Z-TENSORS AND COMPLEMENTARITY PROBLEMS*

M. SEETHARAMA GOWDA, ZIYAN LUO \ddagger LIQUN QI, ${ }^{\ddagger}$ AND NAIHUA XIU『

October 24, 2015

Abstract

Tensors are multidimensional analogs of matrices. Z-tensors are tensors with non-positive off-diagonal entries. In this paper, we consider tensor complementarity problems associated with Z-tensors and describe various equivalent conditions for a Z-tensor to have the Q-property. These conditions/properties include the strong M-tensor property, the S-property, positive stable property, strict semi-monotonicity property, etc. Based on degree-theoretic ideas, we prove some refined results for even ordered tensors. We show, by an example, that a tensor complementarity problem corresponding to a strong M-tensor may not have a unique solution. A sufficient and easily checkable condition for a strong M-tensor to have unique complementarity solutions is also established.

Key Words. tensor, Z-tensor, strong M-tensor, complementarity problem, degree theory Mathematics Subject Classification. 15A18, 15B48, 90C33

[^0]1. Introduction. A tensor is simply a multidimensional analog of a matrix. Given natural numbers $m(\geq 2)$ and n, an m th order, n-dimensional tensor is of the form

$$
\begin{equation*}
\mathcal{A}=\left[a_{i_{1} i_{2}} i_{3} \cdots i_{m}\right] \tag{1.1}
\end{equation*}
$$

where $a_{i_{1} i_{2} i_{3} \cdots i_{m}} \in R, 1 \leq i_{1}, i_{2}, i_{3}, \ldots, i_{m} \leq n$. During the last decade, tensors have become very important in various areas. Numerous articles extending basic concepts and results of matrix theory have been written, see for example, [2, 6, 11, 12, 14, 19, 20, 21, 22]. With a view towards bringing in optimization ideas, researchers have introduced various complementarity concepts [3, 5, 13, 15, 16, 17, 18. Given a tensor \mathcal{A} in the form (1.1), we define a function $F: R^{n} \rightarrow R^{n}$ whose i th component is given by

$$
F_{i}(x):=\sum_{i_{2}, i_{3}, \ldots, i_{m}=1}^{n} a_{i i_{2} i_{3} \cdots i_{m}} x_{i_{2}} x_{i_{3}} \cdots x_{i_{m}}
$$

This function, abbreviated by

$$
F(x)=\mathcal{A} x^{m-1}
$$

has a homogeneous polynomial of degree $m-1$ in each component. Corresponding to this F and any $q \in R^{n}$, we consider the tensor complementarity problem $\operatorname{TCP}(\mathcal{A}, q)$: Find $x \in R^{n}$ such that

$$
x \geq 0, F(x)+q \geq 0 \text { and }\langle x, F(x)+q\rangle=0
$$

where $x \geq 0$ means that each component of x is nonnegative, etc. This is a generalization of the linear complementarity problem (corresponding to $m=2$), a special instance of a nonlinear complementarity problem and a particular case of a variational inequality problem corresponding to the closed convex cone R_{+}^{n}. Complementarity problems and variational inequality problems have been extensively studied and there is a vast literature dealing with existence, uniqueness, computation, and applications, see for example, [7, 8. In the last decade or so, much work has been done in extending these to symmetric cones.
Since the tensor complementarity problem is a special case of a nonlinear complementarity problem, the entire theory of nonlinear complementarity problems is applicable to tensor complementarity problems. However, because each component of $F(x)$ is a homogeneous polynomial (of the same degree), we may expect some specialized results; see [9 for an early reference where (multi)functions with certain 'homogeneity' are treated. The main questions in tensor complementarity theory are: How do the entries of \mathcal{A} influence existence, uniqueness, stability, computation, etc., and which linear complementarity concepts/results extend to tensors?

In this article, we consider Z-tensors which are tensors with non-positive 'off-diagonal' entries. It is easy to see that such a tensor can be written as

$$
\mathcal{A}=r \mathcal{I}-\mathcal{B}
$$

where $r \in R, \mathcal{I}$ is the identity tensor and \mathcal{B} is a nonnegative tensor (that is, all its entries are nonnegative). Properties of nonnegative tensors, particularly in relation to the Perron-Frobenius theorem, have been explored in several recent papers, see [2, 20, 19, 22]. If $\rho(B)$ denotes the spectral radius of \mathcal{B}, one says that the Z-tensor $\mathcal{A}=r \mathcal{I}-\mathcal{B}$ is an M-tensor if $r \geq \rho(B)$ and strong (or nonsingular) M-tensor if $r>\rho(B)$. Some properties of M-tensors and strong M-tensors have been discussed in [6, 21, 12]. Motivated by a paper of Luo et al. [13], here, we undertake a study of
complementarity properties of Z-tensors, specifically asking when a Z-tensor \mathcal{A} has the Q-property, namely, for all $q \in R^{n}, \operatorname{TCP}(\mathcal{A}, q)$ has a solution. In addition to proving several equivalent properties, we show how degree theory offers a way of understanding the solvability of certain equations arising in Z-tensor complementarity problems.

This paper is organized as follows. In Section 2, we recall some results about nonnegative tensors. Section 3 covers a basic result about Q-tensors via degree theory. In Section 4, we consider Z-tensors and characterize the strong M-tensor property in various equivalent ways. Finally, in Section 5, we describe some refined properties of Z-tensors such as the surjectivity of the map F and the equivalence of the P-property and the strong M-tensor property.
2. Preliminaries. Throughout this paper, R^{n} denotes the n-dimensional Euclidean space with the usual inner product. For $x \in R^{n}$, we write $x \geq 0(x>0)$ if all components of x are nonnegative (respectively, positive). The nonnegative orthant of R^{n} is denoted by R_{+}^{n}. We denote the complex n-space by C^{n}.
Let $\mathcal{A}=\left[a_{i_{1} i_{2} i_{3} \cdots i_{m}}\right]$ denote an m th order, n-dimensional tensor. The entries $a_{i i \cdots i}, 1 \leq i \leq n$, are the 'diagonal' entries; the rest are 'off-diagonal' entries of \mathcal{A}. The identity tensor is one with all diagonal entries one and off-diagonal entries zero. A tensor is said to be nonnegative if all its entries are nonnegative.

