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1. Introduction

Completely positive matrices (cp matrices) [6,28], as a special type of nonnegative 
matrices, have wide applications in combinatorial theory including the study of block 
designs [16], and in optimization especially in creating convex formulations of NP-hard 
problems, such as the quadratic assignment problem in combinatorial optimization and 
the polynomial optimization problems [1–3,17,31]. The verification of cp matrices is 
generally NP-hard unless for small scale matrices. For example, all n × n nonnegative 
symmetric positive semidefinite matrices (usually called the doubly nonnegative (dnn) 
matrices) are cp-matrices whenever n ≤ 4 [7]. For general case, it is obvious that cp 
matrices are dnn, but not always true conversely [4,13,27]. It depends on some inherited 
zero pattern which cp matrices possess. To describe this dependence, the tool of graphs 
was employed and the completely positive graph (cp graph) was introduced which has all 
its nonnegative associated matrices being cp. Among all those properties on cp-graphs, 
one of the most important and well-known is a graph to be completely positive if and 
only if it does not have an odd cycle of length greater than 4 [19]. This gives us a very 
efficient way to verify cp-matrices in terms of cp graphs.

Recently, the concept of cp matrix has been extended to the higher order cp tensor, 
which admits its definition in a pretty natural way as initiated by Qi et al. in [25]. 
Analog to the matrix case, the cp tensors were employed to reformulate polynomial op-
timization problems [24]. Numerical optimization for the best fit of completely positive 
tensors with given length of decomposition was formulated as a nonnegative constrained 
least-squares problem in Kolda’s paper [18]. For the verification of cp tensors, an effi-
cient approach in terms of truncated moment sequences for checking completely positive 
tensors was proposed and an optimization algorithm based on semidefinite relaxation for 
completely positive tensor decomposition was established by Fan and Zhou in [14]. This 
approach was later accelerated with some preprocessing steps by Luo and Qi in [21]. 
Some structured and geometrical properties on general cp tensors were also discussed in 
[21,26].

Inspired by the technique of using cp graphs for the characterization of cp matrices, 
we employ the multi-hypergraph as a tool to describe the inherited zero pattern for cp 
tensors, which can further assist with the verification of cp-tensors. Multi-hypergraphs 
appeared in the literature at least in 1988 or even earlier. Here we use the definitions 
in [23]. Due to complexity of cp-tensors for general higher order cases, we will focus 
on a special type of cp-tensors called the {0, 1} cp tensor, which is exactly a higher 
order extension of the {0, 1} cp matrix that has been well studied in [8,9] motivated by 
the applications in many fields such as the pattern recognition [20]. In order to verify 
{0, 1} cp tensors, we first build up the correspondence between multi-hypergraphs and 
symmetric tensors which are called the associated tensors. The (0, 1) associated tensor is 
also defined which is uniquely determined by the corresponding multi-hypergraph. Based 
on the aforementioned one-to-one relationship, we establish the necessary and sufficient 
conditions for a (0, 1) associated tensor to be {0, 1} cp in terms of some structure property 
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possessed by the corresponding uniform multi-hypergraph. For general {0, 1} cp tensors 
which are not necessarily to be (0, 1) tensors, the cp multi-hypergraph is introduced and 
the necessary and sufficient condition of this type of multi-hypergraph is proposed. All 
of these can not only be served for verification for cp tensors, but also build up a bridge 
between tensor analysis and multi-hypergraph theory.

The rest of the paper is organized as follows. In Section 2, we introduce the associated 
tensors for multi-hypergraphs. Some related concepts and properties are also presented. 
In Section 3, the {0, 1} cp tensors is introduced and the equivalence conditions for (0, 1)
associated tensors of multi-hypergraphs to be {0, 1} cp are proposed. In Section 4, the cp 
multi-hypergraph is defined in terms of {0, 1} cp tensors, and the necessary and sufficient 
condition of cp multi-hypergraphs is established.

