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Abstract

Third order three-dimensional symmetric and traceless tensors play an important role in
physics and tensor representation theory. A minimal integrity basis of a third order three-
dimensional symmetric and traceless tensor has four invariants with degrees two, four, six
and ten respectively. In this paper, we show that any minimal integrity basis of a third order
three-dimensional symmetric and traceless tensor is also an irreducible function basis of that
tensor, and there is no polynomial syzygy relation among the four invariants of that basis,
i.e., these four invariants are algebraically independent.
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Nomenclature

D a third order three-dimensional symmetric and traceless tensor with components D
T(m,n) the space of real tensors of order m and dimension n

S(m,n) the subspace of symmetric tensors

St(m,n) the subspace of symmetric and traceless tensors

O(n) the orthogonal group of dimension n

SO(n) the special orthogonal group of dimension n

Gl(n,R) the general linear group of real matrices

('S) = #ln), the binomial coefficient for m >n >0
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1 Introduction

Third order three-dimensional symmetric and traceless tensors play an important role in physics and
tensor representation theory. In the study of liquid crystal, they are used to characterize condensed phases
exhibited by bent-core molecules [4] [6, [§]. In tensor representation theory, a tensor space is called O(3)-
stable if any orthogonal transformation converts that space to itself. The space of symmetric and traceless
tensors of some order is O(3)-stable and does not contain any proper O(3)-stable subspace. Hence, the
space of third order three-dimensional symmetric and traceless tensors is a fundamental tensor space.

In 1997, Smith and Bao [16] presented a minimal integrity basis of a third order symmetric and
traceless tensor. The Smith-Bao minimal integrity basis has four invariants with degrees two, four, six and
ten respectively. It is known that the number of invariants with the same degree in a minimal integrity
basis of some tensors is always fixed [I2]. Thus, any minimal integrity basis of a third order symmetric
and traceless tensor has four invariants with degrees two, four, six and ten respectively.

In this paper, we show that any minimal integrity basis of a third order three-dimensional symmetric
and traceless tensor is also an irreducible function basis of that tensor, and there is no polynomial syzygy
relation among the four invariants of that basis, i.e., these four invariants are algebraically independent
[15].

In the next section, some preliminaries are given.

In Section 3, we give a proof for the cardinality of a function basis of the invariants for a finite
dimensional real vector space by a compact group is bounded below by the intuitive difference of the
dimensions of the vector space and the group. Applying this result to the space of third order three-
dimensional symmetric and traceless tensors, we show that each minimal integrity basis of a third order
three-dimensional symmetric and traceless tensor is also an irreducible function basis of that tensor.

Then, in Section 4, we further show that there is no polynomial syzygy relation among the four
invariants of any minimal integrity basis of a third order three-dimensional symmetric and traceless tensor.
In the other words, these four invariants are algebraically independent [I5].

The results of this paper enrich the knowledge about minimal integrity bases and irreducible function

bases of third order three-dimensional tensors. In the last section, we review the progresses in this area.

2 Preliminaries

In this section, we present necessary notions and results from tensor invariant theory and summarize the

results about minimal integrity bases of a third order three-dimensional symmetric and traceless tensor.

2.1 Tensor Invariants

Let m > 1 and n > 1 be given integers. The space of real tensors A of order m and dimension n is
. € R, the field of real numbers, for all
ij € {l,...,n}and j € {1,...,m}. It is denoted as T(m,n). Let Gl(n,R) C R™*" be the general linear
group of real matrices. Let G C Gl(n,R) be a subgroup. We then have a natural group representation

formed by all tensors (a.k.a. hypermatrices) with entries a;, . ;

G — GI(T(m,n),R), the real general linear group of the linear space T(m,n), via

n n
(g : T)JIJWL = Z T Z 9jriq -+ gjmzmthzm
i1

im =1

A linear subspace V of T(m,n) is G-stable if g-v € V for all g € Gand v € V.
Of particular interests in this article are the compact subgroups O(n) (the orthogonal group) and

SO(n) (the special orthogonal group), both of which are Lie groups [2].



