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Abstract

A connected k-uniform hypergraph with n vertices and m edges is called
r-cyclic if n = m(k − 1) − r + 1. For r = 1 or 2, the hypergraph is simply
called unicyclic or bicyclic. In this paper we investigate hypergraphs that at-
tain larger spectral radii among all simple connected k-uniform unicyclic and
bicyclic hypergraphs. Specifically, by using some edge operations, the formula
on power hypergraph eigenvalues, the weighted incidence matrix and a result
on linear unicyclic hypergraphs, we determined the first five hypergraphs with
larger spectral radius among all unicyclic hypergraphs and the first three over
all bicyclic hypergraphs.
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1 Introduction

In the past decade, the research on spectra of hypergraphs via tensors have drawn

increasingly extensive interest, accompanying with the rapid development of tensor

spectral theory since the initial work of Qi [17] and Lim [14].

Given an integer k ≥ 2, a k-uniform hypergraph H refers to a pair (V,E) where V

is a non-empty finite set and E is a family of k-sets of V . If some element e ∈ E or E

itself is a multi-set, thenH is called a multi-hypergraph. Otherwise, we callH a simple

hypergraph [1]. In the sequel, k-uniform hypergraph is written as k-graph for short
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501913, 15302114 and 15300715) and NSF of Guangdong Province (Grant No.2014A030310413).

†Corresponding author. E-mail: liqun.qi@polyu.edu.cn
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and all hypergraphs mentioned are simple uniform hypergraphs, unless otherwise

stated.

The elements of V and E are called vertices and edges (or hyperedges for k ≥ 3) of

H respectively. Denote n = |V | and m = |E|. Label the vertices by natural numbers

1, · · · , n.
The adjacency tensor A = A(H) of a k-graph H refers to a multi-dimensional

array with entries Ai1···ik such that

Ai1···ik =

{

1
(k−1)!

if {i1 · · · ik} is an edge of H ,

0 otherwise,

where each ij runs from 1 to n for j ∈ [k]. The spectrum of H is defined as the

multi-set of eigenvalues of the tensor A(H). One may refer to the definition of tensor

eigenvalues introduced by Qi [17]. The spectral radius of H , denoted by ρ(H), is the

maximum modulus among all eigenvalues of A(H).

In spectral theory of hypergraphs, the spectral radius is an index that attracts

much attention [7, 8, 13, 15, 20]. This may due to the fine properties of its cor-

responding eigenvector revealed in [5, 9, 21], together with its popularity in graph

counterpart (See [4, 6, 10, 16, 19] and references therein).

In 2012, Cooper and Dutle [7] systematically studied the eigen properties of the

adjacency tensor of a k-graph and obtained hypergraph generalizations of many basic

results of spectral graph theory.

In 2015, Li, Shao and Qi [13] determined the unique k-graph with maximum

spectral radius among all supertrees by studying perturbations of spectral radius

under certain edge operations. The next year, Yuan, Shao and Shan [20] proceeded

to order the uniform supertrees with larger spectral radii by their newly introduced

edge operation and a relation established by Zhou et al. [22] between spectral radius

of an ordinary graph and its kth power.

Recently, Fan, Tan, Peng and Liu [8] investigated the hypergraphs that attain

largest spectral radii among all unicyclic and bicyclic k-graphs. They determined the

linear hypergraph with maximum spectral radius over all linear unicyclic k-graphs

and proposed several candidates for the bicyclic case. Later, Kang et al. [12] proved a

conjecture in [8] which lead to the hypergraph maximizing the spectral radius among

all linear bicyclic k-graphs.

Motivating by the preceding work on maximizing and ordering spectral radius,

we take non-linear k-graphs into consideration and try to characterize the first few

hypergraphs with larger spectral radii among all unicylic and bicyclic k-graphs.

The remainder of this paper is as follows. Section 2 presents relevant notations and

some methods useful to later proofs, including the spectral radii perturbations under

edge operations, spectra of power hypergraphs from graphs and the construction

of weighted incidence matrices in comparing spectral radii. In Section 3, with the
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application of all these tools, the first five hypergraphs with larger spectral radii

among all unicyclic k-graphs are determined. The final section further gives the first

three hypergraphs that attain larger spectral radii over all bicyclic k-graphs.

2 Preliminaries

Let H = (V,E) be a k-graph with n vertices and m edges. Let E ′ ⊂ E and V ′ =

∪e∈E′e ⊂ V . Then H ′ = (V ′, E ′) is also a k-graph and is called a (partial) sub-

hypergraph [1], or simply a subgraph of H (induced by E ′).

Recall that a path in H refers to an alternative sequence of distinct vertices and

edges such that two consecutive vertices are contained in the edge between them in

this sequence. If every two vertices in H appear in at least one path, then H is called

a connected hypergraph.

A cycle in H is formed from a path and another edge in H containing the two end

vertices of that path. The number of edges in this cycle is called its length. An edge

containing in a cycle is called a cycle edge.

A k-graph on n vertices and m edges is called r-cyclic if m(k − 1) − n + l = r,

where l is the number of its connected components [8]. Note that r ≥ 0, then for any

simple k-graph we have n ≤ m(k− 1) + l. Moreover, r = 0 if and only if the uniform

hypergraph is acyclic, i.e. it has no cycle [1, Proposition 4, p.392]. A 1-cyclic k-graph

is also called a unicyclic k-graph and a bicyclic k-graph refers to a 2-cyclic k-graph.

Lemma 2.1. Let H = (V,E) be a simple connected r-cyclic k-graph with n vertices

and m edges. Let H1 = (V1, E1) be a connected subgraph of H. If H1 is r1-cyclic,

then r1 ≤ r.

Proof. Let E2 = E\E1, V2 = ∪e∈E2
e. Then H2 = (V2, E2) is a k-uniform subgraph

of H . Suppose that |Vi| = ni and |Ei| = mi for i = 1, 2. Since H1 is connected and

r-cyclic, we have

n1 = m1(k − 1)− r1 + 1.

Suppose that H2 has l connected components, then n2 ≤ m2(k − 1) + l. Moreover,

since H is connected, each component of H2 intersects with H1 at some vertices.

Therefore, n1 + n2 ≥ n+ l. Then we have

n ≤ n1 + n2 − l ≤ m1(k − 1)− r1 + 1 +m2(k − 1) + l − l = m(k − 1)− r1 + 1.

Thus r1 ≤ m(k − 1)− n+ 1 = r.

Denote by Um and Bm the set of all connected uniform unicyclic and bicyclic

hypergraphs with m edges respectively, where m ≥ 2.
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Proposition 2.1. Let H and F be two k-graphs in Um and Bm respectively. Then

(i) every two vertices in H share at most two common edges;

(ii) every three vertices in H have at most one common edge;

(iii) every two vertices in F share at most three common edges;

(iv) every three vertices in F have at most two common edges;

Proof. If there exist two vertices in H having three common edges, or there are three

vertices sharing two common edges, then the subgraph inH induced by those common

edges is bicyclic, which contradicts Lemma 2.1.

