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a b s t r a c t

A symmetric positive semi-definite (PSD) tensor, which is not sum-of-squares (SOS), is
called a PSD non-SOS (PNS) tensor. Is there a fourth order four dimensional PNS Hankel
tensor? The answer for this question has both theoretical and practical significance. Under
the assumptions that the generating vector v of a Hankel tensor A is symmetric and the
fifth element v4 of v is fixed at 1, we show that there are two surfaces M0 and N0 with
the elements v2, v6, v1, v3, v5 of v as variables, such that M0 ≥ N0, A is SOS if and only if
v0 ≥ M0, and A is PSD if and only if v0 ≥ N0, where v0 is the first element of v. IfM0 = N0
for a point P = (v2, v6, v1, v3, v5)

⊤, there are no fourth order four dimensional PNSHankel
tensors with symmetric generating vectors for such v2, v6, v1, v3, v5. Then, we call such P
a PNS-free point. We prove that a 45-degree planar closed convex cone, a segment, a ray
and an additional point are PNS-free. Numerical tests check various grid points and report
that they are all PNS-free.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In 1888, young Hilbert [1] proved that for homogeneous polynomials, only in the following three cases, a positive
semi-definite (PSD) form definitely is a sum-of-squares (SOS) polynomial: (1) m = 2; (2) n = 2; (3) m = 4 and n = 3,
where m is the degree of the polynomial and n is the number of variables. Hilbert proved that in all the other possible
combinations of n and even m, there are PSD non-SOS (PNS) homogeneous polynomials. The most well-known PNS homo-
geneous polynomial is the Motzkin function [2] with m = 6 and n = 3. Other examples of PNS homogeneous polynomials
were found in [3–6].

A homogeneous polynomial is uniquely corresponding to a symmetric tensor [7]. For a symmetric tensor, m is its order
and n is its dimension. One important class of symmetric tensors is the Hankel tensor. Hankel tensors have important
applications in signal processing [8–10], automatic control [11], and geophysics [12,13]. For example, Papy et al. [14,15]
proposed a novel Hankel tensormodel to analyze time-domain signals in nuclearmagnetic resonance spectroscopy,which is
used for brain tumor detection [16]. A fast computational framework for products of aHankel tensor and vectors is addressed
in Ding et al. [17]. In geophysics, Trickett et al. [13] established a new multidimensional seismic trace interpolator by using
Hankel tensors.

In mathematical science, Luque and Thibon [18] studied the Hankel hyperdeterminants. Xu [19] studied the spectra of
Hankel tensors and gave some upper bounds and lower bounds for the smallest and the largest eigenvalues. In [20], two
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classes of PSD Hankel tensors were identified. They are even order strong Hankel tensors and even order complete Hankel
tensors. It was proved in [21] that complete Hankel tensors are strong Hankel tensors, and even order strong Hankel tensors
are SOS tensors. It was also shown there that there are SOS Hankel tensors and PSD Hankel tensors, which are not strong
Hankel tensors. Thus, a question was raised in [21]: Are all PSD Hankel tensors SOS tensors [22,23]? If there are no PSD
non-SOS Hankel tensors, the problem for determining a given even order Hankel tensor is PSD or not can be answered by
solving a semi-definite linear programming problem [21,24,25].

Wemay call the problem raised by the above question as the Hilbert–Hankel problem. In a certain sense, it is the Hilbert
problem with a Hankel constraint. According to Hilbert [1,6], one case with low values of m and n, in which there are PNS
homogeneous polynomials, is that m = 6 and n = 3. In [26], the Hilbert–Hankel problem with order six and dimension
three was studied. Four special cases were analyzed. Thousands of random examples were checked. No PNS Hankel tensors
of order six and dimension three were found in [26]. Theoretically, it is still an open problemwhether there are PNS Hankel
tensors of order six and dimension three or not.

According to Hilbert [1,6], another case with low values ofm and n, in which there are PNS homogeneous polynomials, is
that m = n = 4. In this paper, we consider this special case in a Hankel context. Let v = (v0, v1, . . . , v12)

⊤
∈ ℜ

13. A fourth
order four dimensional Hankel tensor A = (ai1 i2 i3 i4) is defined by

ai1i2i3 i4 = vi1+i2+i3+i4−4,

for i1, i2, i3, i4 = 1, 2, 3, 4. The corresponding vector v that defines the Hankel tensor A is called the generating vector of A.
For x = (x1, x2, x3, x4)⊤ ∈ ℜ

4, a Hankel tensor A uniquely defines a Hankel polynomial

f (x) ≡ Ax⊗4
=

4
i1,i2,i3,i4=1

ai1 i2 i3 i4xi1xi2xi3xi4 =

4
i1,i2,i3,i4=1

vi1+i2+i3+i4−4xi1xi2xi3xi4 . (1)

If f (x) ≥ 0 for all x ∈ ℜ
4, the Hankel tensor A is called positive semi-definite (PSD). If f (x) can be represented as a sum of

squares of quadratic homogeneous polynomials, the Hankel tensor A is called sum-of-squares (SOS). Clearly, A is PSD if it
is SOS.