Throughout the paper we denote by [n] the set {1, 2, . . . , n} for a positive integer n, 
|S| for the cardinality of set (or multiset) S, and Zn

+ for the set of nonnegative integral 
vectors of dimension n. Denote by Tm,n the set of all mth order n-dimensional real 
tensors, and Sm,n the set of all mth order n-dimensional symmetric tensors. Denote Rn

the real n-dimensional Euclidean space and Rn
+ the set of all nonnegative vectors in Rn. 

Let F := {0, 1} and denote by Fm,n the set of all mth order n-dimensional real tensors 
whose elements are either 1 or 0, and by S Fm,n the set of all symmetric tensors in Fm,n. 
As convention we denote

S(m,n) := {τ = (i1, i2, . . . , im) : i1, i2, . . . , im ∈ [n]}

for the index set of an element of an mth order tensor. For a vector x ∈ Rn, we use 
supp(x) to denote the support of x, i.e., the index set of the nonzero coordinates of x.

2. The multi-hypergraph and its associated tensor

In this section, the multi-hypergraph and its associated tensors are recalled and in-
troduced, and some related concepts and properties are presented.

Definition 2.1 (Definition 7, [23]). Let V = {v1, v2, . . . , vn}. A multi-hypergraph P is a 
pair (V, E), where E = {E1, . . . , EN} a set of multisets of V . The elements of V are called 
the vertices and the elements of E are called the edges. Moreover, a multi-hypergraph P
is called an n ×N multi-hypergraph if |V | = n, |E| = N .

Definition 2.2 (Definition 8, [23]). A multi-hypergraph P = (V, E) is called m-uniform
(m ≥ 2) if for all E ∈ E, the cardinal number of the multiset of E is m (including 
repeated memberships).

In this paper, we are interested in m-uniform multi-hypergraph. For simplicity, let 
V = [n]. The associated tensor of an m-uniform multi-hypergraph is defined as fol-
lows. Unless otherwise stated, we will use {i1, · · · , im} to denote the multiset including 
repeated memberships throughout the paper.
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Definition 2.3. Let V = [n]. A tensor A = (ai1···im) ∈ Sm,n is said to be an associated 
tensor with the m-uniform multi-hypergraph P = (V, E) if for all (i1, · · · , im) ∈ S(m, n), 
ai1···im �= 0 when the multiset {i1, · · · , im} forms an edge in E, and ai1···im = 0 otherwise.

Let α ∈ E. We use B(α) to denote the set consisting of all distinct elements of α and 
call it the base of α. Apparently, any hypergraph (see [5] for details) is a multi-hypergraph 
with α = B(α) for each edge α ∈ E. Since the repetition is allowed in each edge for a 
general multi-hypergraph (i.e., B(α) ⊆ α), some partial order can be induced for edges 
in terms of their bases. Let α, β ∈ E. α is said to be majorized (strictly majorized) by an 
edge β, denoted as α � β (α ≺ β), if B(α) ⊆ B(β) (B(α) ⊂ B(β)). α and β are said to be 
similar, denoted as α ∼ β, if both α � β and α � β hold. Similar edges have a common 
base. The majorization defines a partial order on E and gives a clustering of edges in E, 
say D1, D2, · · · , Dr (possibly with some overlappings). By Zorn’s Lemma, there exists at 
least one maximal (minimal) element in each Di, denoted as �i (mi, respectively) which 
satisfies

B(α) ⊆ B(�i) (B(α) ⊇ B(mi), respectively) , ∀α ∈ Di

for each i = 1, 2, . . . , r. For an m-uniform n × N multi-hypergraph P = (V, E), it is 
obvious that 1 ≤ |mi| ≤ |�i| ≤ m. Denote

rk(P) := max
1≤i≤r

{|B(�i)| : �i is a maximal edge of Di},

and

ck(P) := min
1≤i≤r

{|B(mi)| : mi is a minimal edge of Di}

rk(P) (ck(P), respectively) is called the rank (co-rank) of P. For an m-uniform hy-
pergraph P with no repeated vertices allowed in any of its edges, we have rk(P) =
ck(P) = m.

A multi-hypergraph P may have several maximal (minimal) edges with different bases. 
But its rank (co-rank) shall be a unique number by definition. For any α ∈ S(m, n), 
we denote by M(α) the multiset generated by α and define the complete m-multiset 
determined by α as

Dα := {η ∈ S(m,n) : M(η) � M(α)} .