If F has a pair of vertices sharing four common edges, then there is a 3-cyclic

subgraph in F induced by the four edges, which contradicts Lemma 2.1. If there are

three vertices in F sharing three common edges, then the subgraph induced by the

three edges is 4-cyclic, which is a contradiction with Lemma 2.1.

It is verified in [8, Lemma 2.1] that if H contains exactly one cycle, then it is

unicyclic (1-cyclic). Now we prove the inverse.

Lemma 2.2. Let H be a simple connected k-graph. Then H is unicyclic (1-cyclic) if

and only if it has only one cycle.

Proof. It suffices to prove the necessity. Let H = (V,E) with |V | = n, |E| = m.

Let e1 be a cycle edge contained in cycle C = v1e1v2 · · · vsesv1. Let w be a new

vertex and f = (e1\{v1})∪{w}. Then H ′ = (V ∪{w}, (E\{e1})∪{f}) is a connected

k-graph with n + 1 vertices and m edges.

Since H is unicyclic, n = m(k− 1). Thus n+1 = m(k− 1)+1 which implies that

H ′ is acyclic. Hence all cycles in H contain e1. According to the arbitrariness of e1,

it can be concluded that each cycle edge is contained in every cycle of H . In other

words, all cycles in H have the same edge set with the same length s.

If s = 2, then by Proposition 2.1 (ii), the two cycle edges intersect at exactly two

vertices. Thus H has a unique cycle.

Suppose that s ≥ 3. Denote by F the subgraph induced by all cycle edges in H

on n′ vertices. Note that all edges of F can be arranged in a cyclic sequence such

that every two consecutive edges share at least one common vertices. If there exists

two consecutive edges in F intersecting at two vertices, then

n′ ≤ s+ 1 + s(k − 2)− 2.

Thus r′ = s(k − 1) − n′ + 1 ≥ 2 which implies that F is r′-cyclic subgraph with

r′ ≥ 2, a contradiction with Lemma 2.1. Therefore, every two consecutive edges in F

intersects at only one vertex, which indicates that H has a unique cycle.
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2.1 Perturbations of spectral radii under edge operations

In this subsection, we present two edge operations introduced in [13] and [20] that

help investigating k-graphs with larger spectral radii.

Two vertices contained in one edge are called adjacent to each other and said to

be connected by this edge. An edge e that contains a vertex v is called an incident

edge of v. If a vertex has exactly one incident edge, then it is called a pendent vertex,

otherwise it is called non-pendent. A pendent edge in a k-graph is an edge containing

k − 1 pendent vertices.

Definition 2.1. [13] Let r ≥ 1 and let H = (V,E) be a k-graph with u ∈ V and

e1, · · · , er ∈ E such that u /∈ ∪r
i=1ei. Suppose that vi ∈ ei and write e′i = (ei\{vi}) ∪

{u} for i ∈ [r]. Let H ′ = (V,E ′) be the hypergraph with E ′ = (E\{ei : i ∈ [r]})∪ {e′i :
i ∈ [r]}. Then we say that H ′ is obtained from H by moving edges (e1, · · · , er) from
(v1, · · · , vr) to u.

Lemma 2.3. [13] Let r ≥ 1 and let H be a connected k-graph. Let H ′ be the

hypergraph obtained from H by moving edges (e1, · · · , er) from (v1, · · · , vr) to u.

Assume that H ′ contains no multiple edges. If x is a Perron vector of H and

xu ≥ max1≤i≤r xvi , then ρ(H ′) > ρ(H).

The following lemma follows directly from Lemma 2.3.

Lemma 2.4. Let H be a connected k-graph and v1, · · · , vr be some of its vertices for

r ≥ 2. Let Hi be a simple hypergraph obtained from H by moving at least one edge

from vertices {vj : j ∈ [r]\{i}} to vi. Then we have

max{ρ(Hi) : i ∈ [r]} > ρ(H).

From Lemma 2.4, we have the corollary below for a special case.

Corollary 2.1. Let H be a connected k-graph having two adjacent vertices u1 and u2.

Let H ′ be the hypergraph obtained from H by moving all incident edges of u2 except

all common edges shared by u1, u2 from u2 to u1. If H ′ ≇ H, then

ρ(H) < ρ(H ′).

Proof. If u1 or u2 does not have other incident edges except their common edges, then

H ∼= H ′. Thus H ′ ≇ H implies that u1, u2 each has incident edges other than the

edges they share. Let H ′′ be the hypergraph obtained from H by moving all incident

edges of u1 except all common edges shared by u1, u2 from u1 to u2. Note that H
′ and

H ′′ do not have multiple edges since all common edges of u1, u2 remain unchanged.

Moreover, H ′′ ∼= H ′. By Lemma 2.4, ρ(H) < max{ρ(H ′), ρ(H ′′)} = ρ(H ′).
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Lemma 2.5. [20] Let k ≥ 3, H be a connected k-graph on n vertices having two edges

e and f such that |e∩f | = k−r (2 ≤ r ≤ k−1). Let V1 = e∩f and e\V1 = {u1, · · · , ur}
and f\V1 = {v1, · · · , vr} where r ≥ 2, u1, v1 are non-pendent vertices while u2, · · · , ur

and v2, · · · , vr are pendent vertices. Let He,f be the hypergraph obtained from H by

moving all the edges incident with v1 except f from v1 to u2. Then ρ(He,f) > ρ(H).

2.2 From graphs to power hypergraphs

Let G be a graph containing no loops, i.e. cycles of length 1. The kth power of G

is defined as the k-graph Gk obtained from G by blowing up its edges to hyperedges

through adding k − 2 new pendent vertices to each edge of G.

If a hypergraph can be seen as a power of some graph without loops, then it is

called a power hypergraph [11]. Observe that a k-graph is a power hypergraph if and

only if each of its edge contains at least k − 2 pendent vertices.

A simple hypergraph is called linear, if each pair of its edges intersects at no more

than one vertex [3], otherwise it is called non-linear. The powers of a simple graph

are always linear, while the kth power of a multi-graph is non-linear.

Recall that the adjacency matrix of a multi-graph [2] on n vertices without loops

is an n× n matrix whose (ij)-entry is the number of parallel edges connecting i and

j if i 6= j and zero otherwise.

Zhou et al. [22] established the following relationship which enables us to acquire

spectral information of a power hypergraph from the graph that generates it.

Lemma 2.6. [22] If λ 6= 0 is an eigenvalue of a graph G, then λ
2

k is an eigenvalue

of Gk. Moreover, ρ(Gk) = ρ(G)
2

k .