In the next section, we present some necessary conditions for the positive semi-definiteness of fourth order four
dimensional Hankel tensors.

We may see that the role of vj is symmetric in f (x). In Section 3, we assume that

vj = v12−j (2)

for j = 0, . . . , 5. Under this assumption, by the results of Section 2, if A is PSD, we have v0 = v12 ≥ 0 and v4 = v8 ≥ 0.
Moreover, if v4 = v8 = 0 and A is PSD, A is SOS. Thus, we may only consider the case that v4 = v8 > 0. Since A is PSD
or SOS or PNS if and only if αA is PSD or SOS or PNS respectively, where α is an arbitrary positive number, we may simply
assume that

v4 = v8 = 1. (3)

Next, we show that there is a function η(v5, v6) such that η(v5, v6) ≤ 1 ifA is PSD.We propose that there are two functions
M0(v2, v6, v1, v3, v5) ≥ N0(v2, v6, v1, v3, v5), defined for η(v5, v6) < 1, such that A is SOS if and only if v0 ≥ M0, and A is
PSD if and only if v0 ≥ N0. IfM0 = N0 for some v2, v6, v1, v3, v5, then there are no fourth order four dimensional PNS Hankel
tensors for such v2, v6, v1, v3, v5 under the symmetric assumption (2). We call such a point P = (v2, v6, v1, v3, v5)

⊤
∈ ℜ

5

a PNS-free point of fourth order four dimensional Hankel tensors, or simply a PNS-free point. We call the set of points in
ℜ

5, satisfying η(v5, v6) < 1, the effective domain of fourth order four dimensional Hankel tensors, or simply the effective
domain, and denote it by S. We show that if all the points in S are PNS-free, then there are no fourth order four dimensional
PNS Hankel tensors with symmetric generating vectors.

In Section 4, we show that a point P in S is PNS-free if there is a value M , such that when v0 = M, f0(x) ≡ f (x) has an
SOS decomposition, and f0(x̄) = 0 for x̄ = (x̄1, x̄2, x̄3, x̄4)⊤ ∈ ℜ

4 with x̄21 + x̄24 ≠ 0. We call such a value M , such an SOS
decomposition of f0(x), and such a vector x̄ the critical value, the critical SOS decomposition and the critical minimizer of A at
P , respectively. Then, we show that the segment L = {(v2, v6, v1, v3, v5)

⊤
= (1, 1, t, t, t)⊤ : t ∈ [−1, 1]} is PNS-free. We

conjecture that this segment is the minimizer set of bothM0 and N0. Then, we show that the 45° planar closed convex cone
C = {(v2, v6, v1, v3, v5)

⊤
= (a, b, 0, 0, 0)⊤ : a ≥ b ≥ 1}, the ray R = {(v2, v6, v1, v3, v5)

⊤
= (a, 0, 0, 0, 0)⊤ : a ≤ 0} and

the point A = (1, 0, 0, 0, 0)⊤ are also PNS-free. We illustrate L, C, R and A in Fig. 1.
In Section 5, numerical tests check various grid points, and find that M0 = N0 there. Thus, they are also PNS-free.

Therefore, numerical tests indicate that there are no fourth order four dimensional PNS Hankel tensors with symmetric
generating vectors.

Some final remarks are made in Section 6.
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Fig. 1. The segment L, the planar closed convex cone C , the ray R and the point A.

2. Fourth order four dimensional hankel tensors

We write out (1) explicitly in terms of the coordinates of its generating vector v:

f (x) = v0x41 + 4v1x31x2 + v2(4x31x3 + 6x21x
2
2) + v3(4x1x32 + 4x31x4 + 12x21x2x3)

+ v4(x42 + 6x21x
2
3 + 12x1x22x3 + 12x21x2x4) + v5(4x32x3 + 12x1x2x23 + 12x1x22x4 + 12x21x3x4)

+ v6(4x1x33 + 4x32x4 + 6x21x
2
4 + 6x22x

2
3 + 24x1x2x3x4)

+ v7(4x2x33 + 12x22x3x4 + 12x1x23x4 + 12x1x2x24) + v8(x43 + 6x22x
2
4 + 12x2x23x4 + 12x1x3x24)

+ v9(4x33x4 + 4x1x34 + 12x2x3x24) + v10(4x2x34 + 6x23x
2
4) + 4v11x3x34 + v12x44. (4)

The following theorem gives some necessary conditions for fourth order four dimensional Hankel tensors being PSD.
Particularly, we note that four key elements of its generating vector v0, v4, v8, v12 must be nonnegative.

Theorem 1. Suppose that A = (ai1i2 i3 i4) is a Hankel tensor generated by its generating vector v = (v0, v1, . . . , v12)
⊤

∈ ℜ
13.

If A is a PSD (or positive definite, or SOS, or strong) Hankel tensor, then we have

vi ≥ 0, (5)

for i = 0, 4, 8, 12,

vi + 6vi+2 + vi+4 ≥ 4|vi+1 + vi+3|, (6)

for i = 0, 4, 8,

vi + 6vi+4 + vi+8 ≥ 4|vi+2 + vi+6|, (7)

for i = 0, 4, and

v0 + 6v6 + v12 ≥ 4|v3 + v9|. (8)

Proof. Let ek be the kth column of a 4-by-4 identity matrix, for k = 1, 2, 3, 4. Substituting x = ek to (4) for k = 1, 2, 3, 4,
by f (ek) ≥ 0, we have (5) for i = 0, 4, 8, 12.