Lemma 2.4. Let |B(α)| = r where α ∈ S(m, n). Then

|Dα| = rm. (2.1)

Proof. Let α ∈ S(m, n), and |B(α)| = r. We may assume w.l.g. that B(α) =
{s1, s2, . . . , sr} , 1 ≤ s1 < s2 < . . . < sr ≤ n. For each η := (i1, i2, . . . , im) ∈ Dα, its 
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coordinate ik can be any number chosen from B(α) for each k ∈ [m], and thus there are 
rm choices, which leads to the desired assertion. �

The following example is presented for the illustration of the above concepts.

Example 2.5. Let P = (V, E) be a 3-uniform multi-hypergraph with its associated tensor 
A = (Aijk) ∈ S3,3 whose nonzero elements are listed as below:

A112 = A122 = A133 = A113 = A223 = A111 = A222 = A333 = 1

Three complete 3-multisets of E given by the majorization are

D1 = {{1, 1, 2} , {1, 2, 1} , {2, 1, 1} , {1, 2, 2} , {2, 1, 2} , {2, 2, 1} , {1, 1, 1} , {2, 2, 2}} ,
D2 = {{1, 1, 3} , {1, 3, 1} , {3, 1, 1} , {1, 3, 3} , {3, 1, 3} , {3, 3, 1} , {1, 1, 1} , {3, 3, 3}} ,
D3 = {{2, 2, 3} , {2, 3, 2} , {3, 2, 2} , {2, 3, 3} , {3, 2, 3} , {3, 3, 2} , {2, 2, 2} , {3, 3, 3}} .

There are six maximal edges in each Di. In fact, all the edges but the three minimal 
edges {1, 1, 1} , {2, 2, 2} , {3, 3, 3} are the maximal edges. So rk(P) = 2, ck(P) = 1. Note 
that {D1,D2,D3} does not form a partition of E ⊂ S(3, 3) since

{1, 1, 1} ∈ D1 ∩ D2 �= ∅.

3. {0, 1} cp tensors and (0, 1) associated tensors

In this section, we will discuss the condition for (0, 1) associated tensors of uniform 
multi-hypergraphs to be {0, 1} cp tensors. Before stating the main theorem, the involved 
concepts are introduced as a start.

Definition 3.1. An mth order n-dimensional symmetric tensor A is called a completely 
positive tensor, or cp tensor for short, if A can be decomposed as

A =
q∑

j=1
um
j , uj ∈ Rn

+, ∀j ∈ [q] (3.1)

The smallest number q satisfying (3.1) is called the cp-rank of A. Moreover, A is called 
to be {0, 1}–cp if uj ∈ Fn for each j ∈ [q] in (3.1).

Note that a {0, 1}–cp tensor may not be a (0, 1) tensor, and a cp-tensor with all entries 
in F is not necessarily {0, 1}–cp.

By Definition 2.3, it is obvious that for a given m-uniform multi-hypergraph P, its 
associated tensors are infinitely many since we can put any nonzero scalars as entries in 
those positions corresponding to edges of the multi-hypergraph. If we further restrict the 
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associated tensor A to be in S Fm,n, then the correspondence turns out to be one-to-one, 
i.e.,

{i1, i2, . . . , im} ∈ E ⇐⇒ ai1i2...im = 1. (3.2)

For any tensor A = (aσ) ∈ Tm,n, a tensor pattern Ã = (ãσ) ∈ Fm,n is defined in the 
way that for any σ ∈ S(m, n), ãσ = 1 if aσ �= 0 and ãσ = 0 otherwise. Apparently, 
all associated tensors for an m-uniform multi-hypergraph share the same tensor pattern 
which is exactly the corresponding (0, 1) associated tensor. The pattern of a tensor 
A reflects the distribution of zero (nonzero) elements of A and thus can be used to 
characterize its spectral property e.g. [10–12,15,22,30,29] and combinatorial properties 
such as the irreducibility.

