The Hong Kong Polytechnic University Subject Description Form

Subject Code	AMA569							
Subject Title	Stochastic models for carbon pricing and trading							
Credit Value	3							
Level	5							
Pre-requisite / Co-requisite/ Exclusion	Nil							
Objectives	This subject introduces students fundamental theories and methods of data mining and stochastic models that are useful for analyzing environmental data and carbon trading.							
Intended Learning Outcomes	Upon completion of the subject, students will be able to: (a) understand the principle of data analytics and data mining;							
(Note 1)	(b) apply various data analytics algorithms and techniques to analyze data related to carbon neutrality;							
	(c) understand different stochastic models for carbon trading							
Subject Synopsis/ Indicative Syllabus	Overview of statistics and applied probability : Basic concepts in statistics and probability, point estimation (MME and MLE), hypothesis testing.							
(Note 2)	Statistical data mining for environmental data: Data analysis methods include principal component analysis, linear regression, basic time series models, fundamentals of spatial random processes, spatio-temporal models.							
	Stochastic models for carbon pricing and trading: Markov chain, binomial tree model, random walk, Brownian motion, Feynman-Kac formula, return and risk, Markowitz model, Black-Scholes model, carbon asset pricing, carbon option pricing, European option, American option.							
Teaching/Learning Methodology (Note 3)	This subject mainly deliveries through lectures and programming training. The teaching and learning approach is mainly problem-solving oriented. The approach aims at the development of data analytics techniques and how the techniques can be applied to problem solving. Students are encouraged to adopt a deep study approach by employing high level cognitive strategies, such as critical and evaluative thinking, relating, integrating and applying theories to practice.							
Assessment Methods in	Specific assessment methods/tasks	% weighting						
Alignment with			a	ь	С			
Intended Learning Outcomes	1. Continuous Assignments	25%	√	✓	√			
(Note 4)	2. Project	30%		√	√			
	3. Examination	45%	√	√	✓			
	Total	100 %		I	<u> </u>		1	1

	Continuous Assignment : includes participation in the computer laboratory sessions and turning on time the graded quizzes to check students' progress throughout the semester.						
	Project : will be assigned during the second half of the semester. Students will their knowledge gained in the class/lab to tackle problems related to data analytic semiconductor manufacturing.						
	Examination : assess the knowledge acquired by the students, as well as to determine the extent to which they have achieved the intended learning outcomes.						
Student Study Effort Expected	Class contact:						
	 Lecture 	26 Hrs.					
	Computer Laboratory and Tutorial	13 Hrs.					
	Other student study efforts:						
	Assignment/Projects	51 Hrs.					
	Reading and self-study	30 Hrs.					
	The total student study effort	120 Hrs.					
Reading List and References	R. Durrett, Essentials of Stochastic Processes. Springer 2016.						
	J. Hull, Options, Futures, and Other Derivatives, Prentice Hall, 2009.						
	R. Peck, C. Olsen and J. Devore, Introduction to Statistics and Data Analysis, 3 rd Ed, Thomson Higher Education, 2008.						
	N. Cressie, C.K. Wikle, Statistics for Spatio-Temporal Data, John Wiley & Sons, 2015.						
	C.K. Wikle, A. Zammit-Mangion, C. N. Cressie, Spatio-Temporal Statistics with R, Chapman and Hall/CRC 2019.						
	O. Lamiguerio, Displaying Time Series, Spatial, and Space-Time Data with R, Chapman and Hall/ 2014						
	OECD, Effective Carbon Prices, OECD Publishing, 2013. http://dx.doi.org/10.1787/9789264196964-en						