Substituting x = ek + ek+1 to (4) for k = 1, 2, 3, by f (ek + ek+1) ≥ 0, we have

vi + 4vi+1 + 6vi+2 + 4vi+3 + vi+4 ≥ 0,

for i = 0, 4, 8. Substituting x = ek − ek+1 to (4) for k = 1, 2, 3, by f (ek − ek+1) ≥ 0, we have

vi − 4vi+1 + 6vi+2 − 4vi+3 + vi+4 ≥ 0,

for i = 0, 4, 8. Combining these two inequalities, we have (6) for i = 0, 4, 8.
Similarly, by f (ek + ek+2) ≥ 0 and f (ek − ek+2) ≥ 0 for k = 1, 2, we have (7) for i = 0, 4. By f (e1 + e4) ≥ 0 and

f (e1 − e4) ≥ 0, we have (8). The theorem is proved. �

Whereafter, we say that a PSD Hankel tensor is SOS if a key element of its generating vector v0, v4, v8, v12 vanishes.
Before we show this, the following lemma is useful.
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Lemma 1. If a polynomial in one variable is always nonnegative:

p(t) = a0t2k+1
+ a1t2k + · · · + a2k+1 ≥ 0, ∀ t ∈ ℜ.

Then a0 = 0.

Proof. If a0 > 0, we let t → −∞ and get p(t) → −∞, which contradicts that p(t) is nonnegative.
If a0 < 0, we let t → +∞ and get p(t) → −∞, which also contradicts that p(t) is nonnegative.
Hence, there must be a0 = 0. �

Theorem 2. Suppose the fourth order four dimensional Hankel tensor A is PSD and its generating vector is v. If v0v12 = 0, then
vj = 0, for j = 1, . . . , 11, and A is SOS.

Proof. Without loss of generality, we assume that v0 = 0.
To prove v1 = 0, we take x1 = (t, 1, 0, 0)⊤. Then, the homogeneous polynomial (4) reduces to

f (x1) = 4v1t3 + 6v2t2 + 4v3t + v4.

From Lemma 1, we have v1 = 0 since f (x1) is nonnegative. Similarly, we can prove v2 = v3 = 0 if we take x2 = (t, 0, 1, 0)⊤
and x3 = (t, 0, 0, 1)⊤ respectively.

From Theorem 1, we know v4 ≥ 0. When we take x4 = (t2, t, − 1
√
6
, 0)⊤, the homogeneous polynomial (4) reduces to

f (x4) = −


2
√
6 − 2


v4t4 + O(t3).

Let t → ∞. Since f (x4) is always nonnegative, we have v4 ≤ 0. Hence, there must be v4 = 0.
If we take x5 = (t3, 0, t, 1)⊤, the homogeneous polynomial (4) is

f (x5) = 12v5t7 + O(t6).

From Lemma 1, we have v5 = 0 since f (x5) is nonnegative.
We take x6 = (t, 0, 1, 0)⊤. Then, the homogeneous polynomial (4) is

f (x6) = 4v6t + v8.

From Lemma 1, we have v6 = 0 since f (x6) is nonnegative. Similarly, we can prove v7 = 0 when we take x7 = (0, t, 1, 0)⊤.
We take x8 = (t4, 0, t, 1)⊤. Then we have

f (x8) = 12v8t5 + O(t4).

From Lemma 1, we have v8 = 0 since the polynomial f (x8) is nonnegative.
We could prove v9 = 0, v10 = 0 and v11 = 0 if we take x9 = (t, 0, 0, 1)⊤, x10 = (0, t, 0, 1)⊤ and x11 = (0, 0, t, 1)⊤,

respectively.
Finally, since v0 = v1 = · · · = v11 = 0, we have

f (x) = v12x44.

By Theorem 1, we get v12 ≥ 0. Hence, the Hankel tensor A is obviously SOS. �

Theorem 3. Suppose the fourth order four dimensional Hankel tensor A is PSD and its generating vector is v. If v4v8 = 0, then
vj = 0 for j = 1, 2, . . . , 11, and A is SOS.

Proof. By symmetry, we only need to prove this theorem under the condition v4 = 0.
If we take x1 = (1, t, 0, 0)⊤, the homogeneous polynomial (4) reduces to

f (x1) = 4v3t3 + 6v2t2 + 4v1t + v0.

From Lemma 1, we have v3 = 0 since f (x1) is nonnegative. Similarly, we can prove v5 = v6 = 0 if we take x2 = (0, t, 1, 0)⊤
and x3 = (0, t, 0, 1)⊤ respectively.

To prove v7 = 0, we take x4 = (0, t2, t, 1)⊤. Then, the homogeneous polynomial (4) reduces to

f (x4) = 16v7t5 + O(t4).

