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Abstract

This paper deals with the class of Q-tensors, that is, a Q-tensor is a real tensor A such

that the tensor complementarity problem (q,.A):
finding x € R"™ such that x > 0,q+ Ax™ ! > 0, and xT(q + Ax™ 1) =0,

has a solution for each vector q € R™. Several subclasses of Q-tensors are given:
P-tensors, R-tensors, strictly semi-positive tensors and semi-positive Rg-tensors. We
prove that a nonnegative tensor is a Q-tensor if and only if all of its principal diagonal
entries are positive, and a symmetric nonnegative tensor is a Q-tensor if and only if it
is strictly copositive. We also show that the zero vector is the unique feasible solution
of the tensor complementarity problem (q,.4) for g > 0 if A is a nonnegative Q-tensor.
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1 Introduction

Throughout this paper, we use small letters x, u, v, a, - - -, for scalars, small bold letters
X,y,u,---, for vectors, capital letters A, B,---, for matrices, calligraphic letters A, B, -- -,
for tensors. All the tensors discussed in this paper are real. Let I, := {1,2,--- n}, and
R™ := {(z1, 22, ,2,) 2, € Rji € I}, R == {z € R 2 > 0}, R := {x € R";z < 0},
R' = {x € Rz >0}, e = (1,1,---,1)7, and xI™ = (2, 2,--- ,2a™)7 for x =
(1,29, - ,2,)", where R is the set of real numbers, x' is the transposition of a vector x,
and x > 0 (x > 0) means x; > 0 (z; > 0) for all i € I,,.

Let A = (a;;) be an n x n real matrix. A is said to be a Q-matrix iff the linear

complementarity problem, denoted by (q, A),
finding z € R" such that z > 0,q + Az >0, and z' (q + Az) =0 (1.1)

has a solution for each vector q € R"™. We say that A is a P-matrix iff for any nonzero
vector x in R™, there exists i € I, such that z;(Az); > 0. It is well-known that A is a P-
matrix if and only if the linear complementarity problem (q, A) has a unique solution for all
q € R". Xiu and Zhang [I] also gave the necessary and sufficient conditions of P-matrices.
A good review of P-matrices and Q-matrices may be found in the books by Berman and
Plemmons [2], and Cottle, Pang and Stone [3].

Q-matrices and P(Pg)-matrices have a long history and wide applications in mathemat-
ical sciences. Pang [4] showed that each semi-monotone Ry-matrix is a Q-matrix. Pang [5]
gave a class of Q-matrices which includes N-matrices and strictly semi-monotone matrices.
Murty [6] showed that a nonnegative matrix is a Q-matrix if and only if its all diagonal
entries are positive. Morris [7] presented two counterexamples of the Q-Matrix conjectures:
a matrix is Q-matrix solely by considering the signs of its subdeterminants. Cottle [§] stud-
ied some properties of complete Q-matrices, a subclass of Q-matrices. Kojima and Saigal
[9] studied the number of solutions to a class of linear complementarity problems. Gowda
[10] proved that a symmetric semi-monotone matrix is a Q-matrix if and only if it is an
Ro-matrix. Eaves [L1] obtained the equivalent definition of strictly semi-monotone matrices,
a main subclass of Q-matrices.

On the other hand, motivated by the discussion on positive definiteness of multivariate
homogeneous polynomial forms [12, 13, 4], in 2005, Qi [15] introduced the concept of
positive (semi-)definite symmetric tensors. In the same time, Qi also introduced eigenvalues,
H-eigenvalues, E-eigenvalues and Z-eigenvalues for symmetric tensors. It was shown that an
even order symmetric tensor is positive (semi-)definite if and only if all of its H-eigenvalues
or Z-eigenvalues are positive (nonnegative) [15, Theorem 5|. Recently, various structured
tensors were studied. For example, Zhang, Qi and Zhou [16] and Ding, Qi and Wei [17] for M-
tensors, Song and Qi [18] for P-(Pg)tensors and B-(By)tensors, Qi and Song [19] for positive



(semi-)definition of B-(Bg)tensors, Song and Qi [20] for infinite and finite dimensional Hilbert
tensors, Song and Qi [22] for structure properties and an equivalent definition of (strictly)
copositive tensors, Chen and Qi [23] for Cauchy tensor, Song and Qi [24] for E-eigenvalues
of weakly symmetric nonnegative tensors and so on. Beside automatical control, positive
semi-definite tensors also found applications in magnetic resonance imaging [25] 26, 27, 28]
and spectral hypergraph theory [29] [30] B1].