Remark. In [22, Theorem 16], G refers to a simple graph. However, it can be verified

through the original proof that Lemma 2.6 also works for multi-graphs without loops.

Denote by φG(x) = det(xI − A(G)) the characteristic polynomial of a graph G,

where A(G) is the adjacency matrix of G and I denotes the unit matrix. If G is

obtained from two disjoint graphs H and K by amalgamating a vertex u of H and v

of K, then we have the following relation from [18, Remark 1.6]:

φG(x) = φH(x)φK−v(x) + φH−u(x)φK(x)− xφH−u(x)φK−v(x), (∗)

where H−u and K− v denote the graphs obtained from H and K by deleting u and

v and all their incident edges respectively.

Let G(a, b) be a multi-graph obtained from a cycle of length 2 by attaching a

and b pendent edges at its two vertices u and v respectively. Denote by M(a, b) the

multi-graph obtained from G(a, b) by adding a new edge connecting u and v (See

Figure 1).
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m− 3 m− 2 m− 4
m− 3

m− 4

G1 G2 G3G4 G5

m− 4a b m− 4a b

Figure 1: Some unicyclic and bicyclic graphs

Lemma 2.7. Let G1, G2, G3 and G(a, b) be the unicyclic graphs depicted in Figure 1

with m edges. Then for m ≥ 8,

ρ(G(m− 2, 0)) > ρ(G3) ≥ ρ(G(m− 4, 2)) > max{ρ(G1), ρ(G2)},

equality holds only if m = 8.

Proof. Since G1 can be obtained from a triangle C3 and a star K1,m−3 by amalgamat-

ing a vertex of C3 and the unique non-pendent vertex of K1,m−3, by (∗) we have

φG1
(x) = xm−3 · φC3

(x) + φP2
(x) · φK1,m−3

(x)− x · xm−3 · φP2
(x)

= xm−4(x+ 1)[x3 − x2 − (m− 1)x+m− 3],

where P2 is a path with one edge. Similarly by using the amalgamating operation,

we obtain the following characteristic polynomials.

φG(a,b)(x) = xm−4[x4 − (m+ 2)x2 + ab],

φG2
(x) = xm−4[x4 − (m+ 2)x2 + 4(m− 3)],

φG3
(x) = xm−4[x4 − (m+ 2)x2 +m].

Thus

ρ(G(m− 2, 0))2 = m+ 2, ρ(G(m− 4, 2))2 =
1

2

(

m+ 2 +
√
m2 − 4m+ 36

)

,

ρ(G2)
2 =

1

2

(

m+ 2 +
√
m2 − 12m+ 52

)

, ρ(G3)
2 =

1

2

(

m+ 2 +
√
m2 + 4

)

.

It is clear that when m ≥ 8,

ρ(G(m− 2, 0))2 > ρ(G3)
2 ≥ ρ(G(m− 4, 2))2 > ρ(G2)

2,

equality holds only if m = 8. This relationship also holds for the corresponding

spectral radii.

Now it remains to compare ρ(G(m− 4, 2)) and ρ(G1).
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Let ρ = ρ(G1). Then from φG1
(x) we have ρ3 = ρ2 + (m − 1)ρ − m + 3. Let

g(x) = x4 − (m+ 2)x2 + 2(m− 4). Then

g(ρ) = ρ4 − (m+ 2)ρ2 + 2(m− 4)

= ρ[ρ2 + (m− 1)ρ−m+ 3]− (m+ 2)ρ2 + 2(m− 4)

= ρ3 − 3ρ2 − (m− 3)ρ+ 2(m− 4)

= ρ2 + (m− 1)ρ−m+ 3− 3ρ2 − (m− 3)ρ+ 2(m− 4)

= −2

(

ρ− 1

2

)2

+m− 9

2
.

Since ρ > ρ(K1,m−1) =
√
m− 1, we have for m ≥ 6 that

g(ρ) < m− 9

2
− 2

(√
m− 1− 1

2

)2

< 2
√
m− 1−m < 0.

According to φG(a,b)(x), ρ(G(m − 4, 2)) is the largest zero point of g(x), thus it is

strictly larger than ρ = ρ(G1). The proof is completed.

2.3 Weighted incidence matrix in comparing spectral radius

In [15], Lu and Man introduced the weighted incidence matrix for hypergraphs. They

discovered a way to characterize the spectral radius in terms of a particular value α by

constructing consistent α-normal, α-subnormal or α-supernormal weighted incidence

matrix for the target hypergraph.

Definition 2.2. [15] A weighted incidence matrix B of a hypergraph H = (V,E) is

a |V | × |E| matrix such that for any vertex v and any edge e, the entry B(v, e) > 0

if v ∈ e and B(v, e) = 0 if v /∈ e.

Definition 2.3. [15] A hypergraph H is called α-subnormal if there exists a weighted

incidence matrix B satisfying

(a)
∑

e:v∈e B(v, e) ≤ 1, for any v ∈ V (H);

(b)
∏

v∈e B(v, e) ≥ α, for any e ∈ E(H).

If no strict inequality appears in (a) and (b), then H is α-normal. Otherwise, H is

called strictly α-subnormal. If furthermore,

l
∏

i=1

B(vi, ei)

B(vi−1, ei)
= 1

for any cycle v0e1v1e2 · · · elv0 (l ≥ 1) in H, then B is consistent and H is called

strictly and consistently α-subnormal.
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a b c

u v w

U1
3 (a, b; c)

a

u

w

v

b

c

U2
3 (a, b; c)

Figure 2: Some unicyclic k-graphs

Lemma 2.8. [15] Let H be a k-graph. Then

(i) ρ(H) = α− 1

k if and only if H is consistently α-normal;

(ii) if H is strictly and consistently α-subnormal, then

ρ(H) < α− 1

k .

Remark. In the paper [15] of Lu and Man, the spectral radius, say ρ∗(H), is multi-

plied by a constant factor (k − 1)!, i.e. ρ∗(H) = (k − 1)!ρ(H). Hence we adjust the

original formula ρ∗(H) < (k − 1)!α− 1

k to the above one.

Denote by U2(a, b) the kth power ofG(a, b). Let U1
3 (a, b; c) be the k-graph obtained

from U2(a, b) by attaching c pendent edges at an arbitrary pendent vertex w in a cycle

edge. Let U2
3 (a, b; c) be the k-graph obtained from U2(a+1, b) by attaching c pendent

edges at a pendent vertex w adjacent to u outside the cycle.

The k-graphs U1
3 (a, b; c) and U2

3 (a, b; c) are presented in Figure 2, where each edge

is represented by a closed curve and all non-pendent vertices are in different color.

By letting α be an expression of a certain spectral radius and constructing specific

weighted incidence matrices, the following lemma establishes a relation of spectral

radii between different hypergraphs.