From Lemma 1, we have v7 = 0 since f (x4) is nonnegative.
From Theorem 1, we know v8 ≥ 0. When we take x5 = (0, −t2, t, 1)⊤, the homogeneous polynomial (4) reduces to

f (x5) = −5v8t4 + O(t3).

Let t → ∞. Since f (x5) is always nonnegative, we have v8 ≤ 0. Hence, there must be v8 = 0.
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If we take x6 = (0, 0, t, 1)⊤, the homogeneous polynomial (4) is

f (x6) = 4v9t3 + O(t2).

From Lemma 1, we have v9 = 0 since f (x6) is nonnegative. Similarly, we could prove v10 = 0 and v11 = 0 if we take
x7 = (0, t, 0, 1)⊤ and x8 = (0, 0, t, 1)⊤, respectively.

The prove of v1 = 0 and v2 = 0 could be similarly obtained if we take x9 = (1, t, 0, 0)⊤ and x10 = (1, 0, t, 0)⊤
respectively.

Finally, since vj = 0 for j = 1, . . . , 11, we have

f (x) = v0x41 + v12x44.

By Theorem 1, we get v0 ≥ 0 and v12 ≥ 0. Hence, the Hankel tensor A is obviously SOS. �

3. Symmetric generating vectors

Now, we make assumptions (2) and (3). At the beginning, we consider a mini problem which is the Hankel polynomial
with x1 = x4 = 0. This problem helps us to analyze the effective domain of two important surfacesM0 and N0.

3.1. Function η

We consider a two variable quartic polynomial

g(y1, y2) = αy41 + 4βy31y2 + 6γ y21y
2
2 + 4βy1y32 + αy42.

Its PSD property is completely characterized by the following theorem.

Theorem 4. The quartic polynomial g(y1, y2) is PSD if and only if

α ≥ η(β, γ ) :=


4|β| − 3γ if γ ≤ |β|,

3γ −

9γ 2 − 8β2

2
if γ > |β|.

Proof. First, if g(y1, y2) is PSD, from g(1, −1) ≥ 0 and g(1, 1) ≥ 0, we have α ≥ 4|β| − 3γ . Thus, in any case,
η(β, γ ) ≥ 4|β| − 3γ .

Second, suppose that α ≥ 4|β| − 3γ . If γ ≤ 0, we get

g(y1, y2) = (α − 4|β| + 3γ )(y41 + y42) + 4|β|(y1 + y2)2(y21 − y1y2 + y22) − 3γ (y21 − y22)
2

≥ 0.

If 0 < γ ≤ |β|, we rewrite g(y1, y2) as follows

g(y1, y2) = (α − 4|β| + 3γ )(y41 + y42) + (y1 + y2)2

(4|β| − 3γ )(y21 + y22) − (4|β| − 6γ )y1y2


.

Since (4|β| − 6γ )2 − 4(4|β| − 3γ )2 = −48|β|(|β| − γ ) ≤ 0, it yields that g(y1, y2) ≥ 0.

Finally, we consider the case γ > |β|. Let ᾱ =
3γ−

√
9γ 2−8β2

2 > 0. Then, we have

g(y1, y2) = (α − ᾱ)(y41 + y42) + ᾱ


y21 +

2β
ᾱ

y1y2 + y22

2

.

Obviously, if α ≥ ᾱ, g(y1, y2) is SOS and PSD.
Next, we show that y21 +

2β
ᾱ
y1y2 + y22 = 0 has nonzero real roots. For the convenience, we denote t =

y1
y2

and prove that

t2 +
2β
ᾱ
t + 1 = 0 has real roots. It is easy to see that t = 0 is not its root. Since γ > |β|, we have

|β|

ᾱ
=

2|β|

3γ −

9γ 2 − 8β2

=

2|β|


3γ +


9γ 2 − 8β2


8β2

≥
8|β|γ

8β2
≥ 1.

Hence, |β| ≥ ᾱ. The discriminant of the quadratic in t is
2β
ᾱ

2

− 4 = 4
β2

− ᾱ2

ᾱ2
≥ 0.

Therefore, there are nonzero (y1, y2) such that g(y1, y2) = (α − ᾱ)(y41 + y42). Obviously, if g(y1, y2) is PSD, we have α ≥ ᾱ.
Thus, we say η(β, γ ) = ᾱ if γ > |β|. �
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Then we have another necessary condition for a fourth order four dimensional Hankel tensor A to be PSD under
assumptions (2) and (3).

Corollary 1. Under assumptions (2) and (3), if A is PSD, then η(v5, v6) ≤ 1.

Proof. Let x1 = x4 = 0, x2 = y1 and x3 = y2. By Theorem 4, we have the conclusion. �

3.2. Surfaces M0 and N0

We now introduce the key idea of this paper, to establish two surfacesM0 and N0, in the following theorem.

