Subject Code	SN5020				
Subject Title	Epidemiological Model Building for Healthcare and Risk Management				
Credit Value	3				
Level	5				
Pre-requisite / Co-requisite/ Exclusion	Nil Students are recommended to have a background knowledge of Epidemiology.				
Objectives	To introduce the application of epidemiological model building methods to illustrate spread and control of disease and their use in prediction of disease outbreaks.				
	To use data analysis for interpretation of epidemiological studies with emphasis on control of confounding and logistic regression.				
	To consider the role of the environment with respect to risk management for the prevention of infectious disease.				
Intended Learning	Upon completion of the subject, students will be able to:				
Outcomes	a) Consider transmission of disease and how these modes may be described using epidemiological models				
	b) Explain the use of mathematical models of disease spread by use of ordinary differential equations				
	c) Decide on applicability of use of vaccines or other control measures to prevent spread of disease				
	d) Develop SIR and SIS models for vaccines				
	e) Predict the outcome of vaccine use following consideration of particular problems associated with individual infectious diseases				
	 f) Predict outbreaks and impact of infectious disease with reference to global surveillance and time order graphs 				
	g) Construct confidence intervals for epidemiological risk factors				
	h) Develop and use logistic regression model for multivariate analysis of epidemiological studies				
	i) Integrate the impact of air quality and ventilation systems, and water quality with health impact on airborne infection				

Subject Synopsis/	Syllabuses:							
Indicative Syllabus	1.	Transmission of disease						
		Modes of spread of disease and their description using models.						
		Mathematical models of disease spread using ordinary differential equations.						
		Explanation of use of SIR model						
		Modification of the SIR model to reflect other model(s) of transmission						
	2.	Control of disease						
		Review control measures on spread of disease with emphasis on vaccine use.						
		Determine effect of control measures on infectious disease models and developing SIR models for vaccines.						
		Consider problems of vaccine use and prioritization of vaccine.						
		Develop SIS models for vaccine use.						
		Consider effect of birth cohort						
	3.	Surveillance of disease						
		Use of global surveillance, epidemiological data stream networks, use of time-order graphs						
	4.	Epidemiological data analysis						
		Understanding and using confidence intervals for risk factors, controlling for confounding, use of logistic regression.						
		Laboratory practice using SPSS for analysis of epidemiological data						
	5.	Reduction of risk by maintenance of indoor environment						
		Understanding the importance of indoor air quality and its health impact.						
		Use of ventilation systems to reduce risk of infection in healthcare.						
		Case study on transmission of airborne infections.						
		Provision of potable water and maintenance of water supplies						
		Reduction of risk of legionella by correct management of water supply systems.						

Teaching/Learning	Learning Approach:											
Methodology	Lectures, tutorials and computing practicing.											
	Contact Hours:											
	Lecture Seminar Laboratory	Tot	24 hours 12 hours <u>3 hours</u>									
		100	ui. 5	7 1100	115							
Assessment Methods in Alignment with Intended Learning Outcomes	Specific assessment	% weighting	Intended subject learn assessed (Please tick a					ing outcomes to be as appropriate)				
	methods/tasks		a	b	c	d	e	f	g	h	i	
	1. Assignments	60		~	✓	~		~	~	~		
	2. Test	40	✓	~	~	~	~	~	~	~	~	
	Total	100 %	(Co	ntinu	ous A	Assess	men	t)	1	1		
	Explanation of the the intended learnin Students can ev epidemiological ma services systems to health risks arising	appropriater ng outcomes valuate and odels. They of sustain the from their of	ness o l pr can a healt pera	of the redict pprec hy ind tion.	asse inj ciate door	ssmer fection the enviro	nt me n r nhan onme	ethod isk ceme ent ar	s in usin ent of end ur	asses g l f bui nders	basic dasic dang stand	
Student Study Effort Required	Class contact:									39	Hrs	
	Other student study	effort:										
	Independent self studyPreparation for seminars						30 Hrs					
							18 Hrs					
	 Student assignments 						18 Hrs					
	Total student study	effort								105	Hrs	

	Reading list:
	M. J. Keeling and L. Danon (2009) Mathematical modelling of infectious diseases. British Medical Bulletin 92: 33-42
Reading List and References	Grassly NC and Fraser C (2008) Mathematical models of infectious disease transmission. Nature Reviews Microbiology 6(6):477-487.
	Safi MA, Abba B. Gumel AB. (2011) Mathematical analysis of a disease transmission model with quarantine, isolation and an imperfect vaccine. Computers & Mathematics with Applications. 61 (10): 3044–3070
	Hethcote HW (2000) The Mathematics of Infectious Diseases. SIAM REVIEW 42(4): 599–653. http://leonidzhukov.net/hse/2014/socialnetworks/papers/2000SiamRev.pdf
	Jewell NP (2004) Statistics for Epidemiology, Chapman and Hall