In T(m,n), the subspace of symmetric tensors S(m,n) is Gl(n, R)-stable, and thus G-stable for every
subgroup G. Likewise, inside S(m,n), the subspace of symmetric and traceless tensors St(m,n) is O(n)-
stable, thus SO(n)-stable. Recall that a symmetric tensor T € S(m,n) is traceless if

n

Ztiiis...im =0 for all 13, 0lm € {1, Ce ,n}.
=1

A well-known fact is that the dimension of S(m,n) as a linear space is (”fﬁ;l), and that of St(m,n) is
(nerfl) _ (n+m73)
n—1 n—1 .

Associated to a linear subspace V' C T(m,n) is an algebra R[V], generated by the dual basis of V.
Once a basis of V' is fixed, an element f € R[V] can be viewed as a polynomial in terms of the coefficients
of v € V in that basis. Let G C Gl(n,R) be a subgroup and V' be G-stable. Then, we can induce a group
action of G on R[V] via

(g'f)(v):f(gfl-v) forallge Gand v € V.

With this group action, some elements of R[V] are fixed points for the whole G, i.e.,
g-f=fforall ged,

which form a subring R[V]“ of R[V] [4, [18]. Elements of R[V]“ are invaraints of V under the action of
G. Tt is well-known that R[V]G is finitely generated. A generator set is called an integrity basis. In an
integrity basis, if none of the generators is a polynomial of the others, it is a minimal integrity basis. Given
a subspace V and group GG, minimal integrity bases may not be unique, but their cardinalities are the same
as well as the lists of degrees of the generators [I7]. Invariants in R[V]% are polynomials, always referred
as algebraic invaraints.

Likewise, one can consider function invariants [9]. A function f: V — R is an invariant if

f(v)=f(g-v) for all g € G.

The set of function invariants of V' is denoted as J(V'). If there is a set of generators such that each function
invariant can be expressed as a function of the generators, it is called a function basis. Similarly, if none

of the generators is a function of the others in a function basis, it is called an irreducible function basis.

2.2 Minimal Integrity Bases of a Third Order Three-Dimensional Symmetric
and Traceless Tensor

Use D to denote a third order three-dimensional symmetric and traceless tensor. From now on, the
summation convention is used, i.e., in a product, if an index is repeated twice, then it is summed up from
1 to 3 for that index.

In 1997, Smith and Bao [I6] presented a minimal integrity basis for D as {Iz, Iy, Is, [10}, with

Iy := DijiDiji, 14 := DijiDijeDpqrDpge,

— 02 o
I6 =y, [10 = Dijkvivjvk,

where vy, := Dy D;jeDiep.

The number of invariants with the same degree in a minimal integrity basis of some tensors is always
fixed [12]. Hence, any minimal integrity basis of D has four invariants with degrees two, four, six and ten
respectively. We denote the four invariants of a general minimal integrity basis of D by Js, Jy, Jg and Jig,

respectively.



3 Irreducible Function Bases of A Third Order Symmetric and

Traceless Tensor

In this section, we show that the cardinality of a function basis of the invariants for a finite dimensional real
vector space by a compact group is lower bounded by the intuitive difference of the dimensions of the vector
space and the group. Then we apply this result to the space of third order three dimensional symmetric and
traceless tensors, showing that each minimal integrity basis of a third order three-dimensional symmetric

and traceless tensor is also an irreducible function basis of that tensor.

3.1 Quotient Manifold by Lie Groups

A real vector space V of finite dimension has a natural manifold structure. Any given equivalence relation

~ on V defines a quotient structure with elements being the equivalence classes
V/ ~i=A{[v] | v eV} with [v] :={u €V | v~ u}.

The set V/ ~ is the quotient of V' by ~, and V is the total space of V/ ~. The quotient V/ ~ is a quotient
manifold if the natural projection 7 : V. — V/ ~ is a submersion. V/ ~ admits at most one manifold
structure making it being a quotient manifold® Proposition 3.4.1] "1t may happen that V/ ~ has a manifold
structure but fails to be a quotient manifold. Whenever V/ ~ is indeed a quotient manifold, we call the
equivalence relation ~ regular.

Let G be any compact Lie group and V a finite dimensional real linear space. Suppose that V is
a representation of G, i.e., there is a group homomorphism G — GI(V,R). Then, there is a natural

equivalence relation given by G as
v ~ u if and only if g - v = u for some g € G.