Theorem 5. Suppose that assumptions (2) and (3) hold. Then, there are two functions M0(v2, v6, v1, v3, v5) ≥

N0(v2, v6, v1, v3, v5) > 0 defined for

η(v5, v6) < 1, (9)

such that A is SOS if and only if v0 ≥ M0(v2, v6, v1, v3, v5), and A is PSD if and only if v0 ≥ N0(v2, v6, v1, v3, v5). If for all v5
and v6 satisfying (9), we have M0(v2, v6, v1, v3, v5) = N0(v2, v6, v1, v3, v5), then there are no fourth order four dimensional
PNS Hankel tensors under assumption (2).

Proof. Using assumptions (2) and (3), we rewrite (4) as

f (x) = v0(x41 + x44) + v̄4(x42 + x43) + f1(x) + f2(x),

where

f1(x) = η(v5, v6)(x42 + x43) + 4v5(x32x2 + x2x33) + 6v6x22x
2
3

and

v̄4 = 1 − η(v5, v6).

Then v̄4 > 0 by (9). By Theorem 4, f1(x) is PSD. Since f1(x) has only two variables, it is also SOS by Hilbert [1,6].
We now consider terms in f2(x). Each monomial in f2(x) has at least one factor as a power of x1 or x4. We may order the

monomials of f2(x). For example, consider 12v5x1x2x23. Assume that it is ordered as the kth monomial of f2(x). Then by the
arithmetic–geometric inequality, we may see that

−12v5x1x2x23 ≤ 3|v5|


1
ϵ3
k
x41 + ϵkx42 + 2ϵkx43


,

where ϵk is a small positive number. We may let ϵk be small enough such that the sum of the coefficients for x42 on the right
hand side of the above inequality for all possible k is less than v̄4. By symmetry, the sum of the coefficients for x43 on the right
hand side of the above inequality for all possible k is less than v̄4. We see that

12v5x1x2x23 + 3|v5|


1
ϵ3
k
x41 + ϵkx42 + 2ϵkx43


is a PSD diagonal minus tail form. By [27], it is SOS. Thus, as long as v0 is big enough, when (9) is satisfied, f (x) is SOS. From
this, we see that M0 and N0 exist, such that they are defined as long as (9) is satisfied, M0 ≥ N0, A is SOS if and only if
v0 ≥ M0, and A is PSD if and only if v0 ≥ N0.

By Theorem 4, we now only need to consider the case that η(v5, v6) = 1. Suppose that for all v5 and v6 satisfying (9),
we have M0(v2, v6, v1, v3, v5) = N0(v2, v6, v1, v3, v5). Since the sets for PSD Hankel tensors and SOS Hankel tensors
are closed [21], this implies that for all v5 and v6 satisfying η(v5, v6) = 1, we also have M0(v2, v6, v1, v3, v5) =

N0(v2, v6, v1, v3, v5), as long as N0 is defined there. Thus, in this case, by Theorem 3, there are no fourth order four
dimensional PNS Hankel tensors under assumption (2). �

For the variables ofM0 and N0, we put v2 and v6 before v1, v3 and v5, as v2, v6 play a more important role in the PSD and
SOS properties of A, comparing with v1, v3 and v5.

We now regard P = (v2, v6, v1, v3, v5)
⊤ as a point in ℜ

5. IfM0(P) = N0(P), P is called a PNS-free point. We call

S = {(v2, v6, v1, v3, v5)
⊤

∈ ℜ
5

: η(v5, v6) < 1}

the effective domain. Theorem 5 says that if all the points in the effective domain are PNS-free, then there are no fourth
order four dimensional PNS Hankel tensors with symmetric generating vectors. In the next sections, we will study more on
PNS-free points.
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Table 1
The values ofM0(v2, v6, 0, 0, 0) = N0(v2, v6, 0, 0, 0) on some grid points.

v2 \ v6 −0.2 −0.1 0 0.5 1 1.5 2 4

−4.0 3.54e4 8.74e3 3.76e3 4.78e2 3.12e2 3.92e2 6.23e2 6.37e3
−2.0 2.98e4 6.77e3 2.73e3 2.75e2 1.25e2 1.70e2 3.57e2 6.11e3
−1.0 2.72e4 5.85e3 2.26e3 1.91e2 6.15e1 9.26e1 2.73e2 6.06e3
−0.5 2.59e4 5.42e3 2.04e3 1.53e2 3.78e1 6.41e1 2.48e2 6.06e3
0.0 2.46e4 4.99e3 1.82e3 1.20e2 1.96e1 4.50e1 2.39e2 6.07e3
0.5 2.34e4 4.57e3 1.62e3 8.90e1 7.058 4.18e1 2.45e2 6.09e3
1.0 2.21e4 4.17e3 1.42e3 6.21e1 1.000 4.93e1 2.56e2 6.11e3
1.5 2.09e4 3.78e3 1.23e3 3.90e1 4.191 5.69e1 2.67e2 6.14e3
2.0 1.98e4 3.41e3 1.06e3 2.02e1 8.00e0 6.46e1 2.78e2 6.16e3
3.0 1.75e4 2.70e3 7.28e2 7.16e0 1.66e1 8.01e1 3.01e2 6.21e3
4.0 1.53e4 2.04e3 4.41e2 1.23e1 2.60e1 9.60e1 3.23e2 6.25e3

4. Theoretical proofs of some PNS-free regions

4.1. Critical SOS decomposition

For the convenience, we present formally three ingredients used in theoretical proofs of this section. If a point belongs
to the effective domain and enjoys these ingredients, it is PNS-free.