A complex number λ is said to be an eigenvalue of \mathcal{A} if there exists a nonzero vector $x \in C^{n}$ such that

$$
\mathcal{A} x^{m-1}=\lambda x^{[m-1]}
$$

where $x^{[m-1]}$ is the vector in C^{n} with i th component x_{i}^{m-1}, see [2, 14]. Define the spectrum $\sigma(\mathcal{A})$ to be the set of all eigenvalues of \mathcal{A}. Then, the spectral radius of \mathcal{A} is defined by

$$
\rho(\mathcal{A}):=\max \{|\lambda|: \lambda \in \sigma(\mathcal{A})\}
$$

The following is a Perron-Frobenius type theorem for nonnegative tensors.
Proposition 2.1. ([20], Theorem 2.3)
If \mathcal{B} is a nonnegative tensor, then $\rho(\mathcal{B})$ is an eigenvalue of \mathcal{B} with a nonnegative eigenvector.
Next, we recall a Collatz-Wielandt type result.
Proposition 2.2. (Lemma 5.3 and Theorem 5.3, Yang-Yang [20]) Let \mathcal{B} be a nonzero nonnegative m th order, n-dimensional tensor. Let $\rho(\mathcal{B})$ be its spectral radius. Then, for any $d>0$,

$$
\min _{i} \frac{\left(\mathcal{B} d^{m-1}\right)_{i}}{d_{i}^{m-1}} \leq \rho(\mathcal{B}) \leq \max _{i} \frac{\left(\mathcal{B} d^{m-1}\right)_{i}}{d_{i}^{m-1}}
$$

Moreover,

$$
\rho(B)=\max _{0 \neq x \geq 0} \min _{x_{i}>0} \frac{\left(\mathcal{B} x^{m-1}\right)_{i}}{x_{i}^{m-1}}
$$

Given an m th order, n-dimensional tensor \mathcal{A}, let $I \subseteq\{1,2, \ldots, n\}$. Then, the principal subtensor of \mathcal{A} corresponding to I is given by $\widetilde{\mathcal{A}}:=\left[a_{i_{1} i_{2} i_{3} \cdots i_{m}}\right]$, where $i_{k} \in I$ for all $k=1,2 \ldots, m$.

The following corollary is immediate from the above proposition.

Corollary 2.3. Let \mathcal{D} be a principal subtensor of a nonnegative tensor \mathcal{B}. Then $\rho(\mathcal{D}) \leq \rho(\mathcal{B})$.
Let \mathcal{A} be a Z-tensor written in the form $\mathcal{A}=r \mathcal{I}-\mathcal{B}$, where $r \in R$ and \mathcal{B} is a nonnegative tensor. We say that \mathcal{A} is an M-tensor if $r \geq \rho(\mathcal{B})$ and a strong M-tensor if $r>\rho(\mathcal{B})$. The following result and its proof are modified versions of Theorem 3.3 in [21].

Proposition 2.4. Let $\mathcal{A}=r \mathcal{I}-\mathcal{B}$ be a Z-tensor and $\mu(\mathcal{A}):=\min _{\lambda \in \sigma(\mathcal{A})} \operatorname{Re}(\lambda)$. Then,

$$
\mu(\mathcal{A})=r-\rho(\mathcal{B})
$$

Moreover, $\mu(\mathcal{A})$ is a real eigenvalue of \mathcal{A} corresponding to a real eigenvector.
Proof. Since $\rho(\mathcal{B})$ is a real eigenvalue of \mathcal{B} corresponding to a real eigenvector, $r-\rho(\mathcal{B})$ is a real eigenvalue of \mathcal{A} corresponding to (the same) real eigenvector. Hence,

$$
\mu(\mathcal{A}) \leq r-\rho(\mathcal{B})
$$

On the other hand, if $\lambda \in \sigma(\mathcal{A})$, then $r-\lambda \in \sigma(\mathcal{B})$ and so,

$$
r-\operatorname{Re}(\lambda) \leq|r-\lambda| \leq \rho(\mathcal{B})
$$

This yields $r-\rho(\mathcal{B}) \leq \operatorname{Re}(\lambda)$ and (taking the minimum over all $\lambda \in \sigma(\mathcal{A})), r-\rho(\mathcal{B}) \leq \mu(\mathcal{A})$.
3. Q-tensors. Generalizing the concept of a Q-matrix of linear complementarity theory $[4, Q$ tensors were introduced in [16. Let \mathcal{A} be an m th order, n-dimensional tensor and $F(x):=\mathcal{A} x^{m-1}$. $W e$ say that \mathcal{A} is a Q-tensor if for every $q \in R^{n}, \operatorname{TCP}(\mathcal{A}, q)$ has a solution. Note that x is a solution of $\operatorname{TCP}(\mathcal{A}, q)$ if and only if x is a solution of the piecewise polynomial equation

$$
\min \{x, F(x)+q\}=0
$$

Moreover, when m is even, the same x is also a solution of

$$
\min \left\{x^{[m-1]}, F(x)+q\right\}=0
$$

(Note that $\min \left\{x^{[m-1]}, F(x)\right\}$ is homogeneous of degree $m-1$, while $\min \{x, F(x)\}$ may not be homogeneous.)

In what follows, we employ degree theoretic ideas. All necessary ideas and results concerning degree theory are given in [7], Prop. 2.1.3. The following is a basic result dealing with tensor complementarity problems. For any continuous function $f: R^{n} \rightarrow R^{n}$, suppose $f(x)=0 \Rightarrow x=0$. Then, the local degree of f at the origin (which equals the degree of f relative to any bounded open set containing zero) is well defined and is denoted by $\operatorname{deg}(f, 0)$. When this degree is nonzero, the equation $f(x)=p$ will have solutions for all p near the origin. We now apply this idea to tensor complementarity problems. Given a tensor \mathcal{A}, let

$$
\Phi(x):=\min \{x, F(x)\} .
$$

Theorem 3.1. Suppose that

$$
\Phi(x)=0 \Rightarrow x=0 \quad \text { and } \quad \operatorname{deg}(\Phi, 0) \neq 0
$$

Then, \mathcal{A} is a Q-tensor and $\operatorname{TCP}(\mathcal{A}, q)$ has a nonempty compact solution for any $q \in R^{n}$.