The quotient under this equivalence is sometimes denoted as V/G, which is the set of orbits of the group
action of G on V. Suppose in the following that the group action is continuous. Then, with the compactness

of G, it can be shown that V/G is a quotient smooth manifold, since the graph set
{(vu) [[o] = [u]} cV xV

is closedH} Proposition 3.4.2]

Note that the fibre of the natural projection  is the equivalence class 7= (7 (v)) = [v] for each v € V.
If [v] is not a discrete set of points for some v € V, then the dimension of V/ ~ is strictly smaller than the
dimension of VIII, Proposition 3.4.4]
In the following, we consider subspaces of the linear space of tensors of order m and dimension n, i.e.,

V C T(m,n).

Lemma 3.1. Let V C T(m,n) be a linear space containing St(m,n) and G = O(n) or SO(n). Then, we
have dim(V/G) < dim(V'), and
dim(V/G) > dim V — dim(G). (1)

Proof. By Proposition 3.4.4 in book [I], if there is one point v € V such that [v] is not a set of discrete
points, then dim(V/G) < dim(V), and dim(V/G) = dim V —dim([v]), where [v] is regarded as an embedded
submanifold of V.

Note that [v] is the orbit of G acting on the element v. Thus, the dimension of [v] cannot exceed the
dimension of G. Consequently, the dimension bound () follows if we can find a point v € V' such that [v]

is not a discrete set of points.



First of all, we show that [v] cannot be a discrete set of points for the group G = SO(n) for some
velV.

It is easy to see that the stabilizers G, = G cannot hold through out v € V. Thus, there exists an
orbit [v] with more than one element. Suppose that [v] is a discrete set of more than two points. For any

given two discrete points vy, vs € [v], there exist g1, g2 € G such that
v;=g;-vforalli=1,2

by the definition of [v]. Since SO(n) is a connected manifold, there is a smooth curve ¢(t) starting from

g(0) = g1 ending at g(1) = g2. By the definition,
g(t)-v e v forall ¢t € [0,1].

Since the group action is smooth, we see that vy and vy is thus connected, contradicting the discreteness.

Since SO(n) is one half connected component of O(n), the result for O(n) follows immediately. O

3.2 Cardinality of Function Basis

The next result is Theorem 11.112 in book [19], see also the classical book [I8].

Lemma 3.2 (Separability). Let G be a compact group and V a real vector space representing G. Then
the orbits of G acting on V are separated by the invariants R[V]%.

The conclusion may fail in the complex case.

The concepts of function invariants and functional independence of invariants can be found in classical
textbooks, see for examplel® Page 73]

The analysis for integrity and minimal integrity bases of V' for some G is more sophisticated and
approachable than function basis. Nevertheless, an exciting fact that an integrity basis is also a function

basis holds in most interesting cases. We will present this result in Theorem

Theorem 3.3 (Function Basis). Let G be a compact group and V a finite dimensional real linear vector

space representing G. Then, any integrity basis of R[V]G 18 a function basis.

Proof. Tt is well-known that the ring of polynomial invariants R[V]¢ is finitely generated, whose minimal
set of generators is an integrity basis.

The orbits of G on V are separable, i.e., p(u) = p(v) for all p € R[V]¢ if and only if u = g - v for some
g € G by Lemma[32 Let P :={p1,...,p,} be an integrity basis. We have a map

P:V = P(V) with v — (p1(v),... ,pr(v))T7

where P(V) is the image of P on V. Actually, this map is defined over V/G, as each p; € P is an invariant.
Moreover, this map, with V/G — P(V), is onto and one to one, following from the separability of R[V]¢
on V and the fact that each algebraic invariant is generated by p1, ..., p,. Thus, there is an inverse map

P~ P(V) = V/G.

In summary, we can conclude that [v] (the equivalent class in V/G) for any v € V can be determined by
the values of p1(v),...,p.(v). On the other side, each invariant in J(V'), the set of invariants of V', is a

function over V/G. Thus, we have a chain of functions
V->PV)«V/G—R

Reading throughout the above chain, we get that the integrity basis P gives a function basis for J(V). O



When conditions in Theorem are fulfilled, we can derive a function basis and even an irreducible
function basis from an integrity basis or minimal integrity basis. A function basis derived from an integrity
basis is called a polynomial function basis, and an irreducible function basis derived from a minimal
integrity basis is called an irreducible polynomial function basis. Note that any function basis consisting
of polynomial invariants is a polynomial function basis as it can always be expanded to an integrity basis.
In the following, we will give a lower bound for the cardinality of a polynomial function basis.