Definition 3.2 (Definition 2.1, [10]). An mth order n-dimensional real tensor A =
(ai1···im) ∈ Tm,n is called reducible if there is a nonempty proper subset I ⊂ [n] such 
that

ai1...im = 0, ∀i1 ∈ I, ∀i2, . . . , im /∈ I. (3.3)

A is called irreducible if it is not reducible.

Recall that a tensor A = (Aσ) ∈ Tm,n is said to be strong symmetric if it satisfies 
Aα = Aβ whenever B(α) = B(β) for any α, β ∈ S(m, n)[26]. We use S S Fm,n to denote the 
set of all m-order n dimensional strong symmetric real tensors. A slice of tensor A ∈ Tm,n

is defined as a sub-tensor of order m − 1 obtained from A with some index fixed. A zero 
slice, or a trivial slice, is a slice whose elements are all zeros. Given a nonempty subset 
I := {s1, s2, . . . , sr} of [n], a principal subtensor of A determined by I, is defined as the 
mth order r dimensional tensor B = (Ai1i2...im) where each ik is constrained in I. A zero 
block is a principal subtensor whose entries are all zero. Obviously, an irreducible tensor 
has no zero slice nor any zero block.

Reducibility is a pattern property for tensors. By employing the permutational simi-
larity property, we can decompose any (0, 1) reducible tensor into a direct sum of a finite 
number of low dimensional irreducible tensors and a zero tensor in the permutational 
similar sense. Before stating this result, some related concepts are recalled here. Let 
A, B ∈ Tm,n. We say that A is permutational similar to B, denoted as A ∼p B, if there 
exists a permutation matrix P ∈ Rn×n such that

B = A×1 P ×2 P ×3 · · · ×m P,

where Ã := A ×k P = (ãi1...im) ∈ Tm,n is defined as

ãi1...ik−1ikik+1...im =
n∑

ai1...ik−1jik+1...impikj

j=1
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Utilizing the permutational similarity of tensors, we can build up some identical rela-
tion among their corresponding multi-hypergraphs. Let P1 = (V1, E1) and P2 = (V2, E2)
be two given m-uniform multi-hypergraphs with their (0, 1) associated tensors A and B
respectively. Then A ∼p B if and only if there exists a bijection φ from V1 to V2 such 
that

{i1, i2, . . . , im} ∈ E1 �→ {φ(i1), φ(i2), . . . , φ(im)} ∈ E2

that is, P(B) is the multi-hypergraph obtained from P(A) by the reordering of its ver-
tices, and thus they are identical in this sense.

Let Ai = (a(i)
σ ) ∈ Tm,ni

, i = 1, 2 and n1 + n2 = n. The direct sum of A1 and A2, 
denoted by

A = A1 ⊕A2 = (ai1...im),

is defined by

ai1...im =

⎧⎪⎪⎨
⎪⎪⎩
a
(1)
i1...im

if i1, . . . , im ∈ [n1],

a
(2)
i1...im

if i1, . . . , im ∈ n1 + [n2],
0 otherwise.

Here a + S is defined as the translation of set S, i.e., a + S = {a + s : s ∈ S}.
Now we are in a position to describe the decomposition for tensors in the sense of 

permutation similarity.

Lemma 3.3. Let A ∈ S S Fm,n, where m ≥ 2, n ≥ 1. Then

A ∼p A1 ⊕A2 ⊕ . . .⊕Ar ⊕Or+1 (3.4)

where Ai ∈ S S Fm,ni
is irreducible, Or+1 is a zero tensor of order m and dimension nr+1, 

and n1 + . . . + nr+1 = n.

Proof. The result is trivial if A is irreducible tensor. Now we assume that A ∈ S S Fm,n

is a reducible tensor. We will use induction to prove the desired statement. For n = 1, 
the reducibility implies that A = 0. The statement holds by setting r = 0. Assume that 
for all k satisfying 1 ≤ l ≤ n with n ≥ 1, the statement holds. They for the case of l+ 1, 
there exists a nonempty subset I of [l + 1] such that

Ai1i2...im = 0,∀i1 ∈ I, i2, . . . , im /∈ I (3.5)

Let P = (V, E) be the multi-hypergraph with A as an associated tensor, and we assume 
w.l.g. that
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I := {k1, k2, . . . , kr} , 1 ≤ k1 < k2 < · · · < kr ≤ l + 1.