The following questions are natural. Can we extend the concept of Q-matrices to Q-
tensors? If this can be done, are those nice properties of Q-matrices still true for Q-tensors?

In this paper, we will introduce the concept of Q-tensors (Q-hypermatrices) and will
study some subclasses and nice properties of such tensors.

In Section 2, we will extend the concept of Q-matrices to Q-tensors. Serval main sub-
classes of Q-matrices also are extended to the corresponding subclasses of Q-tensors: R-
tensors, Ro-tensors, semi-positive tensors, strictly semi-positive tensors. We will give serval
examples to verify that the class of R-(Rg-)tensors properly contains strictly semi-positive
tensors as a subclass, while the class of P-tensors is a subclass of strictly semi-positive
tensors. Some basic definitions and facts also are given in this section.

In Section 3, we will study some properties of Q-tensors. Firstly, we will prove that each
R-tensor is certainly a Q-tensor and each semi-positive Ro-tensor is a R-tensor. Thus, we
show that every P-tensor is a Q-tensor. We will show that a nonnegative tensor is a Q-tensor
if and only if all of its principal diagonal elements are positive and a nonnegative symmetric
tensor is a Q-tensor if and only if it is strictly copositive. It will be proved that 0 is the
unique feasible solution of the tensor complementarity problem (q,.4) for q > 0 if A is a

non-negative Q-tensor.

2 Preliminaries

In this section, we will define the notation and collect some basic definitions and facts, which
will be used later on.

A real mth order n-dimensional tensor (hypermatrix) A = (aj;,..;,, ) is a multi-array of real
entries a;,..;,,, where i; € I, for j € I,,,. Denote the set of all real mth order n-dimensional
tensors by T,,,. Then T,,, is a linear space of dimension n™. Let A = (aj,...,,) € Tinn.
If the entries aj;,..;,, are invariant under any permutation of their indices, then A is called
a symmetric tensor. Denote the set of all real mth order n-dimensional tensors by Sy, ,,.
Then S,,, is a linear subspace of T,,,. We denote the zero tensor in 71),, by O. Let

A= (aj..;,,) € Trnn and x € R™. Then Ax™! is a vector in R™ with its ith component as

n

(Axm_l)i = Z jigering Lig *** Liyy

i27"'7i77L:1



for i € I,,. Then Ax™ is a homogeneous polynomial of degree m, defined by

n
T -1 E
AXm =X (AXm ) = iy oiiy Lig " Ly,

ilv"'yim:l

x € R". A tensor A € T, is called positive semi-definite if for any vector x € R",
Ax™ > 0, and is called positive definite if for any nonzero vector x € R", Ax™ > 0.
Clearly, if m is odd, there are no nontrivial positive semi-definite tensors. We now give the

definition of Q-tensors, which are natural extensions of Q-matrices.

Definition 2.1. Let A = (a;,...,,) € Tmn. We say that A is a Q-tensor iff the tensor
complementarity problem, denoted by (q,.A),

finding x € R"™ such that x > 0,q + Ax™ ' >0, and x' (q + Ax™" ') =0, (2.1)
has a solution for each vector q € R™.
Definition 2.2. Let A = (a;,..;,,) € Tnn. We say that A is
(i) a R-tensor iff the following system is inconsistent
0#x>0,t>0
(Ax™ 1), 4+ =0 if 2; > 0, (2.2)
(Ax™ 1)+t > 0 if 25 = 0;
(ii) a Ro-tensor iff the system (2.2)) is inconsistent for ¢t = 0.

Clearly, this definition [2.2]is a natural extension of the definition of Karamardian’s class
of regular matrices [32].

Definition 2.3. Let A = (a;,...;,,) € Tn- A is said to be

(i) semi-positive iff for each x > 0 and x # 0, there exists an index k € I,, such that

x> 0 and (.Axm_l)LC > 0;
(ii) strictly semi-positive iff for each x > 0 and x # 0, there exists an index k € I,
such that

x> 0 and (.Axm_l)k > 0;

(iii) a P-tensor(Song and Qi [18]) iff for each x in R™ and x # 0, there exists ¢ € I,, such
that

T (Axm_l) .