Since R[V]¢ is finitely generated [2] and has no nilpotent elements, it follows fromMP4 Theorem L.3] t}a¢
that V/G is a (quotient) variety. It is the variety determined by the coordinate ring R[V]/(R[V]%).

Theorem 3.4 (The Cardinality Theorem). Let G be a compact group of dimension d and V a finite
dimensional real linear vector space representing G of dimension N > d. Then, any polynomial function

basis has cardinality being not smaller than N — d.
Proof. Let {p1,...,p.} C P[V]% be a polynomial function basis. We must have that for each pair u,v € V
pi(u) =p;(v) for all i € {1,...,r}

will implies

since each polynomial in P[V]% is a function of p1,...,p,, and P[V]¢ separates the orbits of V/G [I§].
We therefore have that the mapping
P:V/G—=TR"
given by
P(]) = (1(v), - pr(0)T

is a one to one regular map. Obviously, we can consider the mapping

P.V/G— P(V/G) C R

whenever P is not dominant. Now, the map

P:V/G = P(V/G)
is a dominant morphism. Then, if r < N — d < dim(V/G), each fibre of P~1(y) for y € P(V/G) will
have dimension at least dim(V/G) — dim(P(V/G)) > N — d — r > 1 [ Proposition 6.3] ' Thig contradicts the
separability of the set {p1,...,p,} on the orbits of V/G immediately. O

3.3 Irreducible Function Bases of A Third Order Symmetric and Traceless
Tensor

By the cardinality theorem for function basis, we have the following result for third order three-dimensional

symmetric and traceless tensors.

Theorem 3.5. FEvery minimal integrity basis of isotropic invariants of a third order three-dimensional

symmetric and traceless tensor D is an irreducible function basis of that tensor.

Proof. First note that the dimension of St(3,3) is 7. Thus, the dimension of St(3,3)/ O(3) is at least 4. It
follows from Theorem B.4] that an irreducible function basis will have cardinality at least 4.
On the other hand, every minimal integrity basis of St(3,3) will have the same cardinality 4 [I7],
which is of course an upper bound for the cardinality of irreducible function bases derived from them.
As the lower bound is equal to the upper bound for the cardinality of the irreducible function basis,
the conclusion follows. O



Remark. We may directly show that the Smith-Bao minimal integrity basis {Is, I4, Is, 10} is an
irreducible function basis of a third order three-dimensional symmetric and traceless tensor D by using
the method proposed in [I3]. Since a minimal integrity basis is also a function basis, we only need to prove
that none of {Is, Iy, I, I1p} is a single-valued function of the others.

Using seven independent elements of the tensor D:
D111, D112, D113, D122, D123, D222, and Daas,

we represent the multi-way array corresponding to D as

D111 D12 D113 D112 D122 D123 D113 D123 —D111 — D122
D112 D122 D123 D122 D22 D323 D123 D223 —D112 — D222
D113 D123 —Di11 — D122 | D123 D22z —Di12 — D222 | —Di111 — D122 —Di12 — D222 — D113 — Daas

Let D111 = /3, D112 = D113 = Dios = Diaz = Dasy = Daog = 0. Then I, = 4v/3, Iy = 24,1 = 1o =
0. Let D112 = /2, D111 = D113 = Di2a = D123 = Dags = Daog = 0. Then I = 6v/2, I, = 24, I = I1p =
0. We see that with respect to these two examples, the values of Iy, Is and Iy keep invariant, but the
value of I is changed. This shows that I is not a function of I, I and Iyg.

Let D111 = /3, D112 = D113 = Dios = Di1a3 = Dago = Daog = 0. Then I, = 12,14 = 72, I = I;o = 0.
Let D112 = V2, D111 = D113 = Do = Dig3 = Dagy = Doz = 0. Then I, = 12,14 = 48,1 = I;p = 0.
We see that with respect to these two examples, the values of I, I and I1g keep invariant, but the value
of I, is changed. This shows that I is not a function of Iy, I and I1g.