Proof. For any $q \in R^{n}$, let $\Phi_{q}(x):=\min \{x, F(x)+q\}$. Then, by the nearness property of degree (see Prop. 2.1.3(c), 7]), for all q sufficiently close to zero, $\operatorname{deg}\left(\Phi_{q}, 0\right)=\operatorname{deg}(\Phi, 0) \neq 0$. This means that $\operatorname{TCP}(\mathcal{A}, q)$ has a solution for all q near zero. Since $F(x)$ is positive homogeneous of degree $m-1$, by scaling, $\operatorname{TCP}(\mathcal{A}, q)$ has a solution for all $q \in R^{n}$. Now we will show the compactness of the solution set of $\operatorname{TCP}(\mathcal{A}, q)$ for any given $q \in R^{n}$ under the condition $\Phi(x)=0 \Rightarrow x=0$. To see this, first observe that the solution set of $\operatorname{TCP}(\mathcal{A}, q)$ is closed as it is the same as that of $\min \{x, F(x)+q\}=0$. The boundedness of the solution set is seen via a 'normalization argument' as follows. Suppose, if possible, for some q, the solution set of $\min \{x, F(x)+q\}=0$ is unbounded. Let $x^{(k)}$ be a sequence in the solution set with $\left\|x^{(k)}\right\| \rightarrow \infty$. Writing $\min \{x, F(x)+q\}=0$ in terms of complementarity conditions, we see that $\left.\min \left\{\lambda x, F(\lambda x)+\lambda^{m-1} q\right)\right\}=\min \left\{\lambda x, \lambda^{m-1}(F(x)+q)\right\}=0$ for all $\lambda>0$. Now replacing x by x^{k}, choosing $\lambda:=\left\|x^{(k)}\right\|^{-1}$, letting $k \rightarrow \infty$, and putting (without loss of generality) $\bar{x}:=\lim \frac{x^{(k)}}{\left\|x^{(k)}\right\|}$, we get $\min \{\bar{x}, F(\bar{x})\}=0$. We reach a contradiction as $\|\bar{x}\|=1$ and at the same time $\bar{x}=0$. Thus, the nonempty solution set of $\operatorname{TCP}(\mathcal{A}, q)$ is closed and bounded, hence compact.

Remarks. The condition $\Phi(x)=0 \Rightarrow x=0$, which is equivalent to $\operatorname{TCP}(\mathcal{A}, 0)$ having zero as the only solution, has been shown to be equivalent to the R_{0}-property of \mathcal{A}, see Proposition 3.1 (i) in [16]. The boundedness of the involved solution set of the tensor complementarity problem has been addressed under this R_{0}-property in Theorem 3.3, [18]. The Q-property of \mathcal{A} is discussed in Theorem 3.2 of [16] in which the R-property of \mathcal{A} is required. Here, differing from the R-property, the Q-property is achieved via degree theory.

Corollary 3.2. Under each of the following conditions, \mathcal{A} is a Q-tensor and the corresponding $T C P(\mathcal{A}, q)$ has a nonempty compact solution for any $q \in R^{n}$.
(i) There exists a vector $d>0$ such that for $\operatorname{TCP}(\mathcal{A}, 0)$ and $\operatorname{TCP}(\mathcal{A}, d)$, zero (vector) is the only solution.
(ii) \mathcal{A} is a strictly semi-monotone (or strictly semi-positive) tensor, that is, for each nonzero $x \geq 0, \max _{i} x_{i}\left(\mathcal{A} x^{m-1}\right)_{i}>0$.
(iii) \mathcal{A} is a strictly copositive tensor, that is, for all $0 \neq x \geq 0, \mathcal{A} x^{m}:=\left\langle\mathcal{A} x^{m-1}, x\right\rangle>0$.
(iv) \mathcal{A} is a positive definite tensor, that is, for all $x \neq 0, \mathcal{A} x^{m}:=\left\langle\mathcal{A} x^{m-1}, x\right\rangle>0$.

Proof. (i) Note that this condition is precisely what is given in the well-known Karamardian's theorem. Our degree theory proof offers, in addition to existence, a stability result (in the sense that certain nonhomogeneous nonlinear complementarity problems of the form $\mathrm{NCP}(G, p)$ with (G, p) close to $(F, 0)$ will also have solutions). Now to show that condition (i) implies the desired results, we set up a homotopy:

$$
H(x, t):=\min \{x, F(x)+t d\} \quad 0 \leq t \leq 1
$$

Since $\operatorname{TCP}(\mathcal{A}, 0)$ and $\operatorname{TCP}(\mathcal{A}, d)$ have zero solutions, we have $H(x, 0)=0 \Rightarrow x=0$ and $H(x, 1)=$ $0 \Rightarrow x=0$. In addition, for any $t, 0<t<1, H(x, t)=0$ implies, by scaling and using the homogeneity of $F, \min \{s x, F(s x)+d\}=0$ for some positive s. This yields $x=0$. Thus, the zero set of the entire homotopy reduces to just $\{0\}$. Now, by the homotopy invariance of the degree,

$$
\operatorname{deg}(\Phi, 0)=\operatorname{deg}(H(x, 0), 0)=\operatorname{deg}(H(x, 1), 0)
$$

As $H(x, 1)=\min \{x, F(x)+d\}=x$ near zero, we see that $\operatorname{deg}(H(x, 1), 0)=1$. Thus, $\operatorname{deg}(\Phi, 0)=1$. Now the above theorem shows that \mathcal{A} is a Q-tensor and $\operatorname{TCP}(\mathcal{A}, q)$ has a nonempty compact solution for any $q \in R^{n}$.
When condition (ii) holds, for any $d>0, \operatorname{TCP}(\mathcal{A}, 0)$ and $\operatorname{TCP}(\mathcal{A}, d)$ have zero solutions. Hence \mathcal{A}
is a Q-tensor and the corresponding $\operatorname{TCP}(\mathcal{A}, q)$ has a nonempty compact solution for any $q \in R^{n}$. It is easy to see that $(i v) \Rightarrow(i i i) \Rightarrow(i i)$. Thus, the asserted conclusions hold when condition (iii) or (iv) holds.

Remarks. It is worth pointing out that (i) of Corollary 3.2 is actually equivalent to the R-property of \mathcal{A} as discussed in Proposition 3.1 (ii) and Theorem 3.2 in [16], and the Q-property under (ii) of Corollary 3.2 has been discussed in Corollary 3.3 in [16]. Besides, see [3, where conditions (iii) and (iv) are discussed in relation to the Q-property of \mathcal{A}.
4. Z-tensors; Some basic results. In this section, we characterize the Q-property of a Z tensor in various equivalent ways. We start by recalling a result that says that in the case of a complementarity problem corresponding to a Z-tensor, feasibility implies solvability.