Lemma 2.9. Let m ≥ 8. Then for a ≤ 1,

ρ(U1
3 (a, 0;m− 2− a)) < ρ(U2(m− 4, 2)).

Proof. Let α = ρ(G(m− 4, 2))−2. Since U2(m− 4, 2) is the kth power of G(m− 4, 2),

by Lemma 2.6 we have α− 1

k = ρ(G(m− 4, 2))
2

k = ρ(U2(m− 4, 2)).

Whenm ≥ 8 and a ≤ 1, we claim that U1
3 (a, 0;m−2−a) is strictly and consistently

α-subnormal.

Now we construct a weighted incidence matrix B for U1
3 (a, 0;m−2−a). For each

pendent vertex p in edge e, let B(p, e) = 1. For non-pendent vertex q in a pendent

edge f , let B(q, f) = α.

9



Suppose that e1 and e2 are the two non-pendent edges of U1
3 (a, 0;m− 2− a) and

w ∈ e2. Write xi = B(u, ei), yi = B(v, ei) for i = 1, 2 and z = B(w, e2). Let

x1 + x2 = 1− aα, y1 + y2 = 1, z = 1− (m− 2− a)α, x1y2 = x2y1, x1y1 = α.

Since we have x1y2 = x2y1 for the unique cycle ue1ve2u, B is consistent accord-

ing to Definition 2.3. It is easy to verify that all equalities hold for (a) and (b) of

Definition 2.3 except on the edge e2.

Now we compare x2y2z with α. Let A = x2

x1

= y2
y1

> 0. Then

1− aα = (x1 + x2)(y1 + y2) = (1 + A)2x1y1 = (1 + A)2α.

Thus A =
√

1
α
− a− 1 ≥

√

1
α
− 1− 1. Since

1

α
= ρ(G(m− 4, 2))2 =

1

2

(

m+ 2 +
√
m2 − 4m+ 36

)

> m,

when m ≥ 15 we have that

x2y2z

α
= [1− (m− 2− a)α]A2

≥
[

1

α
− (m− 2)

]

(√
1− α−

√
α
)2

> 2

(

√

1− 1

m
−
√

1

m

)2

≥ 2

(

√

14

15
−
√

1

15

)2

> 1.

Direct computation shows that the value of
[

1
α
− (m− 2)

]

(
√
1− α−√

α)2 rests in

the interval (1.1, 1.4) when 8 ≤ m ≤ 14. Hence
∏

t∈e2 B(t, e2) = x2y2z > α for m ≥ 8.

Thus U1
3 (a, 0;m − 2 − a) is strictly α-subnormal by Definition 2.3. By Lemma 2.8

(ii), we have

ρ(U1
3 (a, 0;m− 2− a)) < α− 1

k = ρ(U2(m− 4, 2)).

Let B2(a, b) be the kth power ofM(a, b) depicted in Figure 1. Denote by B1
3(a, b, c)

the k-graph with merely two non-pendent edges which intersect at exactly three

vertices u, v, w, where a, b, c are the number of pendent edges attached at u, v, w

respectively. Let B2
3(a, b, c) (B3

3(a, b, c), resp.) be the hypergraph obtained from

U1
3 (a, b; c) by adding a new edge containing u, v (v, w resp.) and k − 2 new pendent

vertices. Let B4
3(a, b, c) (B

5
3(a, b, c) and B6

3(a, b, c) resp.) be the hypergraph obtained

from U2
3 (a, b; c) by adding a new edge containing u, v (u, w and v, w resp.) and k − 2

new pendent vertices. Let B4 be the bicyclic hypergraph obtained from B1
3(0, 0, 0) by

attaching m− 2 pendent edges at an arbitrary pendent vertex t in a cycle edge.
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a

u u
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1
3(a,b,c)
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wvu
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a

a

a w

B2
3(a, b, c)

a c

w u wu v

u b u

B3
3(a, b, c)

b bb

b

B4
3(a, b, c)

a c

w u wu v w

b

v

w

u

a

c

U2
3 (a, b; c)

B5
3(a, b, c) B6

3(a, b, c)

Figure 3: Some bicyclic k-graphs

Lemma 2.10. Let m ≥ 5. Then

(i) ρ(B1
3(m− 2, 0, 0)) = ρ(B2(m− 3, 0));

(ii) max{ρ(B1
3(m− 3, 1, 0)), ρ(B3

3(0, m− 3, 0)), ρ(B4)} < ρ(B2(m− 4, 1)).

Proof. By using the amalgamating operation and the formula (∗), we obtain the

following characteristic polynomial:

φM(a,b)(x) = xm−5[x4 − (m+ 6)x2 + ab],

where a+ b = m− 3. Thus

ρ(M(m− 3, 0))2 = m+ 6, ρ(M(m − 4, 1))2 =
1

2

(

m+ 6 +
√
m2 + 8m+ 52

)

.

Let

α = ρ(M(m− 3, 0))−2 =
1

m+ 6
, β = ρ(M(m − 4, 1))−2.

Claim 1. B1
3(m− 2, 0, 0) is consistently α-normal.

Now we construct a weighted incidence matrix B for B1
3(m−2, 0, 0). Let B(p, e) =

1 for every pendent vertex p in edge e and let B(q, f) = α for each non-pendent vertex

q in a pendent edge f . Suppose that e1 and e2 are the two edges intersecting at u, v, w.

Let B(u, ei) =
1−(m−2)α

2
and B(v, ei) = B(w, ei) =

1
2
for i = 1, 2.

It can be verified that
∑

e:t∈eB(t, e) = 1 for any vertex t and
∏

t∈e B(t, e) = α

for any edge e in B1
3(m − 2, 0, 0). Moreover, B is consistent for all three cycles in

B1
3(m− 2, 0, 0). Therefore by Definition 2.3, B1

3(m− 2, 0, 0) is consistently α-normal.
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Thus by Lemmas 2.6 and 2.8 (i),

ρ(B1
3(m− 2, 0, 0)) = α− 1

k = ρ(M2(m− 3, 0))
2

k = ρ(B2(m− 3, 0)).

Claim 2. B1
3(m− 3, 1, 0) is strictly and consistently β-subnormal.

We first construct a weighted incidence matrix B for B1
3(m−3, 1, 0). Let B(p, e) =

1 for every pendent vertex p in edge e and let B(q, f) = β for each non-pendent vertex

q contained in a pendent edge f . Suppose that e1 and e2 are the two non-pendent

edges.

Write xi = B(u, ei), yi = B(v, ei) and zi = B(w, ei) for i = 1, 2. Let

x1 + x2 = 1− (m− 3)β, y1 + y2 = 1− β, z1 + z2 = 1, x2y2z2 = β,

and let A = x1

x2

= y1
y2

= z1
z2

> 0.