Let D111 = D112 =1, D113 = D199 = D133 = Dgsy = Doo3 = 0. Then I, = 10,14 = 44,15 = 16, 1o =
64. Let Dygy = Dysg = 1, Diga = Diys = Diss = Dags = Dags — 0. Then Ip = 10, Iy = 44, Is = 16, I —
—64. We see that with respect to these two examples, the values of I, I, and Is keep invariant, but I
changes its sign. This shows that I;¢ is not a function of I, Iy and Ig.

Let f(t) = —43 + cos(6t) + 84sin(3t). Since f(0)f(F) = —42-40 < 0, we know f(¢) = 0 has a root
in (0, %), which is denoted as to. Let D11y = 1, Digo = —% + %sin(to), Dio3 = %cos(to), Doz = —2,
Do = Digs = Doy = 0. Then, I, = 20,I; = 176, I = 104 — 24sin(3to), [0 = —16(—43 + cos(6to) +
84 sin(3tp)) = 0. On the other hand, let D117 = D112 = D113 = D12s = 1, D12a = Daga = Doz = 0. Then
Iy = 20,14 = 176, Is = 128,119 = 0. Clearly, since o € (0, §), we have

104 — 24sin(3ty) < 104 < 128.

Hence, I is not a function of I, I and Iqg.
Hence, none of Iy, Iy, Is and I is a function of the other three invariants, i.e., {Is, Iy, I, [10} is also
an irreducible function basis of a third order three-dimensional symmetric and traceless tensor D.
Theorem BBl claims that any minimal integrity basis of a third order three-dimensional symmetric and
traceless tensor D is an irreducible function basis of that tensor. Hence, Theorem is more general.
The above direct proof for the Smith-Bao minimal integrity basis {Is, I4, Is, I10} just provides a support
to Theorem

4 The Four Invariants of the Basis are Algebraically Independent

The next theorem claims that there is no syzygy relation among four invariants Jo, Jy, Jg and Jig, where

{J2, Ju, Js, J10} be an arbitrary minimal integrity basis of D.

Theorem 4.1. Let {Ja, Jy, Js, Jio} be an arbitrary minimal integrity basis of a third order three-dimensional
symmetric and traceless tensor D. Then there is no syzygy relation among four invariants Jo, Jy, Jg and
Jio.



Proof. We first show that there is no syzygy relation among four invariants Is, Iy, Is and Iy, where
{I2,I4,Ig, I10} is the Smith-Bao minimal integrity basis of D.
For a given third order three-dimensional symmetric and traceless tensor D, we define

9(x) = Djjpxixjay,
where x = (21,2, 23) . Using seven independent elements of the tensor D:
D111, D112, D113, D122, D123, D222, and Daas,
the homogeneous polynomial g(x) could be rewritten as
g(x) = Di1123 +3Dy1003ws + 3D1130703 + 3D 1202175 + 6D 1231203 + 3 (— D111 — Diog) 2173
+ Dagoxs + 3Daozwaws + 3 (—Di1a — Dagg) w23 + (— D113 — Daaz) 7.

On the unit sphere {x : x;x; = 1}, the homogeneous polynomial g(x) has a maximizer. By rotating
coordinates, we could place one maximizer at a point (1,0,0)". Hence, the maximizer x = (1,0,0)

satisfies the following system

3D111$? + 6D1127122 + 6D11371703 + 3D122$§ + 6D123w2x3 + 3 (—D111 — Dia2) a:§ = A\z1,
3D112$? + 6D1227122 + 6D123 7173 + 3D222$§ + 6D223w2w3 + 3 (—D112 — Dago) a:§ = A\x2,

3D1132} + 6D1237122 + 6 (— D111 — Di22) 123 + 3D2sah + 6 (— D112 — Do) 22w3 + 3 (—Di1s — Dass) 23 = Aas.

Then, we get
D112 = D113 =0, D111 >0,
and
g(x) = Di1123 + 3D190w175 + 6D1o371 7273 + 3 (— D111 — Dig2) 7123
+ Doooy + 3Das3a3w3 — 3Dosaxexs — Dagsws.
Since g(0, —x2, —x3) = —g(0, z2,73), g(x) must have a zero point in the circle {(0, xo,23) " : 23 + 23 = 1}.