Proposition 4.1. (Corollary 1, [13]). Suppose \mathcal{A} is a Z-tensor. If $\operatorname{TCP}(\mathcal{A}, q)$ is feasible, that is, there exists $u \geq 0$ such that $\mathcal{A} u^{m-1}+q \geq 0$, then it is solvable.

Based on this proposition, we can characterize Z-tensors having the Q-property.
Theorem 4.2. Suppose \mathcal{A} is an mth order, n-dimensional tensor. Consider the following statements:
(i) \mathcal{A} is a Q-tensor.
(ii) For every $q \in R^{n}, \operatorname{TCP}(\mathcal{A}, q)$ is feasible.
(iii) There exists $d>0$ such that $\mathcal{A} d^{m-1}>0$.

Then, $(i) \Rightarrow(i i) \Leftrightarrow($ iii $)$. Moreover, these statements are equivalent when \mathcal{A} is a Z-tensor.
Proof. The implication $(i) \Rightarrow(i i)$ is obvious.
The equivalence of $(i i)$ and $(i i i)$ is established in Theorem 3.2 in [18. When \mathcal{A} is a Z-tensor, we quote the previous proposition to see that $\operatorname{TCP}(\mathcal{A}, q)$ is solvable under (ii). \quad.

The following result characterizes the Q-property of a Z-tensor in different ways. These conditions/properties have been discussed in various articles. We collect them together here, offer a proof for completeness and for further refined results (in the next section). Note that these results are generalizations of similar results for Z-matrices. They are also similar to the ones for Z-transformations on proper cones [10.

Theorem 4.3. Let \mathcal{A} be a Z-tensor given by $\mathcal{A}=r \mathcal{I}-\mathcal{B}$, where $r \in R$ and B is a nonnegative tensor. Then the following statements are equivalent:
(a) \mathcal{A} is a Q-tensor.
(b) For each $q \geq 0$, there exists $x \geq 0$ such that $\mathcal{A} x^{m-1}=q$.
(c) \mathcal{A} is an S-tensor, that is, there exists $d>0$ such that $\mathcal{A} d^{m-1}>0$.
(d) \mathcal{A} is a strong M-tensor, that is, $r>\rho(\mathcal{B})$.
(e) For all $0 \neq x \geq 0, \max _{i} x_{i}\left(\mathcal{A} x^{m-1}\right)_{i}>0$.
(f) For all $q \geq 0$, zero is the only solution of $\operatorname{TCP}(\mathcal{A}, q)$.

In addition, the above conditions are further equivalent to
(i) \mathcal{A} is positive stable, that is, $\mu(\mathcal{A})>0$.
(ii) For all $\varepsilon \geq 0,(\mathcal{A}+\varepsilon \mathcal{I}) x^{m-1}=0 \Rightarrow x=0$.
(iii) For any nonnegative diagonal tensor \mathcal{D} compatible with $\mathcal{A}, \mathcal{A}+\mathcal{D}$ is a strong M-tensor.

Proof. $(a) \Rightarrow(b)$: Assume (a) and let $q \geq 0$. Then there exists $x \in R^{n}$ such that

$$
x \geq 0, y:=\mathcal{A} x^{m-1}-q \geq 0,\langle x, y\rangle=0 .
$$

Then, by the Z-property of $\mathcal{A},\left\langle\mathcal{A} x^{m-1}, y\right\rangle \leq 0$. This yields $\langle y+q, y\rangle \leq 0$ and $\|y\|^{2}+\langle q, y\rangle \leq 0$. As
$q \geq 0$, we get $y=0$ showing $\mathcal{A} x^{m-1}=q$.
$(b) \Rightarrow(c)$: Taking (any) $q>0$, we get an $x \geq 0$ such that $\mathcal{A} x^{m-1}=q>0$. By continuity, there exists $d>0$ such that $\mathcal{A} d^{m-1}>0$.
$(c) \Rightarrow(d)$: This comes from Proposition 2.2 ,
$(d) \Rightarrow(e)$: Assume (d) and suppose there exists a nonzero x with $x \geq 0$ and $x_{i}\left(\mathcal{A} x^{m-1}\right)_{i} \leq 0$ for all i. without loss of generality, let $I=\left\{i: x_{i} \neq 0\right\}$ be $\{1,2, \ldots, l\}$. Then, $\left(\mathcal{A} x^{m-1}\right)_{i} \leq 0$ for all $i \in I$. Since $\mathcal{A}=r \mathcal{I}-\mathcal{B}$, considering a principal subtensor \mathcal{D} of \mathcal{B}, we get $(r \mathcal{I}-\mathcal{D}) y^{m-1} \leq 0$, where y is the vector formed by the $x_{i}, i \in I$. This leads to $r \leq \frac{\left(\mathcal{D} y^{m-1}\right)_{i}}{y_{i}^{m-1}}$ for all $i \in I$ and hence to $r \leq \rho(\mathcal{D})$. As $\rho(\mathcal{D}) \leq \rho(\mathcal{B})$, this clearly is a contradiction. Hence we have $(d) \Rightarrow(e)$.
$(e) \Rightarrow(f)$: let $q \geq 0$ and let x be a solution of $\operatorname{TCP}(\mathcal{A}, q)$. If x is nonzero, then $x_{i}\left(\mathcal{A} x^{m-1}\right)_{i}>0$ for some i and $x_{i}\left(\mathcal{A} x^{m-1}+q\right)_{i}>0$. Thus, x cannot be complementary to $\mathcal{A} x^{m-1}+q$, yielding a contradiction.
$(f) \Rightarrow(a)$: This comes from Corollary 3.2, Item (i) by taking $q=0$ and $q>0$ in (f).
Now for the additional statements:
$(d) \Leftrightarrow(i)$: This comes from Proposition 2.4.
$(i) \Rightarrow(i i)$: If $(i i)$ is false, then \mathcal{A} will have a non-positive real eigenvalue, contradicting (i).
$(i i) \Rightarrow(i)$: If $\mu(\mathcal{A}) \leq 0$, then $\varepsilon:=-\mu(\mathcal{A})$ will satisfy $(\mathcal{A}+\varepsilon \mathcal{I}) x^{m-1}=0$ for some nonzero x.
$(e) \Rightarrow(i i i)$: Let \mathcal{D} be any nonnegative diagonal tensor \mathcal{D} (compatible with \mathcal{A}). Clearly, $\mathcal{A}+\mathcal{D}$ is a Z-tensor. Suppose there is a nonzero nonnegative x, with $x_{i}\left[(\mathcal{A}+\mathcal{D}) x^{m-1}\right]_{i} \leq 0$ for all i. Then, $x_{i}\left(\mathcal{A} x^{m-1}\right)_{i} \leq 0$ for all i, contradicting (e). Thus, $\mathcal{A}+\mathcal{D}$ satisfies a condition similar to (e) and hence a strong M-tensor.
The implication $(i i i) \Rightarrow(e)$ holds by taking $\mathcal{D}=0$.
Remarks. The equivalence of (a) and (c) can also be seen by the previous theorem. The equivalence of (e) and (f) is also given in Theorem 3.2 of [17].
When \mathcal{A} is a strong M-tensor, combining Items (ii) and (iii), we get: For any nonnegative diagonal tensor \mathcal{D},