Then we let φ : [l + 1] → [l + 1] be an one-to-one correspondence such that

φ(ki) = i, ∀ i = 1, 2, . . . , r,

and φ maps [l+ 1]\I to [l+ 1]\[r]. φ can be regarded as a permutation on [l+ 1], and so 
there is a permutation matrix P corresponding to φ. Actually if we define P = (pij) ∈
F (l+1)×(l+1) by

pij = 1 iff j = φ(i)

for each i ∈ [l + 1]. It follows readily that

Ã := A×1 P ×2 P ×3 . . .×m P = A11 ⊕A22 (3.6)

where A11 ∈ S S Fm,r, A22 ∈ S Fm,l+1−r. Note that r, l + 1 − r ≤ n, the desired decompo-
sition can be proved by the induction. �

Lemma 3.3 shows that a strong symmetric tensor can always be decomposed into the 
direct sum of irreducible tensors, possibly with a zero block. But this is not true for a 
symmetric tensor, as is illustrated by the following counterexample.

Example 3.4. Let A = (Aijk) be an 2 × 2 × 2 tensor defined by

A(:, :, 1) =
[

1 1
1 0

]
, A(:, :, 2) =

[
1 0
0 1

]

It is not difficult to check that A is symmetric but none strong symmetric. Furthermore, 
its reducibility can be verified by taking I = {1}. However, A cannot be written as the 
direct sum A = A1 ⊕ A2 where A1 = A[I] = (A111), A2 = (A222) are both 1 × 1 × 1
tensors.

We shall note that when a tensor A is {0, 1}–cp, then it must be a strong symmetric 
tensor[26]. Thus there is no difference between strong symmetry and symmetry when A
is known to be {0, 1}–cp. In fact, the tensor A in Example 3.4 is not a {0, 1}–cp tensor.

The following lemma is dedicated to the necessary and sufficient conditions of {0, 1}–cp
property for irreducible (0, 1) tensors.

Lemma 3.5. Let m ≥ 2, n ≥ 1 be two positive integers, and A ∈ S S Fm,n be irreducible. 
Then the following statements are equivalent:
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(i) A is {0, 1}–cp;
(ii) A = J is the all-1 tensor;
(iii) the multi-hypergraph P with associated tensor A is a complete block.

Proof. If A = J , then surely A is {0, 1}–cp since A = �m with � = (1, 1, . . . , 1)�.
Conversely, we let A ∈ S Fm,n be a {0, 1}–cp tensor. Then A has a decomposition (3.1)

with

uj = (u1j , u2j , . . . , unj)� ∈ Fn.

Then we have

ai1i2...im =
q∑

j=1
ui1jui2j . . . uimj , ∀(i1, i2, . . . , im) ∈ S(m,n).

We will first show that q = 1 in decomposition (3.1). Suppose that q > 1. If there exist 
a pair of positive integers (s, t) : 1 ≤ s < t ≤ q such that

k ∈ supp(us) ∩ supp(ut)

for some k ∈ [n], then uks = ukt = 1. Hence we have

Akk...k =
q∑

j=1
ukjukj . . . ukj

=
q∑

j=1
um
kj

≥ um
ks + um

kt = 2

a contradiction to the assumption that A is a (0,1) tensor. Thus we have

supp(ui) ∩ supp(uj) = ∅, ∀1 ≤ i < j ≤ q (3.7)

Now we define

Di = {σ ∈ E : B(σ) ⊆ supp(ui)} , ∀i = 1, 2, . . . , q

Then we get {D1,D2, . . . ,Dq} each a subset of E, and

Di ∩ Dj = ∅, ∀1 ≤ i < j ≤ q

Denote Vi = V (Di) and Pi := (Vi, Di) for i = 1, 2, . . . , q. Then



C. Xu et al. / Linear Algebra and its Applications 510 (2016) 110–123 119
P = P1 ∪ P2 ∪ . . . ∪ Pq

where P = (V, E) is the multi-hypergraph associated with A. It turns that A ∼p A1 ⊕
. . .⊕Aq where Ai is the adjacency tensor of Pi, a contradiction to the hypothesis that 
A is irreducible. Hence q = 1, and thus there exists a vector u = (u1, . . . , un)� ∈ Fn

such that A = um.
To prove that A = J = �m, we need only to show that supp(u) = [n]. In fact, if 

supp(u) is a proper subset of [n], then by setting I = [n]\supp(u), we show that A is 
reducible by definition, which is a contradiction to the hypothesis. Thus supp(u) = [n]
and A = J . Thus the equivalence between (i) and (ii) is obtained.