We may further rotate coordinates such that g(0,1,0) = 0. Hence, we have
Dagg = 0.
In the new coordinate, the tensor D has four independent elements (with slightly abusing of notations)
D111 > 0, D122, D123, and Dags.
Four isotropic invariants Is, Iy, I, [1o are indeed

I; = 4D%; +6D122D111 + 6Dy + 6Dy3 + 4D35;,

Iy = 24D}y, +12D192 D}y, + (18D3yy + 12D755 + 5D553) D31y + 12D129(D7a5 + Diyg

+ D353) D111 + 6D5y + 6Diy3 + 4 D505 + 12D753 D305 + 12D355(Dio + Do),
4(4(D%22 + D§23)D11111 + 8D122(D%22 + D%23 + 3D§23)D§11 + (4D11122 + (8D%23

+ 37D353) Diyy + 4D + Digs — 3D153D353) DYy + 4D192(5D7 05 — 7DY53) D303 Din
+ 4(D?p; + D¥p3)?D33),

Ig



and

Lo = —8(8(Dtyy —3D122D353) D] 1y + 4(6D1ss + (6D3o3 — 39D553) Disy — 5 D303
- 6D%23D323)D(1511 + 6D122(4D£1122 + (8D523 - 73D323)D%22 + 4D£1123 - 21D§23
— 8D753D353) D1y + (8D%ss + 24(Diy3 — 26D3y3) Dy + 3(8Diy3 — 28 D33 Ding
—109D3553) D3y + 8D55 + DSy + 72D303 D3oy + 84 D153 D353) DY,
— 2D199 D353(231 D55 + 2(69 D753 + 101D303) D30y — 45D}y3 — 78D703D303) DY
— 6D35(28 D%, + (32D753 + 41D305) Dy + 2(6Diys — 11D753D353) D1 + 8D%o;
+9D153D353) DY1; — 24D 195 D33( DYy — (Dig — 3D303) Dy — (5D1a3 + 14D353D703) Dioy
— Di53(3D%53 + D3o3)) D1t + 8(—DVas + 15D353 Dy — 15D103 D705 + Dfy3) D3ys).

We now consider the Jacobian of {IQ, 14, 16; 110} in variables {D1117 D122, Dlgg, D223}2

21 P ol 0l (o2 0

9D111 0D122 OD123 0Da223
ol oly 0ly 0ly

Jac = OD111 ODi22  9Di23  ODaa3
Olg Olg dlg dlg

9D111 0D122 9D123 0Da223

oI ET) 9l 0l10 9l

9D111 0D122 OD123 0Da223

By some calculations, the determinant of this Jacobian is

det(Jac)

27648D193(9D1 1 + 24D122 D11 — 24(Diyy + D3a3) D71y — 32D192(3D755 + Dioz) Dint
+16(—3D1yy — 2D793 D705 + Diy3)) D323 (16(3D705 — D3o3) DYy + 32(Doy
+3D353D122) D11 — 8(18 Doy + 3(4D753 + 3D303) D3y — 6Di53 — 5D50y

- 18D%23D§23)D?11 - 24D122(8Dil22 + (16D%23 - D323)D%22 + 8Dil23 + D%zs
+3D353D353) D1y — (64D%5, + 48(4D75; — TD3y3) Dy + 3(64 D55 + 96 D33 Dioy

+ TD553) Digy + 6400 + 25 D595 + 132D703 D305 + 240 D153 D553) Diy4

+ 6 D122 D355 (48 D19y + 4(8Diy3 — 3D353) Diny — 16Dy + 5D595 — 8 D793 D353) DYy,
+4D353(16 DYy 4 6(8 D33 — 7D393) Digy + (48Dilys + T8D353 D705 + 9D303) Disy

+ 16D?23 + 3D%23D§23 + 12D£1123D§23)D%11 - 8D122(D%22 - 3D%23)D§23(12D%22

— D353) D111 — 16(D¥53 — 3D122D%93)” D),

which is a polynomial in variables { D111, D122, D123, D223 }. Clearly, the hypersurface det(Jac) = 0 divides

the space R* of (D111, D122, D123, D223) into several regions. We consider one of them.
Let Q C {(D111,D122,D123,D223)T : det(Jac) # 0} be a maximal connected open set, where “max-

imal” means that € can not be contained in another connected open set such that det(Jac) # 0. As a

polynomial in Dj11, D122, D123 and Daas, det(Jac) # 0 holds for all points in . Then, we process by

contradiction. Suppose that there exists a syzygy relation among isotropic invariants Ios, I4, Is, and I,

which is denoted as a polynomial equation

p(IQ) I47 Iﬁ7 110) =0.