$$
\begin{equation*}
(\mathcal{A}+\mathcal{D}) x^{m-1}=0 \Rightarrow x=0 \tag{4.1}
\end{equation*}
$$

5. Some refined results for Z-tensors. When the Z-tensor \mathcal{A} is a matrix (corresponding to $m=2$), there are more than 52 conditions equivalent to \mathcal{A} being a strong M-matrix. Some generalizations of these were considered in Theorem 4.3. In what follows, we prove some refined results for even ordered tensors.

Surjectivity of the $\operatorname{map} F(x):=\mathcal{A} x^{m-1}$.
In Theorem 4.3. Item (b), we saw that when \mathcal{A} is a strong M-tensor, the equation $F(x)=q$ has a solution for every $q \geq 0$. This raises the question whether this is true for all $q \in R^{n}$. When $m=2$, F is a linear map. In this case, the solvability of $F(x)=q$ for all $q \geq 0$ implies that the image of F contains an open set and hence gives the surjectivity of F. As F is linear, this gives the injectivity of F and consequently, the invertibility of F. Additionally, $F^{-1}\left(R_{+}^{n}\right) \subseteq R_{+}^{n}$. This fails when m is odd: Take $m=3, n=2, \mathcal{A}=\mathcal{I}$ and consider the $F(x)=\left(x_{1}^{2}, x_{2}^{2}\right)^{\top}$. Clearly, $F(x)=q$ is solvable for all $q \geq 0$, but not for all $q \in R^{2}$. However, we have the following result for even ordered tensors and a related example.

Theorem 5.1. Suppose \mathcal{A} is a Z-tensor of even order. Then the following are equivalent:
(a) \mathcal{A} is a strong M-tensor.
(b) $F(x)=0 \Rightarrow x=0 \quad$ and $\quad \operatorname{deg}(F, 0)=1$.
(c) $F(x)$ is surjective.

Proof. $\quad(a) \Rightarrow(b)$: Suppose \mathcal{A} is a strong M-tensor. Then, by Item (ii) of Theorem 4.3, $F(x)=0 \Rightarrow x=0$. Thus, the local degree of F at the origin is defined. Let $\mathcal{A}=r \mathcal{I}-\mathcal{B}$, where B is nonnegative tensor with $\rho(\mathcal{B})<r$. Then, for any $t \in[0,1], r \mathcal{I}-t \mathcal{B}$ is also a strong M-tensor. Thus, $(r \mathcal{I}-t \mathcal{B}) x^{m-1}=0 \Rightarrow x=0$. This means that the homotopy

$$
H(t, x):=(r \mathcal{I}-t \mathcal{B}) x^{m-1}
$$

connecting $H(0, x)=r x^{[m-1]}=: G(x)$ and $H(1, x)=F(x)$ will have its zero set $\{0\}$. This means, by the homotopy invariance of degree,

$$
\operatorname{deg}(F, 0)=\operatorname{deg}(G, 0)
$$

As m is even, the local degree of the one variable function $\phi(t)=t^{m-1}$ at zero is one; it follows from Cartesian product property of degree (see Prop. 2.1.3(h) in [7]) that $\operatorname{deg}(G, 0)=1$. Hence, $\operatorname{deg}(F, 0)=1$.
$(b) \Rightarrow(c)$: Given (b), by the nearness property of degree, for all q close to zero, $\operatorname{deg}(F-q, 0)=1$. This means that the equation $F(x)-q=0$ has a solution for all such q. Since F is positive homogeneous, by scaling, we see that $F(x)-q=0$ will have a solution for all $q \in R^{n}$. This proves the surjectivity of F.
$(c) \Rightarrow(a)$: This follows from the equivalence of Items (b) and (d) in Theorem4.3,
The following example shows that the map F in the above theorem need not be injective and that the inclusion $F^{-1}\left(R_{+}^{n}\right) \subseteq R_{+}^{n}$ may not hold.

Example 5.1. Let $\mathcal{A}=\left[a_{i_{1} i_{2} i_{3} i_{4}}\right]$ be of order 4 and dimension 2 with

$$
a_{1111}=a_{2222}=1, a_{1112}=-2, a_{1122}=-\alpha, \text { other entries } 0,
$$

where $\alpha \in\{0,4\}$. Obviously, \mathcal{A} is a Z-tensor. For this tensor,

$$
\left(\mathcal{A} x^{3}\right)_{1}=F_{1}(x)=x_{1}^{3}-2 x_{1}^{2} x_{2}-\alpha x_{1} x_{2}^{2} \quad \text { and } \quad\left(\mathcal{A} x^{3}\right)_{2}=F_{2}(x)=x_{2}^{3}
$$

where $x=\left(x_{1}, x_{2}\right)^{\top} \in R^{2}$. Now, for any nonzero $x=\left(x_{1}, x_{2}\right)^{\top}$, we have:

- if $x_{2} \neq 0$, then $x_{2}\left(\mathcal{A} x^{3}\right)_{2}=x_{2}^{4}>0$;
- if $x_{2}=0$ (in which case $x_{1} \neq 0$), then $x_{1}\left(\mathcal{A} x^{3}\right)_{1}=x_{1}^{4}>0$.