(2

> (;



(iv) a Po-tensor(Song and Qi [18]) iff for every x in R™ and x # 0,, there exists i € I,
such that x; # 0 and
T (Axm_l). > 0.

7

Clearly, each Py-tensor is certainly semi-positive. The concept of P-(Py-)tensor is intro-
duced by Song and Qi [1§]. Furthermore, Song and Qi [18] studied some nice properties of
such a class of tensors. The definition of (strictly) semi-positive tensor is a natural extension
of the concept of (strictly) semi-positive (or semi-monotone) matrices [11} [33].

It follows from Definition and 23] that each P-tensor must be strictly semi-positive
and every strictly semi-positive tensor is certainly both R-tensor and Ry-tensor. Now we

give several examples to demonstrate that the above inclusions are proper.
Example 2.1. Let A = (@iy.i,) € Thnp and ay, .., = 1 for all 41,49, -+ .4y, € I,,. Then

(/lxm—l) = (1 gty

)

for all i € I, and hence A is strictly semi-positive. However, A is not a P-tensor (for
example, x; (Axm_l)' =0forx=(1,-1,0,---,0)" and alli € I,,).

2

Example 2.2. Let ./Zl = (ailim) € T372 and aill = 1, 192 = —1,&211 = —2, a9929 = 1 and all

deo | M)
—2z7 + 23
Clearly, A is not strictly semi-positive (for example, (.lez) = 0 and (/lx2) = —1 for
1 2

x = (1,1)T).

A is a Ro-tensor. In fact,

other a;,;,i; = 0. Then

(i) if z; > 0, (/lx2> = 22 — 23 = 0. Then 23 = 2%, and so 2o > 0, but (.le2> =
1 2
=223 + 23 = —2? < 0;

(i) if 25 > 0, (Ax2) = —222 4+ 22 = 0. Then 22 = 122 > 0, but (/tx2) — 2?2 =
2 1
1,.2

Ais not a R-tensor. In fact, if z; > 0, (Ax2> +t =a}—23+t =0. Then 23 = 22+t > 0,
1

and so zy > 0, (.[lx2> +t=—-223+22+t=—2?+2t Takingz, =a>0,t= %az and
2
Ty = ga. That is, x = a(1, @)T and t = 1a? solve the system (2.2).

Example 2.3. Let .[l = (ai1i2i3) € T372 and a1 = —1, 129 = 1,(1,211 = —2, 9929 — 1 and all

2 2

o —T7 + 25
A (—2x2+:)§2 '

1 2

>

other a;,;,i; = 0. Then



Clearly, A is not strictly semi-positive (for example, x = (1,1)7).

A is a R-tensor. In fact,

(i) if 21 > 0, (Ax?), +t = —af + 23+t = 0. Then 23 = a7 —t, but (Ax?), +t =

—21 + a5+t = —a} < 0;

2

(ii) if 25 > 0, (AX2)2_|_1§ = —2x%+x%+t=0- Then x% = %($%+t) > 0, but (sz)l—i-t =
—zi4 a3 +t=1(z3+1)>0.

A is a Ro-tensor. In fact,

(i) if 21 > 0, (Ax?), = —2f + 23 = 0. Then 23 = 27, and so 23 > 0, but (Ax?), =
=223 + 23 = —2? < 0;

(i) if 2y > 0, (Ax?), = =227 + 23 = 0. Then 2} = {23 > 0, but (Ax?), = —z} + 23 =

1.2

n+1
Lemma 2.1. ([2, Corollary 3.5])Let S = {x € R}™'; > 2, = 1}. Assumed that F : S —
i=1

Rt is continuous on S. Then there exists X € S such that

x F(X)>x"F(X) forall x€ S (2.3)
(F(x), = min (FR), = if 2> 0 (24
(FX) > wif o= (2.5)

Recall that a tensor C € T),, . is called a principal sub-tensor of a tensor A = (a;,..;,,) €

Tnn (1 <17 <mn)iff there is a set J that composed of r elements in I,, such that
C = (ay,..q,,), for all iy,i9, -+ iy € J.

The concept was first introduced and used in [I5] for symmetric tensor. We denote by A/
the principal sub-tensor of a tensor A € T,,, such that the entries of A/ are indexed by
J C I, with |J| = r (1 < r < n), and denote by x, the r-dimensional sub-vector of a
vector x € R", with the components of x; indexed by J. Note that for » = 1, the principal

sub-tensors are just the diagonal entries.