Clearly, p is also a polynomial in variables D111, D122, D123 and Dss3. By chain rule, we have

Op
0D111
Ip
0D122
dp
0D123
Op
0Da223

oIy oly dlg dlg
aglln 65]111 65]111 198[}111
_gf2 4 6 _Ol10
_ 817 OD122 + ap OD122 + @ 0D122 + ﬁ OD122 =0 (2)
ol 0L oly _Ols ol 91g ol 05 '
9D123 0D123 6 0D123 0 9D123
dls ol dlg 0110
OD223 0Da223 0Da223 OD323



Op Op Op
612 ) 814 ) 8[6 )
for all points in 2, we know that four one-way arrays in the middle of () are linear independent. Hence,

Clearly, and BBTTO are polynomials in variables D111, D122, D123 and Daas. Since det(Jac) # 0

we have
dp Op dp dp
oL, ~ dl;  0ls  OLg
Therefore, the polynomial p is a constant function in Q whose value is zero.
By a similar discussion, we obtain that p is a constant function in every region. Since p is a polynomial,
we get that p must be a zero function. This contradicts the assumption that there exists a syzygy relation
among isotropic invariants Io, Iy, I, and I4g.
We now show that there is no syzygy relation among four invariants Jo, J4, Js and Jyo, where {J2, Jy, Jg, J10}
is an arbitrary minimal integrity basis of D. Suppose that there exists a syzygy relation among isotropic

invariants Js, Jy, Jg, and Jig, which is denoted as a polynomial equation
(Z(JQ; J4) JG) JIO) - 0

Since {Ia, Iy, I, 10} is an integrity basis of D, we may represent Js,Jy, Jg and Jig as polynomials of
I, 1, Ig and Io. Note that in this way Js should be a polynomial of Is, J4 should be a polynomial of I

and Iy, etc. Thus, we have polynomial function relations:
Jy = Jo(Iz),

Ji = Ju(Iz, 1),
Jo = Js(I2, 14, Is),
Jio = Jio(I2, I, Is, Iho).

Then we have a syzygy relation among isotropic invariants Is, Iy, I, and I as follows:
q(J2(I2), Ja(I2, Is), J6(I2, 14, I6), J10(12, 14, I6, 110)) = O.
This forms a contradiction. Hence, there is no syzygy relation among four invariants Js, Jy, Jg and J1o. O

Remark. We note that the conclusion of algebraic independence among invariants forming an irre-
ducible function basis of a tensor is not trivial. There exist syzygies in invariants forming an irreducible
function basis of several tensors. For example, Chen, Liu, Qi, Zheng and Zou [5] studied third order
three-dimensional symmetric tensors and gave three syzygies among the eleven invariants of an irreducible

function basis of isotropic invariants the symmetric tensors.

5 Integrity and Function Bases of Third Order Tensors

In three-dimensional physical spaces, there are important third order tensors such as third order symmetric
and traceless tensors, third order symmetric tensors, the Hall tensor, the piezoelectric tensor, etc.

In 1997, Smith and Bao [I6] presented a minimal integrity basis of four isotropic invariants for a third
order three-dimensional symmetric and traceless tensor. Olive and Auffray [I1] constructed a minimal
integrity basis with thirteen isotropic invariants for a third order symmetric tensor in 2014. This year,
Chen, Liu, Qi, Zheng and Zou [5] showed that eleven isotropic invariants among the Olive-Auffray minimal
integrity basis of a third order symmetric tensor form an irreducible function basis of that tensor. Also
in this year, a ten invariant minimal integrity basis, which is also an irreducible function basis of the
Hall tensor, was presented by Liu, Ding, Qi and Zou [7]. For the piezoelectric tensor, in 2014, Olive [10]
gave 495 hemitropic invariants and claimed that these hemitropic invariants form an hemitropic integrity
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basis. Moreover, Olive [I0] showed a set of 30,878 isotropic invariants which form an integrity basis of

isotropic invariants of the piezoelectric tensor. Some further efforts are needed to find a function basis

of the piezoelectric tensor with the cardinality smaller than the cardinality of the integrity basis given in

0.
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