Thus, condition (e) of Theorem 4.3 holds; hence, \mathcal{A} is a strong M-tensor.
When $\alpha=4, F$ equals $(1,1)^{\top}$ at $(-1,1)^{\top}$ and at $(t, 1)^{\top}$ for some $t>0$. This means that F is not surjective and the inclusion $F^{-1}\left(R_{+}^{2}\right) \subseteq R_{+}^{2}$ does not hold.

The P-property

It is well known that a Z-matrix has the P-property if and only if it is a strong M-matrix [1]. Does such a statement hold for Z-tensors? Recall that for a square real matrix A, the P-property can be described in any one of the following three equivalent ways [4]:
(i) Every principal minor of A is positive.
(ii) For each nonzero $x \in R^{n}, \max _{i} x_{i}(A x)_{i}>0$.
(iii) For every $q \in R^{n}, \operatorname{LCP}(A, q)$ has a unique solution.

We will show below that for strong M-tensors, appropriate analogs of (i) and (ii) hold, but (iii) may fail.

Now for the positive principal minor property. While the determinant of a tensor is defined (see [11), it is not clear how to relate the (positive) determinants with the Z-property. So, we describe the positive principal minor property in a different way. Suppose A is an invertible matrix. Then, $f(x):=A x$ is linear and $f(x)=0 \Rightarrow x=0$. Thus, $\operatorname{deg}(f, 0)$ is defined and moreover $\operatorname{deg}(f, 0)=\operatorname{sgn} \operatorname{det}(A)=1$ if and only if the determinant of A is positive. A similar statement holds for principal submatrices of A as well. Thus, we may interpret the positive principal minor property of A by saying that $f_{\alpha}(y)=0 \Rightarrow y=0$ and $\operatorname{deg}\left(f_{\alpha}, 0\right)=1$ for each f_{α} corresponding to a principal submatrix of A. We now state a generalization of this to even order Z-tensors. The one dimensional example $\mathcal{A}=[1]$ with $m=3, n=1$ and $F(x)=x^{2}$ shows that the result fails for odd order tensors.

Theorem 5.2. Suppose \mathcal{A} is a $Z \underset{\sim}{\mathcal{A}}$-tensor of even order. Then \mathcal{A} is a strong $\underset{\sim}{M}$-tensor if and only if for every principal subtensor $\widetilde{\mathcal{A}}$ of \mathcal{A}, the corresponding function $\widetilde{F}(x):=\widetilde{\mathcal{A}} x^{m-1}$ satisfies the conditions

$$
\widetilde{F}(x)=0 \Rightarrow x=0 \quad \text { and } \quad \operatorname{deg}(\widetilde{F}, 0)=1
$$

Proof. First assume that \mathcal{A} is a strong M-tensor. Let $\mathcal{A}=r \mathcal{I}-\mathcal{B}$, where \mathcal{B} is a nonnegative tensor and $r>\rho(B)$. The case of \mathcal{A} and $F(x)=\mathcal{A} x^{m-1}$ has been dealt with in the previous theorem. We assume that $\widetilde{\mathcal{A}}$ is a subtensor of \mathcal{A}, not equal to \mathcal{A}. Then there exists a proper subset I of $\{1,2, \ldots, n\}$, which we assume without loss of generality, $I=\{1,2, \ldots, l\}$ such that

$$
\widetilde{\mathcal{A}}=\left[a_{j_{1} j_{2} \cdots j_{m}}\right]
$$

where $j_{k} \in I$ for all $k=1,2, \ldots, m$. Let \mathcal{D} be the subtensor of \mathcal{B} corresponding to this I so that $\mathcal{C}:=\widetilde{\mathcal{A}}=r \mathcal{I}-\mathcal{D}$. As \mathcal{D} is a principal subtensor of \mathcal{B}, we must have $\rho(\mathcal{D}) \leq \rho(\mathcal{B})<r$. Thus, \mathcal{C} is a strong M-tensor. By what has been proved earlier, for $G(x)=\mathcal{C} x^{m-1}, x \in R^{l}, G(x)=0 \Rightarrow x=0$ and $\operatorname{deg}(G, 0)=1$.
The converse follows from Theorem 5.1. This completes the proof.
We now consider the P-matrix condition (ii): for each nonzero $x \in R^{n}, \max _{i} x_{i}(A x)_{i}>0$. Recently, Song and Qi [15] extended this to tensors: A tensor \mathcal{A} is said to be a P-tensor if for any nonzero $x \in R^{n}$, $\max _{i} x_{i}\left(\mathcal{A} x^{m-1}\right)_{i}>0$. This was further extended in [5]: A tensor \mathcal{A} is said to be an (extended) P-tensor if for any nonzero $x, \max _{i} x_{i}^{m-1}\left(\mathcal{A} x^{m-1}\right)_{i}>0$.

Theorem 5.3. Suppose \mathcal{A} is a Z-tensor. Then the following are equivalent:
(a) \mathcal{A} is a strong M-tensor.
(b) For any nonzero $x, \max _{i} x_{i}^{m-1}\left(\mathcal{A} x^{m-1}\right)_{i}>0$.

If m is even, these are further equivalent to
(c) For any nonzero $x, \max _{i} x_{i}\left(\mathcal{A} x^{m-1}\right)_{i}>0$.

Proof. $(a) \Rightarrow(b)$: This implication comes from Proposition 4.1 in [5], whose proof is based on H-tensors and diagonal dominance ideas. Here, for completeness, we provide a (slightly different) proof. We prove the implication by induction on n. The result is clearly true for $n=1$. Suppose (a) holds and (b) fails for some nonzero $x: x_{i}^{m-1}\left(\mathcal{A} x^{m-1}\right)_{i} \leq 0$ for all i. Such a condition cannot hold for any proper principal subtensor of \mathcal{A} by our induction hypothesis. Thus, no component of x can be zero. Then, by putting $\alpha_{i}:=\frac{\left(\mathcal{A} x^{m-1}\right)_{i}}{x_{i}^{m-1}}$, we see that each α_{i} is nonpositive. Let \mathcal{D} be a nonnegative diagonal tensor with diagonal components $-\alpha_{i}$, so that $(\mathcal{A}+\mathcal{D}) x^{m-1}=0$. As \mathcal{A} is a
strong M-tensor, (4.1) shows that this cannot happen. Thus, $(a) \Rightarrow(b)$.
$(b) \Rightarrow(a)$: If condition (b) holds for all nonzero x, it certainly holds for all nonzero nonnegative x. Consider such an x. Then there exists $x_{i}>0$ with $x_{i}^{m-1}\left(\mathcal{A} x^{m-1}\right)_{i}>0$ or equivalently, $x_{i}\left(\mathcal{A} x^{m-1}\right)_{i}>$ 0 . This implies condition (e) in Theorem 4.3, Thus, \mathcal{A} is a strong M-tensor.
Now suppose that m is even. Then the signs of x_{i} and x_{i}^{m-1} are the same. Consequently, (b) and (c) are equivalent.