Since x1y2 = x2y1, x1z2 = x2z1 and y1z2 = y2z1 for all three cycles, B is consistent

according to Definition 2.3. It is easy to verify that all equalities hold for (a) and (b)

of Definition 2.3 except on the edge e1.

Now we compare x1y1z1 with β. Note that

(1− β)[1− (m− 3)β] = (x1 + x2)(y1 + y2)(z1 + z2) = (1 + A)3x2y2z2 = (1 + A)3β.

Since β− 1

2 = ρ(M(m − 4, 1)) is the largest root of x4 − (m + 6)x2 +m − 4 = 0, we

have that β−2 − (m− 2)β−1 + (m− 3) = 8β−1 + 1 and thus

(1 + A)3 = β−1(1− β)[1− (m− 3)β]

= β[β−2 − (m− 2)β−1 + (m− 3)]

= β(8β−1 + 1) > 8.

Therefore A > 1 and thus
∏

t∈e2

B(t, e2) = x1y1z1 = A3x2y2z2 = A3β > β.

Hence B1
3(m− 3, 1, 0) is strictly and consistently β-subnormal.

Claim 3. B3
3(0, m− 3, 0) is strictly and consistently β-subnormal.

We construct a weighted incidence matrix B for B3
3(0, m− 3, 0). Let e1, e2, e3 be

the three non-pendent edges where {u, v} ⊂ e2, {v, w} ⊂ e3 and e1 contains all of

u, v, w.

Write x1 = B(u, e1), x2 = B(u, e2), z1 = B(w, e1), z3 = B(w, e3) and yi = B(v, ei)

for i = 1, 2, 3. Let A = x1

x2

= y1
y2

= y1
y3

= z1
z3

> 0,

x2 = z3 =
1

A + 1
, y2 = y3 =

1− (m− 3)β

A + 2
, x2y2 = z3y3 = β.

Assign 1 to B(p, e) for every pendent vertex p in edge e and β to B(q, f) for each

non-pendent vertex q in a pendent edge f .
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By the above equalities, B is consistent for all three cycles ue1ve2u, ve1we3v and

ue1we3ve2u. Moreover, all equalities hold for (a) and (b) of Definition 2.3 except on

the edge e1.

Since 1
β
= ρ(M(m − 4, 1))2 > m+ 5, we have

(A+ 1)(A+ 2) =
1− (m− 3)β

x2y2
=

1− (m− 3)β

β
> 8.

Thus A >
√
33−3
2

> 1.37. Therefore,

x1y1z1
β

=
A3x2y2z3

β
=

A3

1 + A
=

1

A−3 + A−2
> 1.

As
∏

t∈e1 B(t, e1) = x1y1z1 > β, B3
3(0, m − 3, 0) is strictly and consistently β-

subnormal.

Claim 4. B4 is strictly and consistently β-subnormal.

We construct a weighted incidence matrix B for B4. Let e1, e2 be the two non-

pendent edges in B4 where t ∈ e2. Assign 1 to B(p, e) for every pendent vertex p in

edge e and β to B(q, f) for each non-pendent vertex q in a pendent edge f . Let

B(u, e2)

B(u, e1)
=

B(v, e2)

B(v, e1)
=

B(w, e2)

B(w, e1)
= A, B(t, e2) = 1− (m− 2)β,

B(u, e1) = B(v, e1) = B(w, e1) =
1

A + 1
= β

1

3 .

It is easy to check that B is consistent and all equalities hold for (a) and (b) of

Definition 2.3 except on the edge e2. Since A = 3

√

1
β
− 1 > 1 and

1

β
= ρ(M(m− 4, 1))2 > m+ 5 ≥ 10

when m ≥ 5, we have

1

β

∏

s∈e2

B(s, e2) = [1− (m− 2)β]A3

=

(

1

β
− (m− 2)

)

(1− 3

√

β)3

> 7

(

1− 3

√

1

10

)3

> 1.

Thus B4 is strictly and consistently β-subnormal.

By Claims 2, 3, 4, Lemmas 2.6 and 2.8 (ii), we have

ρ(H) < β− 1

k = ρ(M(m − 4, 1))
2

k = ρ(B2(m− 4, 1))

for H ∈ {B1
3(m− 3, 1, 0), B3

3(0, m− 3, 0), B4}.
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3 The first five unicyclic k-graphs with larger spec-

tral radii in Um

We classify Um by the number of non-pendent vertices. Denote by Um
i the set of

hypergraphs in Um with exactly i non-pendent vertices. Since the least possible

length of a cycle in a simple hypergraph is two, we have i ≥ 2.

Note that the kth power of G1 in Figure 1 is in Um
3 . In [8], Gk

1 has been proved

to uniquely attain the largest spectral radius over all linear k-graphs in Um. Hence

the following will be focused on non-linear k-graphs.

Let H be a non-linear k-graph in Um
i . We claim that the length of the unique

cycle of H is 2. If the length is at least 3, then by Lemma 2.2 H can not have two

vertices sharing two common edges which forms another cycle. Hence H is linear

which yields a contradiction. Let ue1ve2u be the unique cycle in H .

First we consider that H is in Um
2 . By Proposition 2.1 (i), e1, e2 are the only two

non-pendent edges that contains u and v. As the remaining edges (if there exists

any) are pendent, we have H ∼= U2(a, b) for some nonnegative integers a and b. Thus

k-graphs in Um
2 are in the form of U2(a, b) with a, b ∈ N.

Lemma 3.1. Let a ≥ b ≥ 1 and a + b = m− 2. Then

ρ(U2(a, b)) < ρ(U2(a+ 1, b− 1)) ≤ ρ(U2(m− 2, 0)).

Proof. Note that U2(a+1, b−1) can be obtained from U2(a, b) by moving one pendent

edge from v to u, or by moving a− b+1 pendent edges from u to v, by Lemma 2.4 we

have ρ(U2(a, b)) < ρ(U2(a+1, b−1)). By induction, ρ(U2(a+1, b−1)) ≤ ρ(U2(m−2, 0))

with equality if and only if b = 1.

Now we consider H ∈ Um
3 . Let w be the remaining non-pendent vertex of H . If w

is in a cycle edge say e1, then by Proposition 2.1 (ii), w /∈ e2. Thus H ∼= U1
3 (a, b; c) for

some integers a, b and c ≥ 1. If w is not on the cycle, then there is an edge outside the

cycle containing w and one of u, v, say u. Thus H ∼= U2
3 (a, b; c) for some integers a, b

and c ≥ 1. Therefore, non-linear k-graphs in Um
3 are either in the form of U1

3 (a, b; c)

or U2
3 (a, b; c) with c ≥ 1.

Lemma 3.2. Let H be a non-linear k-graph in Um
3 \{U1

3 (m−3, 0; 1), U2
3 (m−4, 0; 1)}.