Definition 2.4. (Qi [2I]) Let A = (ai,..i,,) € Smn- A is said to be
(i) copositive if Az™ >0 for all x € RY;
(ii) strictly copositive if Az™ > 0 for all x € R7} \ {0}.

The concept of (strictly) copositive tensors was first introduced by Qi in [2I]. Song and
Qi [22] showed their equivalent definition and some special structures. The following lemma

is one of the structure conclusions of (strictly) copositive tensors in [22].

6



Lemma 2.2. ([22] Corollary 4.6]) Let A = (aj,...i,,) € Smn. Then
(i) If A is copositive, then a;..;, > 0 for all i € I,,.
(ii) If A is strictly copositive, then a;..; > 0 for all i € I,,.

Definition 2.5. Given a function F' : R} — R", the nonlinear complementarity problem,
denoted by NCP(F), is to

find a vector x € R™ such that x > 0, F(x) > 0, and x' F(x) =0, (2.6)

It is well known that the nonlinear complementarity problems have been widely applied
to the field of transportation planning, regional science, socio-economic analysis, energy
modeling, and game theory. So over the past decades, the solutions of nonlinear comple-
mentarity problems have been rapidly studied in its theory of existence, uniqueness and
algorithms. The following conclusion (Theorem [2.1]) is one of the most fundamental results,
which is showed with the help of the topological degree theory and the monotone properities
of the function.

Definition 2.6. ([34] or [35]) A mapping F': K C R®™ — R™ is said to be

(i) pseudo-monotone on K if for all vectors x,y € K,

(x—y) Fly)>20 = (x—y) F(z) > 0;

(ii) monotone on K if
(F(x) = F(y) (x—y) 2 0,Yz,y € K;

(iii) strictly monotone on K if

(F(x) — F(y))T(x —y)>0,Vo,y € K and x # y;

(iv) strongly monotone on K if there exists a constant ¢ > 0 such that
(F(x) = F(y) (x—y) > clx - yl*

(v) a Py function on K if for all pairs of distinct vectors x and y in K, there exists k € I,
such that

z, # yr and (2 — yg) (F(x) — F(y)), = 0;
(vi) a P function on K if for all pairs of distinct vectors x and y in K,

max(zy, — yx) (F(x) = F(y)),, > 0;



(vii) a uniformly P function on K if there exists a constant ¢ > 0 such that for all pairs of

vectors x and y in K,

max(ey — yi) (F(x) = F(y)), > ellz =y

It follows from the above definition of the monotonicity and P properties that the fol-

lowing relations hold (see [34] or [35] for more details):

strongly monotone = strictly = monotone = monotone = pseudo-monotone

Y Y Y

uniformly P function = P function = P, function

Theorem 2.1. ([34, Theorem 2.3.11] or [35, Theorem 2.4.4]) Let F' be a continuous mapping
from R into R™ that is pseudo-monotone on R} . If the nonlinear complementarity problem
NCP(F) has a strictly feasible point z*, i.e.,

z* >0, F(z*) > 0,
then NCP(F') has a solution.

Now we give an example to certify the function deduced by a R-tensor is neither pseudo-
monotone nor a Py function. However, it will be proved in next section to the corresponding

nonlinear complementarity NCP(F') has a solution.

Example 2.4. Let A be a R-tensor defined by Example 23] and let F(x) = Ax? + q, where

q=(2,3)T. Then F is neither pseudo-monotone nor Py function. In fact,

22
1
B —xf+x§+§
F(x)=Ax*+q= 1
—22% + 25 + =
2
Let x = (1,0)" and y = (0,%)". Then
1 3 %
X—y= 1 , F(x) = 3 and F(y) = 9
2 16
Clearly, we have
(x—y) Fy) = 1x —— 2P oy
Y EWIE 6T 17 16
However,
1 1 3
-
VT F(x) = —— — 2 (=2



and hence F'is not pseudo-monotone.
Take x = (1,1)" and y = (0,1)". Then

1 1 9
x—y=| 1] Feo=| | amdFy)=]|7y
1 —3 6
Clearly, we have
1 9
(o1 = 1) (FGO) = Py))y = 1% (5 = 7¢) <0
and
(22— o) (F(x) = F(y))y = — x (—2 — 2y <0
2 Y2 Y)) = 4 2 16 )

and hence F' is not a Py function.

