Subject Description Form

Subject Code	AMA456		
Subject Title	Graphs and Networks		
Credit Value	3		
Level	4		
Pre-requisite/ Co-requisite/ Exclusion	Nil		
Objectives	This module aims at preparing students		
	 (i) to be able to model real life problems with discrete mathematical models; and (ii) to be able to solve mathematical systems with finite mathematics techniques. 		
Intended Learning Outcomes	Upon satisfactory completion of the subject, students should be able to:		
	1. apply mathematics knowledge to graphs and networks;		
	 apply mathematical techniques to analyze discrete mathematical models; develop and apply the discrete mathematical tools for solving real life problems as well as daily life applications such as networks and scheduling problems; 		
	 work independently as well as in a team for a project in operations research. 		
Subject Synopsis/ Indicative Syllabus	<i>Graph and Networks</i> Graph and Digraph; arc; node; subgraphs: acyclic graphs; trees; spanning trees; the minimal spanning tree and its applications in minimum connection problems. The shortest route problems: Dijkstra's method; Eulerian and Hamiltonian graphs: the travelling salesman problem; Chinese postman problems. Non-polynomial completeness. Some examples of real life networks.		
	Network Flows Network flows: flow augmenting path; maximum flow; minimum cut; the Fulkerson's theorem. Practical problems related to network flows. Application to multicommodity flows, scheduling, transshipment, transportation and circuit design problem etc. Matching problems: bipartite matching; basic matching algorithms, some practical examples.		
Teaching/Learning Methodology	A 2 hour lecture will be conducted each week to initiate students into the definition and concepts in discrete mathematics as described in the syllabus, then, reinforced by a one hour tutorial designed to consolidate and develop student's knowledge through concrete examples and practical applications of graph theory by problem solving.		

Assessment Methods in Alignment with Intended Learning	Specific assessment methods	% weighting	Intended subject learning outcomes to be assessed (Please tick as appropriate)			
Outcomes			1	2	3	4
	a. Assignments	5%	~	~	~	~
	b. Tests	35%	~	~		
	c. Examination	60%	~	~	~	~
	Total	100 %				
Student Study	examination is held at the end of the semester. Questions used in assignments, examination are used to assess the students level of understanding of the basic and their ability to convert daily problems to mathematical models.To pass this subject, students are required to obtain Grade D or above in Continuous Assessment and the Examination components.ent StudyClass contact:					
Effort Expected	Lecture			26 Hrs.		
	Tutorial				13 Hrs.	
	Other student study effort:					
	 Assignment 			36 Hrs.		
	Self-study			42 Hrs.		
	Total student study effort			117 Hrs.		

Reading List and References	<u>Textbook</u> : D.B. West	Introduction to Graph Theory	Prentice Hall, 1996
	<u>References:</u> S.M. Cioaba M.R. Murty	A First Course in Graph Theory and Combinations	Hindustan Book Agency 2009
	M.S. Bazaraa, J.J. Jarvis and H.D. Sherali	Linear Programming and Network Flows, 2 nd edition	Wiley, 1990
	J.R. Evans and E. Minieka	Optimization Algorithms for Networks and Graphs	Marcel-Dekker, 1992 Longman, 1996 (4 th
	R.J. Wilson	Introduction to Graph Theory	edition)
	G. Chartrand, D.R. Dellermann	Applied and Algorithmic Graph Theory	McGraw Hill 1993