If m ≥ 8, then

ρ(H) < ρ(U2(m− 4, 2)) ≤ ρ(U2
3 (m− 4, 0; 1)) < ρ(U1

3 (m− 3, 0; 1)),

equality holds only if m = 8.

Proof. We discuss by two cases.

Case 1. H ∼= U1
3 (a, b; c).
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Suppose that a ≥ b. Since H ≇ U1
3 (m− 3, 0; 1), b ≥ 1 or c ≥ 2.

If a ≥ 2, then by Corollary 2.1, take u1 = v and u2 = w, we have

ρ(H) < ρ(U2(a, b+ c)) ≤ ρ(U2(m− 4, 2)).

The second inequality follows from Lemma 3.1 for a ≥ 2 and b+ c ≥ 2.

If a = b = 1, then by Corollary 2.1, take u1 = u and u2 = v, we have that

ρ(H) < ρ(U1
3 (2, 0; c)) and c = m− 4 > 2, which can be ascribed to a ≥ 2.

If a ≤ 1 and b = 0, then by Lemma 2.9, ρ(H) < ρ(U2(m− 4, 2)).

Case 2. H ∼= U2
3 (a, b; c).

Since H ≇ U2
3 (m − 4, 0; 1), b ≥ 1 or c ≥ 2. Then we can obtain U1

3 (a + 1, b; c)

from H by moving c pendent edges from w to an arbitrary pendent vertex in a cycle

edge. This operation coincides with the one of Lemma 2.5. Thus for b ≥ 1 or c ≥ 2,

ρ(H) < ρ(U1
3 (a+ 1, b; c)) < ρ(U2(m− 4, 2)),

where the second inequality follows from Case 1.

Since U2(m− 4, 2) and U2
3 (m− 4, 0; 1) are the kth powers of G(m− 4, 2) and G3

respectively (See Figure 1), by Lemmas 2.6 and 2.7,

ρ(U2(m− 4, 2)) = ρ(G(m− 4, 2))
2

k ≤ ρ(G3)
2

k = ρ(U2
3 (m− 4, 0; 1)),

and equality holds only if m = 8.

It remains to prove the last inequality of this lemma. Observe that U1
3 (m−3, 0; 1)

can be obtained from U2
3 (m−4, 0; 1) by moving the pendent edge attached at w from

w to an arbitrary pendent vertex in a cycle edge. By Lemma 2.5,

ρ(U2
3 (m− 4, 0; 1)) < ρ(U1

3 (m− 3, 0; 1)).

The proof is completed.

Next we discuss H ∈ Um
4 .

Lemma 3.3. Let H be a non-linear k-graph in Um
4 with m ≥ 8. Then

ρ(H) < ρ(U2(m− 4, 2)).

Proof. For H being non-linear, recall that the unique cycle is denoted by ue1ve2u

with length 2. Let w and t be the remaining two non-pendent vertices of H and let

a, b, c, d be the number of pendent edges attached at u, v, w, t, respectively.

We discuss by the location of w and t.

Case 1. w, t are on the cycle. By Lemma 2.2, each of w, t is contained in only one

non-pendent edge. Thus c ≥ 1, d ≥ 1. By moving all pendent edges from w to t or

from t to w, we can both obtain U1
3 (a, b; c+ d) with c+ d ≥ 2. Then by Lemmas 2.4

and 3.2, ρ(H) < ρ(U1
3 (a, b; c+ d)) < ρ(U2(m− 4, 2)).
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Case 2. Only one of w, t is on the cycle, say w. Then d ≥ 1, otherwise t is a

pendent vertex or H is not unicyclic.

Subcase 2.1. w and t are connected by an edge f . Take u1 = w and u2 = t, by

Corollary 2.1 and Lemma 3.2 we have ρ(H) < ρ(U1
3 (a, b; c+ d+1)) < ρ(U2(m−4, 2))

for c+ d ≥ 1.

Subcase 2.2. w and t are not adjacent. Then t is adjacent to u or v. Suppose

that w ∈ e1\e2. Moving d pendent edges from t to an arbitrary pendent vertex in

e2, by Lemma 2.5 we obtain a hypergraph H ′ of Case 1 with larger spectral radius.

Thus ρ(H) < ρ(H ′) < ρ(U2(m− 4, 2)).

Case 3. w and t are outside the cycle. Then at least one of w and t, say w,

is adjacent to a vertex on the cycle, say u. Suppose that u, w are connected by an

edge f ′ outside the cycle. Moving all edges incident with w expect f ′ from w to an

arbitrary pendent vertex on the cycle, we obtain a hypergraph H ′′ of Case 2. By

Lemma 2.5 and the discussion in Case 2, ρ(H) < ρ(H ′′) < ρ(U2(m− 4, 2)).

This completes the proof.

Lemma 3.4. Let i ≥ 3 and H be a k-graph in Um
i . Then

ρ(H) < max{ρ(F ) : F is a k-graph in Um
i−1}.

Proof. First we consider that all non-pendent vertices of H are in the same edge

say f . Then there exists a non-pendent vertex w whose incident edges except f are

pendent edges. Otherwise, each non-pendent vertex is incident with at least two

non-pendent edges and we can find two distinct cycles with length 2 when i ≥ 3,

which contradicts Lemma 2.2. Now move all pendent edges attached at w from w

to another non-pendent vertex t in f , we obtain a k-graph in Um
i−1, denoted H ′. By

Corollary 2.1, take u1 = t and u2 = w, we have ρ(H) < ρ(H ′).

Now suppose H have two non-pendent vertices u, v that do not share any common

edge. Let P = ue1 · · · esv be a shortest path connecting u and v in H where s ≥ 2.

Let H1 be the k-graph obtained from H by moving all edges incident with u except

e1 from u to v. Let H2 be the k-graph obtained from H by moving all edges incident

with v except es from v to u. Note that H1 and H2 are in Um
i−1. By Lemma 2.4,

ρ(H) < max{ρ(H1), ρ(H2)}.
For both cases, ρ(H) is bounded up by the spectral radius of a k-graph in Um

i−1,

thus the proof is completed.

By Lemmas 3.3 and 3.4, we have:

Lemma 3.5. Let H be a non-linear k-graph in Um
i , where i ≥ 4 and m ≥ 8. Then

ρ(H) < ρ(U2(m− 4, 2)).

Now a main result of this paper follows.
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Theorem 3.1. Let H be a k-graph in Um with m ≥ 8. Then

(i) ρ(U2(m− 4, 2)) ≤ ρ(U2
3 (m− 4, 0; 1)) < ρ(U1

3 (m− 3, 0; 1))

< ρ(U2(m− 3, 1)) < ρ(U2(m− 2, 0)),

equality holds only if m = 8.