Remark 2.1. Let A € T),,, and F(x) = Ax™!. Taking y = 0 and x € R". in Definition
2.0(vi), we obtain that A is P-tensor if F' is a P function. So A must be a R-tensor if
F(x) = Ax™ ! is a P function. The Example 2]l means that the inverse implication is not

true.

Next we will show our main result: each R-tensor A is a Q-tensor. That is, the nonlinear

complementarity problem,
finding x € R" such that x > 0, F(x) = Ax™ ' +q >0, and x' F(x) =0, (2.7)

has a solution for each vector q € R".

3 Main results

We first give the equivent definition of Ry-tensor ( R-tensor) by means of the tensor

complementarity problem.
Proposition 3.1. Let A = (a;,..i,,) € Tynn- Then

(i) Ais a Ro-tensor if and only if the tensor complementarity problem (0,.4) has a unique

solution O;

(ii) Ais a R-tensor if and only if it is a Ro-tensor and the tensor complementarity problem

(e, A) has a unique solution 0, where e = (1,1---,1)".



Proof. (i) The tensor complementarity problem (0,.4) has not non-zero vector solution if
and inly if the system
0#x= (21, ,2)" >0,
(Ax™ ), =0if z; > 0,
(Ax™ 1), >0if 2, =0
has not a solution. So the conclusion is proved.
(ii) It follows from the Definition 2] that the necessity is obvious (t = 1).
Conversely suppose A is not a R-tensor. Then there exists x € R"} \ {0} satisfying the
system (2.2]). That is, the tensor complementarity problem (te, .A) has non-zero vector solu-
tion x for some t > 0. We have ¢ > 0 since A is a Ry-tensor. So the tensor complementarity

X
problem (e, .A) has non-zero vector solution W? a contradiction. O

Now we will show our main result.

Theorem 3.2. Let A = (a;,...,,) € T;.n be a R-tensor. Then A is a Q-tensor. That is, the

tensor complementarity problem (q,.4) has a solution for all q € R".

Proof. Let the mapping F': ]RT1 — R"*! be defined by

Ax™ 4+ g se
F<y>=< e ) (3.1)

s

where y = (x,5)", x € R}, s € Ry and e = (1,1,---,1)T € R", g € R™. Obviously,
n+1

F : S — R is continuous on the set S = {x € R™'; 3" 2, = 1}. It follows from Lemma

i=1
2.1 that there exists y = (X,5)' € S such that

y' F(y) >y 'F(y) forall ye S 3.2
(F3) = min (F()); =w if G >0, (3:3)
(F(y)), =w if g =0. (3.4)

We claim § > 0. Suppose § = 0. Then the fact that g,.1 = § = 0 together with (3.4
implies that
W< (F(Y))p =5=0,

and so for k € I,,,
(F(¥))), = (AX™ 1), =w if & >0,

(F(¥)), = (AX™ 1), > w if &), =0.

That is, for t = —w > 0,
(AX™) +t=0 if &) >0,

(AX™ 1), +t >0 if & =0.

10



This obtains a contradiction with the definition of R-tensor A, which completes the proof
of the claim.

Now we show that the tensor complementarity problem (q,.4) has a solution for all
q € R In fact, if ¢ > 0, clearly z = 0 and w = Az™! + q = q solve (q,.A). Next we
consider q € R"/R%. It follows from (3.1]) and (3.3) and (3.4) that

and for i € I,,

(F(y)); = (Af(m_l)i +58¢;+s=w=sif y,=7; >0,
(F(¥)), = (AX" ). + 8¢+ 5 >w=35 if §,=30; =
Thus for z = - 5(17 and i € I,,, we have

(AZm_l)i +q; =0 if z; > 0,
(Azm_l)i +q; >0 if 2, =0,

and hence,
z>0,w=q+Az" ' >0, andz'w = 0.

So we obtain a feasible solution (z, w) of the tensor complementarity problem (q,.4), and

then A is a Q-tensor. The theorem is proved. O

Corollary 3.3. Each strictly semi-positive tensor is a Q-tensor, and so is P-tensor. That
is, the tensor complementarity problem (q,.4) has a solution for all q € R™ if A is either a

P-tensor or a strictly semi-positive tensor.

Theorem 3.4. Let a Ry-tensor A(€ T,,,) be semi-positive. Then A is a R-tensor, and

hence A is a Q-tensor.