Definition 1. Suppose that assumptions (2) and (3) hold and P = (v2, v6, v1, v3, v5)
⊤

∈ S. Suppose that there is a numberM
such that A is SOS if v0 = M , and a point x̄ = (x̄1, x̄2, x̄3, x̄4)⊤ ∈ ℜ

4 such that x̄21 + x̄24 > 0 and f0(x̄) = 0, where f0(x) ≡ f (x)
with v0 = M . Then we callM the critical value ofA at P , the SOS decomposition f0(x) the critical SOS decomposition ofA at P ,
and x̄ the critical minimizer of A at P .

Theorem 6. Let P ∈ S. Then P is PNS-free if A has a critical value M, a critical SOS decomposition f0(x) and a critical minimizer
x̄ at P.

Proof. Suppose that A has a critical value M , a critical SOS decomposition f0(x) and a critical minimizer x̄ at P . Then we
have M ≥ M0(P) by the definition ofM0. If v0 < M , then

f (x̄) = (v0 − M)(x̄41 + x̄44) + f0(x̄) < 0.

This implies that N0(P) ≥ M by the definition of N0. But N0(P) ≤ M0(P). Thus, M0(P) = N0(P) = M , i.e., P is PNS-free. �

We believe that all the effective domain S is PNS-free. In the next four subsections, we theoretically prove that some
regions of S are PNS-free.

4.2. A PNS-free segment

Professor Man Kam Kwong pointed out that N0(1, 1, 0, 0, 0) = 1,N0(2, 1, 0, 0, 0) = 8 and N0(4, 0, 0, 0, 0) = 441,
are integers. See also Table 1 in Section 6. He suggested us to considered these three points more carefully. Stimulated by
Prof. Kwong’s comments, we derive the results of Sections 4.2 and 4.3.

We have the following theorem.

Theorem 7. Suppose that P = (v2, v6, v1, v3, v5)
⊤

= (1, 1, t, t, t)⊤, where t ∈ [−1, 1]. Then, P is PNS-free, with the critical
value 1 and the critical minimizer (1, 0, −1, 0)⊤.

Proof. For P = (v2, v6, v1, v3, v5)
⊤

= (1, 1, t, t, t)⊤, where t ∈ [−1, 1], and M = 1, we have

f0(x) =
1 + t
2

(x1 + x2 + x3 + x4)4 +
1 − t
2

(x1 − x2 + x3 − x4)4

is SOS, and

f0(1, 0, −1, 0) = 0.

Hence, P is PNS-free. �

By numerical experiments, we have the following conjecture.

Conjecture 1. The segment L = {(v2, v6, v1, v3, v5)
⊤

= (1, 1, t, t, t)⊤ : t ∈ [−1, 1]}, is the minimizer set of both M0 and N0.
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4.3. A PNS-free planar cone

Theorem 8. Suppose that P = (v2, v6, v1, v3, v5)
⊤

= (v2, v6, 0, 0, 0)⊤ with v2 ≥ v6 ≥ 1. Then, P is PNS-free.
If we parameterize v6 = b and v2 = (θ + 3b − 1)(θ2

+ (3b − 2)θ − 3b + 4). Then, the critical value at P is

M = (θ + 3b − 1)2(3θ2
+ (10b − 6)θ + 3b2 − 10b + 9)

and the critical minimizer is x̄ = (1, 0, −(θ + 3b − 1), 0)⊤.

Proof. Note that for v2 ≥ v6 ≥ 1, wemay let v6 = b and v2 = (θ +3b−1)(θ2
+ (3b−2)θ −3b+4), where the parameter

θ ≥ θ̄ = (b − 1)
1
3 (b + 1)

2
3 + (b − 1)

2
3 (b + 1)

1
3 − 2b + 1.

In fact, θ̄ is the largest real root of the cubic equation v2 − v6 = 0.
With the critical value asM = (θ + 3b − 1)2(3θ2

+ (10b − 6)θ + 3b2 − 10b + 9), the critical SOS decomposition at P is
as follows

f0(x) =
1
v0

(v0x21 + 2v2x1x3 + α1x23)
2
+

1
v0

(v0x24 + 2v2x2x4 + α1x22)
2

+ α2((θ + 3b − 1)x1x3 + x23)
2
+ α2((θ + 3b − 1)x2x4 + x22)

2

+
6
b
(x1x2 + x3x4 + bx2x3 + bx1x4)2 +

6(b2 − 1)
b

(x1x2 + x3x4)2 + 6(v2 − b)[x21x
2
2 + x23x

2
4],

where the involved parameters are as follows:

α1 = −(θ2
+ (4b − 2)θ + 3b2 − 4b + 1),

α2 =
2(θ2

+ (4b − 2)θ + b2 − 4b + 4)
3θ2 + (10b − 6)θ + 3b2 − 10b + 9

.