(ii) If H /∈ {U2(m−2, 0), U2(m−3, 1), U2(m−4, 2), U1
3 (m−3, 0; 1), U2

3 (m−4, 0; 1)},
then

ρ(H) < ρ(U2(m− 4, 2)).

Proof. We first prove the relationship in (i).

The first two inequalities result directly from Lemma 3.2 and the fourth inequality

follows from Lemma 3.1.

For U1
3 (m−3, 0; 1), by Corollary 2.1, take u1 = v and u2 = w, we obtain the third

inequality that ρ(U1
3 (m− 3, 0; 1)) < ρ(U2(m− 3, 1)).

If H is non-linear, the inequality of (ii) can be obtained from Lemmas 3.1, 3.2

and 3.5 by specifying the number of non-pendent vertices in H . If H is linear, then

according to [8, Corollary 3.7], Lemmas 2.6 and 2.7 we have

ρ(H) ≤ ρ(Gk
1) < ρ(Gk(m− 4, 2)) = ρ(U2(m− 4, 2)).

The proof is completed.

4 The first three bicyclic k-graphs with larger spec-

tral radii in Bm

Denote by Bm
i the set of hypergraphs in Bm with exactly i non-pendent vertices where

i ≥ 2. Let H be a k-graph in Bm
i .

We first consider that H is in Bm
2 . Let u, v be the non-pendent vertices in H .

Since H is bicyclic, u, v have at least three common edges, otherwise H is acyclic or

unicyclic. By Proposition 2.1 (iv), there are exactly three edges sharing u, v. As the

remaining edges of H (if there exists any) are pendent edges, H ∼= B2(a, b) for some

integers a, b. Thus k-graphs in Bm
2 are in the form of B2(a, b) with a, b ∈ N.

Lemma 4.1. Let a ≥ b ≥ 1 and a + b = m− 3. Then

ρ(B2(a, b)) < ρ(B2(a+ 1, b− 1)) ≤ ρ(B2(m− 3, 0)).

Proof. Note that B2(a+1, b−1) can be obtained from B2(a, b) by moving one pendent

edge from v to u, or by moving a− b+ 1 pendent edges from u to v. By Lemma 2.4,

ρ(B2(a, b)) < ρ(B2(a+1, b− 1)). Then by induction, ρ(B2(a+1, b− 1)) ≤ ρ(B2(m−
3, 0)) with equality if and only if b = 1.
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Now we investigate H ∈ Bm
3 . Let u, v, w be the three non-pendent vertices of H .

We may discuss by the number of common edges u, v, w have. By Proposition 2.1

(iii), u, v, w share at most two common edges.

If u, v, w have exactly two common edges, then any two of them can not share

anther edge, otherwise there is a 3-cyclic subgraph induced by three non-pendent

edges in H , which contradicts Lemma 2.1. Hence the remaining edges are pendent

edges attached at u, v or w. Thus H ∼= B1
3(a, b, c) for some integers a, b and c.

If u, v, w have only one common edge say e1, then there are at least two more edges

that each contains two non-pendent vertices. Otherwise H is acyclic or unicyclic. If

there are three more non-pendent edges other than e1, then H has a 3-cyclic subgraph

formed by four non-pendent edges, which contradicts Lemma 2.1. Hence H has

exactly two more non-pendent edges, say e2, e3. If e2, e3 intersect at two vertices say

u, v, then H ∼= B2
3(a, b, c). Otherwise e2 and e3 have only one common vertex say v,

then H ∼= B3
3(a, b, c).

Suppose that u, v, w do not have common edge. Since H is connected, there is a

path connecting u, v, w, say ve1ue2w. As H is bicyclic, there are exactly two more

non-pendent edges, say e3 and e4, that each contains two of u, v, w. Otherwise H is

acyclic, unicyclic or has a 3-cyclic subgraph formed by five non-pendent edges. Note

that e3 ∩ e4 < 3. If e3 ∩ e4 is {u, v} or {u, w}, then H ∼= B4
3(a, b, c) for some a, b, c.

If e3 ∩ e4 = {u}, then H ∼= B5
3(a, b, c). Otherwise e3 ∩ e4 is {v, w}, {v} or {w}, then

H ∼= B6
3(a, b, c) for some a, b, c.

Therefore, k-graphs in Bm
3 have six forms Bj

3(a, b, c), j = 1, · · · , 6, where a, b, c ∈ N

and c ≥ 1 for j = 2, 4.

Lemma 4.2. Let H be a k-graph in Bm
3 \{B1

3(m− 2, 0, 0)}. If m ≥ 5, then

ρ(H) < ρ(B2(m− 4, 1)) < ρ(B1
3(m− 2, 0, 0)).

Proof. To prove the first inequality, we discuss by the formation of H .

Case 1. H ∼= B1
3(a, b, c). Since H ≇ B1

3(m − 2, 0, 0), at least two of a, b, c are

positive, say a, b.

If c = 0, then by moving b − 1 pendent edges from v to u, or by moving a − 1

pendent edges from u to v, we obtain B1
3(m− 3, 1, 0). Thus by Lemmas 2.4 and 2.10,

ρ(H) ≤ ρ(B1
3(m− 3, 1, 0)) < ρ(B2(m− 4, 1)).

If c ≥ 1, then by Corollary 2.1, take u1 = v and u2 = w, we have that

ρ(H) < ρ(B1
3(a, b+ c, 0)) ≤ ρ(B1

3(m− 3, 1, 0)) < ρ(B2(m− 4, 1)).

Case 2. H ∼= B3
3(a, b, c).

Suppose that a ≥ c within this case. If a = c = 0, then by Lemma 2.10, ρ(H) =

ρ(B3
3(0, m− 3, 0)) < ρ(B2(m− 4, 1)). If a ≥ 1, then by Corollary 2.1,

ρ(H) < ρ(B3
3(0, a+ b, c)) ≤ ρ(B3

3(0, a+ b+ c, 0)) < ρ(B2(m− 4, 1)).
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Case 3. H ∼= B2
3(a, b, c) with c ≥ 1.

Suppose that a ≥ b within this case. If a ≥ 1, then by Corollary 2.1, take u1 = v

and u2 = w, we have for b+ c ≥ 1 that

ρ(H) < ρ(B2(a, b+ c)) ≤ ρ(B2(m− 4, 1)).

Suppose that a = b = 0 (See Figure 3). By removing one pendent edge from

w to u, we obtain B2
3(1, 0, m − 4). Besides, by removing a non-pendent edge not

containing w from u to w, we obtain B3
3(0, 0, m − 3) from H . Then by Lemma 2.4

and the discussion in Case 2, 3,

ρ(H) < max{ρ(B2
3(1, 0, m− 4)), ρ(B3

3(0, 0, m− 3))} < ρ(B2(m− 4, 1)).

Case 4. H ∼= Bj
3(a, b, c), j = 4, 5, 6.