Remark. When m is odd, (a) may not imply (c): Take $\mathcal{A}=[1]$ with $m=3, n=1$ and $F(x)=x^{2}$.

Global uniqueness

As noted previously, for a matrix A, the linear complementarity problem $\operatorname{LCP}(A, q)$ has a unique solution for all $q \in R^{n}$ if and only if A is a P-matrix. In particular, this global uniqueness property holds for a strong M-matrix. To see what happens for tensors, consider the strong M-tensor \mathcal{A} of Example 5.1 with $\alpha=0$. By Theorem 5.3] \mathcal{A} is actually an (extended) P-tensor. For $q=$ $(0,-1)^{\top}$, we have two solutions to $\operatorname{TCP}(\mathcal{A}, q)$, namely, $(0,1)^{\top}$ and $(2,1)^{\top}$. Thus, uniqueness of $T C P$ solution may not prevail even for strong M-tensors (or for extended P-tensors). This raises the question: which strong M-tensors admit unique solutions in all related tensor complementarity problems? In the complementarity literature, a function $f: R^{n} \rightarrow R^{n}$ is said to have the Globally Uniquely Solvable property (GUS-property for short) if for all $q \in R^{n}$, the nonlinear complementarity problem $\operatorname{NCP}(f, q)$ has a unique solution. Two well-known conditions implying the GUS-property are: The strong monotonicity condition (see Section 2.3 in [7) and the 'positively bounded Jacobians' condition of Megiddo and Kojima (see Lemma 1, [3]). The GUS-property in the context of tensor complementarity problems has been addressed recently in [3]. In their conditions for the GUSproperty, all involved tensors need to be symmetric and be of even order and positive semi-definite, and especially, the second-order tensor should be positive definite. Departing from these conditions, in the result below, we offer an (easily checkable) sufficient condition for a strong M-tensor to have the GUS-property.

Theorem 5.4. Suppose $\mathcal{A}=\left[a_{i_{1} \cdots i_{m}}\right]$ is a strong M-tensor of order $m(\geq 3)$ and dimension n such that for each index i,

$$
a_{i i_{2} \cdots i_{m}}=0 \quad \text { whenever } i_{j} \neq i_{k} \quad \text { for some } j \neq k .
$$

Then, for any $q \in R^{n}, \operatorname{TCP}(\mathcal{A}, q)$ has a unique solution.
Proof. As \mathcal{A} has the S-tensor property (see Theorem 4.3), it follows from [6, Theorem 3] and [6, Proposition 5] that there exists a positive diagonal matrix $D=\operatorname{Diag}\left(d_{i}\right) \in R^{n \times n}$ such that the tensor $\overline{\mathcal{A}}=\mathcal{A} D^{m-1}:=\left[\bar{a}_{i_{1} \cdots i_{m}}\right]$, defined by

$$
\begin{equation*}
\bar{a}_{i_{1} \cdots i_{m}}=a_{i_{1} \cdots i_{m}} d_{i_{1}} \cdots d_{i_{m}}, \quad \forall i_{1}, \cdots, i_{m} \in\{1, \cdots, n\} \tag{5.1}
\end{equation*}
$$

is strictly diagonally dominant; in fact,

$$
\begin{equation*}
\bar{a}_{i \cdots i}>\sum_{i_{2}, \cdots, i_{m}}\left|\bar{a}_{i i_{2} \cdots i_{m}}\right|-\bar{a}_{i \cdots i}=-\sum_{k \neq i} \bar{a}_{i k \cdots k}, \quad \forall i \in\{1, \cdots, n\}, \tag{5.2}
\end{equation*}
$$

Now we claim that for any given $q \in R^{n}, \operatorname{TCP}(\overline{\mathcal{A}}, q)$ has a unique solution. As \mathcal{A} is a Z-tensor with $\overline{\mathcal{A}} e^{m-1}>0$, where e is the vector of ones in R^{n}, it follows that $\overline{\mathcal{A}}$ is a strong M-tensor; hence, $\operatorname{TCP}(\overline{\mathcal{A}}, q)$ has a solution. To prove uniqueness, assume that that there exist distinct solutions \hat{y} and \tilde{y} of $\operatorname{TCP}(\overline{\mathcal{A}}, q)$. That is, for any $i \in\{1, \cdots, n\}$,

$$
\left\{\begin{array}{l}
\hat{y}_{i} \geq 0,\left(\overline{\mathcal{A}} \hat{y}^{m-1}+q\right)_{i} \geq 0, \hat{y}_{i}\left(\overline{\mathcal{A}} \hat{y}^{m-1}+q\right)_{i}=0 ; \tag{5.3}\\
\tilde{y}_{i} \geq 0,\left(\overline{\mathcal{A}} \tilde{y}^{m-1}+q\right)_{i} \geq 0, \tilde{y}_{i}\left(\overline{\mathcal{A}} \tilde{y}^{m-1}+q\right)_{i}=0 .
\end{array}\right.
$$

As $\hat{y} \neq \tilde{y}, \max _{i}\left\{\left|\hat{y}_{i}^{m-1}-\tilde{y}_{i}^{m-1}\right|\right\}>0$. Let $j:=\arg \max _{i}\left\{\left|\hat{y}_{i}^{m-1}-\tilde{y}_{i}^{m-1}\right|\right\}$, and without loss of generality, $\hat{y}_{j}-\tilde{y}_{j}>0$. By direct calculation, we have

$$
\begin{aligned}
& \left(\hat{y}_{j}-\tilde{y}_{j}\right)\left(\overline{\mathcal{A}} \hat{y}^{m-1}-\overline{\mathcal{A}} \tilde{y}^{m-1}\right)_{j} \\
= & \left(\hat{y}_{j}-\tilde{y}_{j}\right)\left(\overline{\mathcal{A}} \hat{y}^{m-1}+q-\overline{\mathcal{A}} \tilde{y}^{m-1}-q\right)_{j} \\
= & -\hat{y}_{j}\left(\overline{\mathcal{A}} \tilde{y}^{m-1}+q\right)_{j}-\tilde{y}_{j}\left(\overline{\mathcal{A}} \hat{y}^{m-1}+q\right)_{j} \\
\leq & 0
\end{aligned}
$$

