke, Algorithm for time-domain NMR data fitting based on total least squares, J. Magn. Reson. Ser. A 110 (1994) 228-237.
[17] W. Ding, L. Qi, Y. Wei, Fast Hankel tensor-vector products and application to exponential data fitting, Numer. Linear Algebra Appl. 22 (2015) $814-832$.
[18] J.-G. Luque, J.-Y. Thibon, Hankel hyperdeterminants and Selberg integrals, J. Phys. A 36 (2003) 5267-5292.
[19] C. Xu, Hankel tensors, Vandermonde tensors and their positivities, Linear Algebra Appl. 491 (2015) 56-72.
[20] L. Qi, Hankel tensors: Associated Hankel matrices and Vandermonde decomposition, Commun. Math. Sci. 13 (2015) 113-125.
[21] G. Li, L. Qi, Y. Xu, SOS-Hankel tensors: theory and application, October 2014. arXiv:1410.6989.
[22] S. Hu, G. Li, L. Qi, A tensor analogy of Yuan's alternative theorem and polynomial optimization with sign structure, J. Optim. Theory Appl. 168 (2016) 446-474.
[23] Z. Luo, L. Qi, Y. Ye, Linear operators and positive semidefiniteness of symmetric tensor spaces, Sci. China Math. 58 (2015) $197-212$.
[24] J.B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim. 11 (2001) 796-817.
[25] M. Laurent, Sums of squares, moment matrices and optimization over polynomials, in: M. Putinar, S. Sullivant (Eds.), Emerging Applications of Algebraic Geometry, in: IMA Volumes in Mathematics and its Applications, vol. 149, Springer, 2009, pp. 157-270.
[26] G. Li, L. Qi, Q. Wang, Are there sixth order three dimensional PNS Hankel tensors? November 2014. arXiv:1411.2368.
[27] C. Fidalgo, A. Kovacec, Positive semidefinite diagonal minus tail forms are sums of squares, Math. Z. 269 (2011) 629-645.
[28] J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, in: Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.
[29] J. Löfberg, Pre- and post-processing sum-of-squares programs in practice, IEEE Trans. Automat. Control 54 (2004) 1007-1011.
[30] D. Henrion, J.B. Lasserre, J. Löfberg, GloptiPoly 3: moments, optimization and semidefinite programming, Optim. Methods Softw. 24 (2009) $761-779$.
[31] J.F. Sturm, SeDuMi version 1.1R3, (2006). Available at http://sedumi.ie.lehigh.edu.

[^0]: * Corresponding author.

 E-mail addresses: ynchen@zzu.edu.cn (Y. Chen), maqilq@polyu.edu.hk (L. Qi), wangqun876@gmail.com (Q. Wang).