If H ∼= B4
3(a, b, c) with c ≥ 1, then by moving c pendent edges from w to an

arbitrary pendent vertex in an edge containing u, v, we obtain B2
3(a + 1, b, c). By

Lemma 2.5 and the discussion in Case 3, we have for c ≥ 1 that

ρ(H) < ρ(B2
3(a+ 1, b, c)) < ρ(B2(m− 4, 1)).

If H ∼= B5
3(a, b, c) , then by moving c pendent edges and one edge containing

u, w from w to an arbitrary pendent vertex in an edge containing u, v, we obtain

B3
3(b, a+ 1, c). By Lemma 2.5 and the discussion in Case 2,

ρ(H) < ρ(B3
3(b, a+ 1, c)) < ρ(B2(m− 4, 1)).

If H ∼= B6
3(a, b, c), then by moving c pendent edges and the edge containing

v, w from w to an arbitrary pendent vertex in an edge containing u, v, we obtain

B3
3(a+ 1, b, c). By Lemma 2.5 and the discussion in Case 2,

ρ(H) < ρ(B3
3(a+ 1, b, c)) < ρ(B2(m− 4, 1)).

The second inequality of this lemma follows from Lemmas 2.10 and 4.1.

Lemma 4.3. Let i ≥ 4 and H be a k-graph in Bm
i . Then

ρ(H) < max{ρ(F ) : F is a k-graph in Bm
i−1}.

Proof. If all non-pendent vertices in H are in one edge say f , then we can find two

non-pendent vertices v1, v2 that do not have other common edge. Otherwise every two

non-pendent vertices shares exactly two common edges, then H contains a 3-cyclic

subgraph which is a k-graph obtained from B3
3(0, 0, 0) by adding an edge containing

u, w and k − 2 new pendent vertices, a contradiction. Denote by H ′ the k-graph

obtained from H by moving all edges incident with v2 except f from v2 to v1. Note

that H ′ ∈ Bm
i−1. Now by Corollary 2.1 we have ρ(H) < ρ(H ′).
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Suppose there exists two non-pendent vertices v1, v2 inH that do not have common

edge. Let P = v1e1 · · · esv2 be a shortest path connecting v1 and v2 where s ≥ 2. Let

H1 be the k-graph obtained from H by moving all edges incident with v1 except

e1 from v1 to v2. Let H2 be the k-graph obtained from H by moving all edges

incident with v2 except es from v2 to v1. Then H1, H2 are in Bm
i−1 and by Lemma 2.4

ρ(H) < max{ρ(H1), ρ(H2)}.
Therefore, ρ(H) is bounded up by the maximum spectral radius among k-graphs

in Bm
i−1 when i ≥ 4.

Finally we consider that H is in Bm
4 .

Lemma 4.4. Let H be a k-graph in Bm
4 with m ≥ 5. Then

ρ(H) < ρ(B2(m− 4, 1)).

Proof. Case 1. H has exactly two non-pendent edges, say e, f .

Then |e ∩ f | = 3, otherwise H is acyclic, unicyclic or has a 3-cyclic subgraph.

Hence H can be obtained from B1
3(a, b, c) by attaching d pendent edges at an arbitrary

pendent vertex t in a non-pendent edge, where d ≥ 1.

Suppose that a ≥ b ≥ c. If a ≥ 1, then by Corollary 2.1 and Lemma 4.2,

ρ(H) < ρ(B1
3(a, b + d, c)) < ρ(B2(m − 4, 1)) for b + d ≥ 1. If a = b = c = 0, then

H ∼= B4. By Lemma 2.10, ρ(H) = ρ(B4) < ρ(B2(m− 4, 1)).

Case 2. H has at least three non-pendent edges.

Subcase 2.1 All non-pendent vertices of H are in one edge, say f . According to

the discussion within the proof of Lemma 4.3, we can find two non-pendent vertices

v1 and v2 that do not share any edge other than f . Moving all edges incident with v2
except f from v2 to v1, we obtain from H a k-graph H ′ ∈ Bm

i−1 which has the same

number of non-pendent edges as H does. Then H ′ has at least three non-pendent

edges, and thus H ′ ≇ B1
3(m − 2, 0, 0). By Corollary 2.1 and Lemma 4.2, we have

ρ(H) < ρ(H ′) < ρ(B2(m− 4, 1)).

Subcase 2.2 There exists two non-pendent vertices v1, v2 in H that do not have

any common edges.

Let P = v1e1 · · · esv2 be a shortest path connecting v1 and v2 where s ≥ 2. Denote

by H1 the k-graph obtained from H by moving all edges incident with v1 except

e1 from v1 to v2. Denote by H2 the k-graph obtained from H by moving all edges

incident with v2 except es from v2 to v1. Obviously H1 and H2 are in Bm
3 . Next we

prove that they are not B1
3(m− 2, 0, 0).

If there is a pendent edge attaching at v1 or v2 in H , then in H1, the shortest path

connecting v1 and an arbitrary pendent vertex in a pendent edge attached at v2 is of

length at least 3. This implies that H1 ≇ B1
3(m − 2, 0, 0), as the maximum length

over all paths in B1
3(m− 2, 0, 0) is 2. Similarly we have H2 ≇ B1

3(m− 2, 0, 0).

Suppose that v1 and v2 are not in any pendent edge. Then each of v1, v2 is incident

with a non-pendent edge other than e1 and es, say f1 and f2 respectively. Thus there
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are three edges (f1\{v1}) ∪ {v2}, f2 and es being non-pendent in H1, which implies

that H1 is distinct with B1
3(m − 2, 0, 0) where only two edges being non-pendent.

Similarly we have H2 ≇ B1
3(m− 2, 0, 0).

Thus by Lemmas 2.4 and 4.2,

ρ(H) < max{ρ(H1), ρ(H2)} < ρ(B2(m− 4, 1)).

Now the proof is completed.

By Lemmas 4.3 and 4.4, we have:

Lemma 4.5. Let H be a k-graph in Bm
i , where i ≥ 4 and m ≥ 5. Then

ρ(H) < ρ(B2(m− 4, 1)).

Theorem 4.1. Let H be a k-graph in Bm with m ≥ 5. Then

(i) ρ(B2(m− 4, 1)) < ρ(B2(m− 3, 0)) = ρ(B1
3(m− 2, 0, 0));

(ii) if H /∈ {B2(m− 4, 1), B2(m− 3, 0), B1
3(m− 2, 0, 0)}, then

ρ(H) < ρ(B2(m− 4, 1)).

Proof. The relation in (i) follows directly from Lemmas 2.10 and 4.1.

The inequality of (ii) can be obtained from Lemmas 4.1, 4.2 and 4.5 by specifying

the number of non-pendent vertices in H .

Then the proof is completed.
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