The remaining part of the lemma is immediate by definition. �
From Lemma 3.5 and its proof, we can get the following equivalences for {0, 1}–cp

tensors.

Theorem 3.6. Let m ≥ 2, n ≥ 1 be two positive integers. Suppose that A ∈ S Fm,n have 
no zero blocks and is associated with multi-hypergraph P = (V, E). Then the following 
are equivalent:

(1) A is {0, 1}–cp tensor.
(2) P can be decomposed as the union of some complete blocks Pi of size ni where 

n1 + . . . + nq = n.
(3) A can be written in form (3.1) and with uj ∈ Fn satisfying UTU = diag(n1, . . . , nq)

where U = [u1, . . . , uq].

Proof. To prove (1) ⇔ (2), we first let A ∈ S Fm,n be a {0, 1}–cp tensor. Then by 
Lemma 3.3 A can be written in form (3.4) where each Ai is an irreducible {0, 1}–cp
tensor of mth order ni-dimension (no zero block there since A has no zero block). By 
Lemma 3.5, Ai is associated with a multi-hypergraph Pi = (Vi, Ei) where |Vi| = ni for 
i = 1, 2, . . . , q, n1 +n2 + . . .+nq = n. For each i ∈ [q], by Lemma 3.5, Pi is the complete 
block of dimension ni (since Ai is irreducible and {0, 1}–cp). Thus (1) ⇒ (2) is proved. 
The proof of (2) ⇒ (1) is immediate if we note that the decomposition (3.1) holds by 
take supp(ui) = Vi for i = 1, 2, . . . , q.

Now we show (1) ⇔ (3). First we assume that A ∈ S Fm,n is {0, 1}–cp. Then from the 
proof of Lemma 3.5 there exist some vectors uj ∈ Fn such that (3.1) holds, and

supp(ui) ∩ supp(uj) = ∅,∀1 ≤ i < j ≤ q (3.8)

It follows that UTU = diag(n1, . . . , nq) for U = [u1, . . . , uq], where ni is the positive 
integer described above. Thus (1) ⇒ (3) is proved. The other direction can be proved by 
reversing the above arguments. �
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4. cp multi-hypergraphs

We define a multi-hypergraph P = (V, E) to be a cp multi-hypergraph if P is as-
sociated with a {0, 1}–cp tensor A. Note that A is not necessarily a (0,1) tensor. For 
example, the following 3 × 3 × 3 symmetric tensor is a {0, 1}–cp, but not a (0, 1) tensor.

Example 4.1. Let A = (aijk) ∈ S3,3 be a symmetric tensor defined as:

A(:, :, 1) =

⎡
⎢⎣ 2 1 1

1 1 0
1 0 1

⎤
⎥⎦

A(:, :, 2) =

⎡
⎢⎣ 1 1 0

1 2 1
0 1 1

⎤
⎥⎦

A(:, :, 3) =

⎡
⎢⎣ 1 0 1

0 1 1
1 1 2

⎤
⎥⎦

We show that A is a {0, 1}–cp tensor. In fact, if we let

U =

⎡
⎢⎣ 1 1 0

1 0 1
0 1 1

⎤
⎥⎦

Then we can verify by simple computation that

A = u3
1 + u3

2 + u3
3

where u1, u2, u3 ∈ F3 are respectively the first, second and the third column of the 
(0,1) matrix U . Thus A is {0, 1}–cp by definition. But A is not a (0,1) tensor since 
a111 = a222 = a333 = 2.