On the other hand, by the imposed conditions on the entries of \mathcal{A},

$$
\begin{aligned}
& \left(\hat{y}_{j}-\tilde{y}_{j}\right)\left(\overline{\mathcal{A}} \hat{y}^{m-1}-\overline{\mathcal{A}} \tilde{y}^{m-1}\right)_{j} \\
= & \left(\hat{y}_{j}-\tilde{y}_{j}\right) \bar{a}_{j \cdots j}\left(\hat{y}_{j}^{m-1}-\tilde{y}_{j}^{m-1}\right)+\sum_{k \neq j} \bar{a}_{j k \cdots k}\left(\hat{y}_{k}^{m-1}-\tilde{y}_{k}^{m-1}\right) \\
\geq & \left(\hat{y}_{j}-\tilde{y}_{j}\right)\left(\hat{y}_{j}^{m-1}-\tilde{y}_{j}^{m-1}\right)\left(\bar{a}_{j \cdots j}+\sum_{k \neq j} \bar{a}_{j k \cdots k}\right) \\
> & 0
\end{aligned}
$$

where the first inequality follows from the definition of j and the fact that $\overline{\mathcal{A}}$ is a Z-tensor, and the last inequality follows from (5.2). This is a contradiction. Thus, $\operatorname{TCP}(\overline{\mathcal{A}}, q)$ has a unique solution, say y^{*}. We can easily verify that y^{*} is also the unique solution to the following problem:

$$
D y \geq 0, \overline{\mathcal{A}} y^{m-1}+q \geq 0,\left\langle D y, \overline{\mathcal{A}} y^{m-1}+q\right\rangle=0
$$

Invoking the definition of $\overline{\mathcal{A}}$, it follows readily that $D y^{*}$ is the unique solution to $\operatorname{TCP}(\mathcal{A}, q)$. This completes the proof.

REFERENCES

[1] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.
[2] K.C. Chang, K. Pearson, and T. Zhang, Perron-Frobeinus theorem for nonnegative tensors, Comm. Math. Sci., 6 (2008) pp. 507-520.
[3] M. Che, L. Qi, and Y. Wei, Positive definite tensors to nonlinear complementarity problems, J. Optim. Theory Appl., (2015) DOI: 10.1007/s10957-015-0773-1.
[4] R.W. Cottle, J.-S. Pang, And R.E. Stone, The Linear Complementarity Problem, Academic Press, Boston, 1992.
[5] W. Ding, Z. Luo and L. Qi, P-tensors, P_{0}-tensors, and tensor complementarity problem, arXiv:1507.06731v1 Jul. 2015.
[6] W. Ding, L. Qi, and Y. Wei, M-tensors and nonsingular M-tensors, Linear Algebra Appl., 439 (2013) pp. 3264-3278.
[7] F. FAcchinei and J.-S. Pang, Finite dimensional variational inequalities and complementarity problems, Volume I, Springer, New York, 2003.
[8] F. FAcchinei and J.-S. Pang, Finite dimensional variational inequalities and complementarity problems, Volume II, Springer, New York, 2003.
[9] M.S. Gowda and J.-S. Pang Some existence results for multivalued complementarity problems, Math. Operations Res., 17 (1992) 657-669.
[10] M.S. Gowda and J. TaO, Z-transformations on proper and symmetric cones, Math. Prog., Series B, 117 (2009) 195-222.
[11] S. Hu, Z.-H. Huang, C. Ling, and L. Qi On determinants and eigenvalue theory of tensors, J. Symbolic Comp., 50 (2013) 508-531.
[12] R. Kannan, N. Shaked-Monderer, and A. Berman, Some properties of strong H-tensors and general H tensors, Linear Algebra Appl., 476 (2015) 42-55.
[13] Z. Luo, L. Qi, and N. Xiu, The sparsest solutions to Z-tensor complementarity problems, arXiv: 1505.00993v1 [math.SP] 5 May 2015.
[14] L. Qi, Eigenvalue of a real supersymmetric tensor, J. Symb. Comput., 40 (2005) 1302-1324.
[15] Y. Song and L. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165(3) (2015), pp. 854-873.
[16] Y. Song and L. Qi, Properties of tensor complementarity problem and some classes of structured tensors, arXiv:1412.0113v2 Feb. 2015.
[17] Y. Song AND L. QI, Tensor complementarity problem and semi-positive tensors, J. Optim. Theory Appl., (2015) DOI 10.1007/s10957-015-0800-2.
[18] Y. Song and G. Yu, Properties of solution set of tensor complementarity problem, arXiv:1508.00069 Aug. 2015.
[19] Q. Yang and Y. Yang, Further results for Perron-Frobeinus theorem for nonnegative tensors II, SIAM J. Matrix Anal. Appl., 4 (2011), pp. 1236-1250.
[20] Y. Yang and Q. Yang, Further results for Perron-Frobeinus theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl,., 31 (2010), pp. 2517-2530.
[21] L. Zhang, L. Qi, and G. Zhou, M-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 437-452.
[22] G. Zhou, L. Qi, and S.-Y. S. Wu, On the largest eigenvalue of a symmetric nonnegative tensor, Num. Linear Algebra Appl., 20 (2013) 913-928.

[^0]: ${ }^{*}$ This research was supported by the National Natural Science Foundation of China (11301022,11431002), and the Hong Kong Research Grant Council (Grant No. PolyU 502111, 501212, 501913 and 15302114).
 ${ }^{\dagger}$ Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD 21250. Email: gowda@umbc.edu, http://www.math.umbc.edu/~ gowda
 \ddagger The State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, P.R. China. E-mail: starkeynature@hotmail.com
 ${ }^{\S}$ Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. E-mail: liqun.qi@polyu.edu.hk, http://www.polyu.edu.hk/ama/people/detail/1/
 ${ }^{\top}$ Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing, P.R.China. E-mail: nhxiu@bjtu.edu.cn