Since f0(1, 0, −(θ + 3b − 1), 0) = 0, the corresponding critical minimizer is x̄ = (1, 0, −(θ + 3b − 1), 0)⊤. Hence,
P = (v2, v6, 0, 0, 0)⊤ with v2 ≥ v6 ≥ 1 is PNS-free. �

The cone C = {(v2, v6, v1, v3, v5)
⊤

= (a, b, 0, 0, 0)⊤ : a ≥ b ≥ 1} is a 45° planar closed convex cone. Its end point is
just the mid point of the segment L = {(v2, v6, v1, v3, v5)

⊤
= (1, 1, t, t, t)⊤ : t ∈ [−1, 1]}, discussed in the last subsection.

4.4. A PNS-free ray

In this subsection, we show that the ray R = {(v2, v6, v1, v3, v5)
⊤

= (a, 0, 0, 0, 0)⊤ : a ≤ 0} is PNS-free. Let a = −ρ,
where ρ ≥ 0 is a constant. We report that, at a point P = (−ρ, 0, 0, 0, 0)⊤, A has the critical value

M = 3 3


θ1 + 32


θ2 +
θ3

3 3


θ1 + 32
√

θ2
+ 6ρ2

+ 138ρ + 609,

where

θ1 := −ρ6
+ 272ρ5

+ 12608ρ4
+ 204032ρ3

+ 1558528ρ2
+ 5750784ρ + 8290304,

θ2 := −(ρ + 6)2(ρ + 4)3(ρ2
+ 4ρ − 16)3,

θ3 := 9(ρ + 8)(ρ3
+ 152ρ2

+ 1728ρ + 5120).

The function f0(x) enjoys a critical SOS decomposition:

f0(x) =

5
k=1

q2k(x),

where

q1(x) = x23 + 6x2x4 + α1x21 + α2x24,

q2(x) = x22 + 6x1x3 + α2x21 + α1x24,

q3(x) = α3x2x4 + α4x21 + α5x24,

q4(x) = α3x1x3 + α5x21 + α4x24,

q5(x) = α6x21 − α6x24.
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The involved parameters are listed as follows:

α1 = −
(ρ + 23)M1(−ρ) − 9ρ3

− 21ρ2
+ 105ρ + 9

M1(−ρ) + 3ρ2 + 6ρ − 33
,

α2 = −3ρ,

α3 =


−30 − 2α15,

α4 =
6(1 − α15)

α33
,

α5 =
16ρ
α33

,

α6 =


−6ρα15 −

192ρ(α15 − 1)
α2
33

.

Theorem 9. Suppose that assumptions (2) and (3) hold. Then, for any constant ρ ≥ 0, P = (−ρ, 0, 0, 0, 0)⊤ is PNS-free.

Proof. We only need to prove that there is a critical minimizer. Let

x̄ = (α33, α35 + α36, −α35 − α36, −α33)
⊤.

Then, we get q3(x̄) = q4(x̄) = q5(x̄) = 0 immediately. Moreover, we have

q1(x̄) = q2(x̄) = (α35 + α36)
2
− 6(α35 + α36)α33 + α15α

2
33 − 3ρα2

33 = 0.

We check the validation of the last equality by amathematical softwareMaple. Hence, f0(x̄) = 0 and x̄ is a critical minimizer
at P . Hence, we get the conclusion by Theorem 6. �

4.5. A PNS-free point

We now show that the point A = (1, 0, 0, 0, 0)⊤ is PNS-free. In fact, the critical value at A is

M = 477 + 3
3

3906351 + 9120

√
57 +

74403
3

3906351 + 9120

√
57

.

The critical SOS decomposition of f0(x) is as follows

f0(x) =

7
k=1

qk(x)2,

where

q1(x) = x23 + 6x2x4 − 21x21 + α1x24,

q2(x) = x22 + 6x1x3 − 21x24 + α1x21,

q3(x) = 2
√
3x2x4 + α2x21 + α3x24,

q4(x) = 2
√
3x1x3 + α2x24 + α3x21,

q5(x) = α4x21 − α4x24,
q6(x) = β1x1x2 + β2x1x4,
q7(x) = β1x3x4 + β2x1x4.

Some involved parameters are listed as follows:

β1 =

√
−6(M2 − 36)(3M2 − 4336)
M2

2 − 1302M2 + 25056
,

β2 =
β1(3β2

1 + 116)
β2
1 + 12

,

α1 = 3 −
1
2
β2
1 ,

α2 = 22
√
3 −

√
3
6

β1β2,
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Fig. 2. The contour profile ofM0(v2, v6, 0, 0, 0) = N0(v2, v6, 0, 0, 0).

α3 = −
8
√
3

3
+

√
3
2

β2
1 ,

α4 =


−42α1 + 2α2α3 + β2

2 .

Theorem 10. Suppose that assumptions (2) and (3) hold. Then, A = (1, 0, 0, 0, 0)⊤ is PNS-free.

Proof. Using the mathematical software Maple, we calculate

f (x) −

7
k=1

q2k(x) =
−β6

1 − 120β4
1 + (4v0 − 4944)β2

1 + 48v0 − 69376
4(β2

1 + 12)
(x41 + x44).

Substituting the value of v0 = M and β1, we get f0(x) −
7

k=1 q
2
k(x) = 0.