Denote P as the associated multi-hypergraph of A. There are three distinct classes of 
edges of P according to majorization: Dα1 , Dα2 , Dα3 where

α1 = {v1, v1, v2} , α2 = {v1, v1, v3} , α1 = {v2, v2, v3}

each pair (Di, Dj) has a nonempty intersection. Note that A is irreducible. Thus the 
condition A ∈ S Fm,n in Lemma 3.5 cannot be removed.

The following property is introduced for cp multi-hypergraphs.

Definition 4.2. A multi-hypergraph P = (V, E) is said to possess Property R if Dα ⊆ E
for any α ∈ E.



C. Xu et al. / Linear Algebra and its Applications 510 (2016) 110–123 121
The aforementioned property is closely related to the zero-entry dominance property 
for tensors described formally by Luo and Qi in [21].

Definition 4.3 (Definition 4.1, [21]). An mth order n-dimensional tensor A = (ai1···im)
is said to possess the zero-entry dominance property if for any (i1, · · · , im) ∈ S(m, n), 
ai1···im = 0 implies that aj1···jm = 0 for all {j1, · · · , jm} satisfying B({j1, · · · , jm}) ⊇
B({i1, · · · , im}).

By direct verification, we can get the following equivalence.

Lemma 4.4. A multi-hypergraph P = (V, E) has the Property R if and only if its (0, 1)
associated tensor has the zero-entry dominance property.

It is known from [21] that any completely positive tensor possesses the zero-entry 
dominance property. It is worth pointing out that the zero-entry dominance property is 
only a necessary condition for (0, 1) associated tensor to be {0, 1} cp tensors, but far 
away from sufficient, even for the matrix case. For example, A = [1 1 0; 1 1 1; 0 1 1]
is a (0, 1) matrix and satisfies the zero-entry dominance property, but it is not {0, 1}
cp since it is not positive semidefinite. Nevertheless, by invoking the above equivalence 
between Property R and the zero-entry dominance property, together with the definition 
of cp multi-hypergraphs, we can obtain that the Property R is exactly a necessary and 
sufficient condition for a multi-hypergraph to be cp.

Theorem 4.5. An m-uniform multi-hypergraph is a cp multi-hypergraph if and only if it 
possesses Property R.

Proof. To get the necessity, by invoking Theorem 3.6, a cp multi-hypergraph can be 
decomposed as the union of some disjoint complete blocks Pi’s where Pi = (Vi, Ei) is of 
order ni. Since a complete block has Property R, P has Property R. For the sufficiency, 
that is, given an m-uniform multi-hypergraph P = (V, E) with Property R, then P is 
cp, i.e., there exists a {0, 1}–cp tensor A associated with P. Note that A need not be a 
(0,1) tensor by definition. For this purpose, we consider the set of the maximal edges of 
P, and we classify them into C1, C2, . . . , Cr by the similarity of the edges. We denote

αi ∈ Ci, Bi = B(αi), ni = |Bi| , ∀i ∈ [r]

For i ∈ [r], denote Di = Dαi
, which is the complete m-multisets determined by αi ∈ Ci. 

Apparently,

E =
r⋃

i=1
Di (4.1)

Denote vi ∈ Fn, supp(vi) = Bi for each i ∈ [r], and define
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A =
r∑

j=1
vm
j (4.2)

Then A is {0, 1}–cp by definition. The proof is completed if we show that A is associated 
with P. In fact, if there is an element ai1...im �= 0, then from (4.2) there exists k ∈ [r]
such that

B(σ) ⊆ supp(vk) = Bk = B(αk)

It follows that M(σ) ∈ E since P has Property R. Conversely, if Aσ = 0 for a σ ∈ S(m, n), 
then B(σ) � B(αi) for each i ∈ [r]. Thus σ /∈ Di for all i ∈ [r]. Consequently we have 
M(σ) /∈ E by (4.1). The proof is completed. �

By combining Theorem 4.5 and Lemma 2.4, we obtain

Corollary 4.6. An m-uniform n ×N cp multi-hypergraph P = (V, E) satisfies

N = nm
1 + . . . + nm

r

where r is the number of connected branches of P and ni is the dimension of the ith 
branch.
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