Proof. Suppose A is not a R-tensor. Let the system (22]) has a solution x > 0 and x # 0. If
t = 0, this contradicts the assumption that A is a Ro-tensor. So we must have ¢t > 0. Then

for ¢ € I,,, we have
(Ax™ ). +t=0 if 2; >0,

and hence,
(Ax™ ), = —t <0 if z; >0,

i
which contradicts the assumption that A is semi-positive. So A is a R-tensor, and hence A
is a Q-tensor by Theorem [3.21 O

Theorem 3.5. Let A = (a;,...,,) € Ty with A > O (a;,..q,, > 0 for all ¢y ---4,, € I,).
Then A is a Q-tensor if and only if a;..; > 0 for all i € I,,.

11



Proof. Sufficiency. If a;..; > 0 for all ¢ € I, and A > O, then it folows from the definition
of the strictly semi-positive tensor that A is strictly semi-positive, and hence A is a
Q-tensor by Corollary 33
Necessity. Suppose that there exists k € I,, such that ap... = 0. Let q = (g1, ,qn) "
with ¢, < 0 and ¢; > 0 for all ¢ € [, and i # k. Since A is a Q-tensor, the tensor
complementarity problem (q,.4) has at least a solution. Let z be a feasible solution to
(q,.A). Then
z>0, w=Az""+q>0andz'w = 0. (3.5)
Clearly, z # 0. Since z > 0 and A > 0 together with ¢; > 0 for each ¢ € [, with ¢ # k, we

must have

w; = (.Azm_l)i +q; = Z Qiigeriny Zig *** iy + @ > 0 for @ # k and @ € I,,.
igyr im=1
It follows from (3.5]) that
zz=0for7# k and i € I,.

Thus, we have

n

wy, = (Az™Y), 4+ g, = Z Wigevinn Zis " Ziy + Qo = e+ Qo = Qe < 0

iz, im=1

since ayg...,, = 0. This contradicts the fact that w > 0, so a;..; > 0 for all 7 € I,,. O

Corollary 3.6. Let a non-negative tensor A be a Q-tensor. Then all principal sub-tensors

of A are also Q-tensors.

Corollary 3.7. Let a non-negative tensor A be a Q-tensor. Then 0 is the unique feasible

solution to the tensor complementarity problem (q,.4) for q > 0.

Proof. 1t follows from Theorem that a;.., > 0 for all i € I,,, and hence

n

m—1 . . m—1
(AX )Z = E Aoty Liy * " Lipyy = Qi Ty + E Qo Lig * " Ly

iy im=1 (i, i) (i, i)

If x = (x1,--+,2,)" is any feasible solution of the tensor complementarity problem
(q,.A), then we have

x>0, w=Ax""14+q>0and x'w=Ax"+x'q=0. (3.6)
Suppose x; > 0 for some ¢ € I,. Then
w; = (Axm_l)i + ¢ = agqx] "+ Z Qi iy * " Ti, + ¢ > 0,
(i27"' 77'm)7é(lv 7i)

and hence, x'w = z;w; + > xpwy, > 0. This contradicts the fact that x'w = 0. Conse-

ki
quently, x; = 0 for all 7 € I,,. O

12



Proposition 3.8. Let A € S,,,, be non-negative. Then A is strictly copositive if and only
if i > 0 for all 7 € I,.

Proof. The necessity follows from Lemma 2.2l Now we show the sufficiency. Suppose A is

not strictly copositive. Then there exists x € R} \ {0} such that
x ! (.Axm_l) = Ax™ <0.

Since x € R \ {0}, without loss of generality, we may assume z; > 0. Then by A > O, we

must have

n
m § m
arq..12q < Qi Lig ** " Ly = Ax < 0.

i1, im=1

Thus, a1..1 < 0. The contradiction establishes the proposition. O

Corollary 3.9. Let A € S,,,, be non-negative. Then A is a Q-tensor if and only if A is

strictly copositive.
Question 3.1. Let A be a Q-tensor.

e Whether or not a tensor A that Tensor Complementarity Problem (q,.4) has a unique

solution for all q € R" is exactly a P-tensor;

e Whether or not a nonzero solution x of Tensor Complementarity Problem (0,.4) con-

tains at least two nonzero components if A is a semi-positive Q-tensor;

e Whether or not there are some relation between the eigenvalue of (symmetric) Q-tensor

and the feasible solution of Tensor Complementarity Problem (q,.4).
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