Let x̄ = (β1, β2, −β2, −β1)
⊤. Obviously, we obtain q5(x̄) = q6(x̄) = q7(x̄) = 0. We find that q3(x̄) and q4(x̄) vanish

if we rewrite all the parameters using β1. Using the value of each parameter, we find that q1(x̄) = q2(x̄) = 0. Since
x̄1 = β1 ≈ 1.73, x̄ is the critical minimizer. Therefore, this theorem is valid according to Theorem 6. �

5. Numerical experiments

We have proved in Section 4 that some regions are PNS-free. What about the other cases?We try to answer this problem
by a numerical approach. We use the YALMIP software with an SOS module [28,29] to compute M0(v2, v6, v1, v3, v5),
which is the smallest value of v0 such that the fourth order four dimensional Hankel tensor A with the generating
vector (v0, v1, v2, v3, 1, v5, v6, v5, 1, v3, v2, v1, v0)

⊤ is SOS. Gloptipoly [30] and SeDuMi [31] are employed to compute
N0(v2, v6, v1, v3, v5), which is the smallest value of v0 such that the Hankel tensor A is PSD.

5.1. M0(v2, v6, 0, 0, 0) and N0(v2, v6, 0, 0, 0)

First, we focus on two elements v2 and v6 of generating vectors and set v1 = v3 = v5 = 0. By Theorem 4,
owing to the effective domain, we have b > −

1
3 . We choose v2 = −4, −2, −1, −0.5, 0, 0.5, 1, 1.5, 2, 3, 4 and v6 =

−0.2, −0.1, 0, 0.5, 1, 1.5, 2, 4 and computeM0 and N0 in these grid points respectively. By our experiments, we found that
these two functions are equivalent on all of the grid points. Thus, no PNS tensors are detected here. The detailed value ofM0
and N0 are reported in Table 1.

A more intuitional profile of M0 = N0 is illustrated in Fig. 2. It is easy to see that (v2, v6) = (1, 1) is the minimizer of
bothM0 and N0 when we set v1 = v3 = v5 = 0.
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Fig. 3. The contour profile ofM0(0, v6, 0, 0, v5).

5.2. Nonzero odd elements of the generating vectors

We consider the case that the generating vector of a fourth order four dimensional Hankel tensor has nonzero odd
elements. According to Theorem 5, we say that v5 and v6 must satisfy η(v5, v6) < 1. So we study them first and set
v1 = v2 = v3 = 0. We compute a plenty of grid points with different v5 and v6. The function M0(0, v6, 0, 0, v5) is still
equivalent to the function N0(0, v6, 0, 0, v5). That is to say, no PNS tensors are found.

The contour of M0(0, v6, 0, 0, v5) = M0(0, v6, 0, 0, v5) is shown in Fig. 3. We could see that the nonlinear contour of
M0 = N0 = 500 looks like a fire balloon.

Finally, we consider all of the elements of symmetric generating vectors of fourth order four dimensional Hankel
tensors. The contours of M0(v2, v6, v1, v3, v5) and N0(v2, v6, v1, v3, v5) for various combinations of v2, v6, v1, v3 and v5
are reported in Fig. 4. In all of our tests, values of the function M0(v2, v6, v1, v3, v5) in grid points are always equivalent
to the corresponding values of the function N0(v2, v6, v1, v3, v5). So, no fourth order four dimensional PNS Hankel tensors
with symmetric generating vectors are detected.

From Figs. 3 and 4, we could say that the second element v1 of the generating vector of a Hankel tensor affects functions
M0(v2, v6, v1, v3, v5) and N0(v2, v6, v1, v3, v5) slightly. Whenwe fix v4 = 1, the middle element v6 of the generating vector
v plays a more important role since it has direct impact on the effective domain.

6. Final remarks

In this paper, we investigated the problem whether there exist fourth order four dimensional PNS Hankel tensors with
symmetric generating vectors. Theoretically, we proved that such PNS Hankel tensors do not exist on the segment L =

{(v2, v6, v1, v3, v5)
⊤

= (1, 1, t, t, t)⊤ : t ∈ [−1, 1]}, the cone C = {(v2, v6, v1, v3, v5)
⊤

= (a, b, 0, 0, 0)⊤ : a ≥ b ≥ 1},
the ray R = {(v2, v6, v1, v3, v5)

⊤
= (a, 0, 0, 0, 0)⊤ : a ≤ 0} and the point A = (1, 0, 0, 0, 0)⊤. The critical value on L is

simply 1. It is interesting to note that the critical values on C are a polynomial in an auxiliary parameter θ with degree four.
However, the critical values on R and A are irrational. This indicates that a complete proof that fourth order four dimensional
PNS Hankel tensors with symmetric generating vectors do not exist may not be easy. However, numerical tests also indicate
that such PNS Hankel tensors do not exist. Thus, we believe that there are no fourth order four dimensional PNS Hankel
tensors with symmetric generating vectors.
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Fig. 4. The contour profiles ofM0(v2, v6, v1, v3, v5) which are equivalent to N0(v2, v6, v1, v3, v5).
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