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Decisions in the Face of Uncertain Outcomes

Reliable design in engineering:
a structure must be engineered to withstand various impacts
possible impacts can only be estimated
potential for failure must be kept low

Logistics in operations research:
supplies must be stockpiled to meet demands
distribution and replacement expense should be kept at bay
demands and costs are random variables, but partly guesswork

Asset management in finance:
a portfolio must be chosen with intelligent safeguarding
performance known at best from history and economic factors
the threat of losses cannot be eliminated

The inescapable modeling challenge in stochastic optimization:

appropriate formulation of constraints and objectives



Uncertain “Costs” (Viewed Abstractly)

“costs” = quantities to be minimized or kept below given levels

General “cost” expression in decision-making:
c(x , v) with x = decision vector, v = data vector

x = (x1, . . . , xn), v = (v1, . . . , vm)

Stochastic uncertainty:
v is replaced by a random variable vector V = (V1, . . . ,Vm)
then the “cost” becomes a random variable: c (x) = c(x ,V )

Key consequence:
the distribution of c (x) can only be shaped by the choice of x
but how then can constraints or minimization be understood?



A Broad Pattern for Handling Risk in Optimization

Risk measures: functionals R that “quantify the risk” in a
random variable X by a value R(X ) (“risk” 6= “uncertainty”)

Systematic prescription

Faced with an uncertain “cost” c (x) = c(x ,V ) articulate it
numerically as c̄(x) = R(c (x)) for a choice of risk measure R

Constraints: keeping c (x) “adequately” ≤ b
modeled as: constraint c̄(x) = R(c (x)) ≤ b

Objectives: keeping c (x) “as low as reasonable”
modeled as: minimizing c̄(x) = R(c (x))

= choosing (x , b) such that c̄(x) ≤ b for lowest b

Supporting theory: exploration of examples and guidelines
but note: choosing R expresses a decision-maker’s preferences



Some Familiar Approaches Subject to Pros and Cons

[random cost c (x) = c(x ,V ) reduced to a numerical cost c̄(x) ]

Focusing on worst cases:
c̄(x) = sup[c (x)] [ taking R(X ) = supX (ess. sup) ]

then c̄(x) ≤ b ⇐⇒ c (x) ≤ b almost surely

Passing to expectations:
c̄(x) = µ[c (x)] = E [c (x)] [ taking R(X ) = µ(X ) = EX ]

then c̄(x) ≤ b ⇐⇒ c (x) ≤ b “on average”

Adopting a safety margin:
c̄(x) = µ[c (x)] + λσ[c (x)] [ taking R(X ) = µX + λσ(X ) ]

then c̄(x) ≤ b unless in tail beyond λ standard deviations

Looking at quantiles:
c̄(x) = qp[c (x)] [ taking R(X ) = p-quantile of X ]

then c̄(x) ≤ b ⇐⇒ prob{c (x) ≤ b} ≥ p



Quantiles and “Superquantiles”: VaR and CVaR

FX = cumulative distribution function for random variable X

Quantile: “value-at-risk” in finance
qp(X ) = VaRp(X ) = F−1

X (p)

Superquantile: “conditional value-at-risk” in finance
Qp(X ) = CVaRp(X ) = E [X |X ≥ qp(X ) ] = 1

1−p
∫ 1
p qt(X )dt

Replacing quantiles by superquantiles:
c̄(x) = Qp[c (x)] [ taking R(X ) = p-superquantile of X ]

then c̄(x) ≤ b ⇐⇒ c (x) ≤ b on average even in p-quantile-tail



An Engineering Perspective in Reliable Design

a “cost” triggering “failure”: X = c(x1, . . . , xn;V1, · · · ,Vr )

Probability of failure: pf (X ) = prob
{
X > 0

}
pf (X ) ≤ 1− p ⇐⇒ qp(X ) ≤ 0

Troubles with this quantile concept:
• How to compute or at least estimate?
• How to cope with dependence on x1, . . . , xn in optimization?

both pf and the threshold shift with changes in x1, . . . , xn

Alternative to consider: switch to a superquantile concept



Buffered Failure — Enhanced Safety

uncertain cost: X = c(x1, . . . , xn;V1, · · · ,Vr )

Buffered probability of failure: Pf (X ) = prob
{
X > q

}
with q determined so as to make E [X |X > q ] = 0 !

Pf (X ) ≤ 1− p ⇐⇒ Qp(X ) ≤ 0

Suggestion: adjust failure modeling to Pf (X ) in place of pf (X )
safer by integrating tail information, and
easier also to work with in optimization! why?



Minimization Formula for VaR and CVaR

CVaRp(X ) = min
C∈IR

{
C + 1

1−pE
[

max{0,X − C}
]}

p ∈ (0, 1)

VaRp(X ) = argmin (if unique, otherwise the lowest)

Application to CVaR models: convert a problem in x like

minimize CVaRp0(c 0(x)) subject to [hard constraints and]
CVaRpi (c i (x)) ≤ 0, i = 1, . . . ,m

into a problem in x and auxiliary variables C0,C1, . . . ,Cm:

minimize C0 + 1
1−p0

E
[
max{0, c 0(x)− C0}

]
while requiring

Ci + 1
1−pi E

[
max{0, c i (x)− Ci}

]
≤ 0, i = 1, . . . ,m

Important case: this converts to linear programming when
(1) each c i (x) = ci (x ,V ) depends linearly on x ,
(2) the future state space Ω is modeled as finite



Axiomatization of Risk

Key axioms for risk measures: R : Lp(Ω,A,P)→ (−∞,∞]
(R1) R(C ) = C for all constants C
(R2) convexity, (R3) lower semicontinuity

Supplementary properties of interest:
(R4) positive homogeneity: R(λX ) = λR(X ) for λ > 0
(R5) monotonicity: R(X ) ≤ R(X ′) when X ≤ X ′

(R6) aversity: R(X ) > EX for nonconstant X

Coherent measure of risk: R satisfying (R1), (R2), (R3), (R5)

Averse measure of risk: R satisfying (R1), (R2), (R3), (R6)

Artzner et al. (2000) introduced coherency without aversity

Preservation of convexity under coherency of R
c (x) = c(x ,V ) convex in x =⇒ c̄(x) = R(c (x)) convex in x

a further advantage of coherency: it promotes dualizations



Coherency or its Absence

R(X ) = qp(X ) = VaRp(X ) fails (R2), (R3), and (R6)!

R(X ) = Qp(X ) = CVaRp(X ) satisfies all axioms

R(X ) = supX satisfies all axioms

R(X ) = µ(X ) = EX fails (R6) (coherency without aversity)

R(X ) = µ(X ) +λσ(X ), λ > 0, fails (R5) (no monotonicity)

Mixtures of risk measures

R(X ) =
∑r

k=1 λkRk(X ) with λk > 0,
∑r

k=1 λk = 1

Rk coherent for k = 1, . . . , r =⇒ R coherent

Rk averse for k = 1, . . . , r =⇒ R averse

a versatile example: enjoying both coherency and aversity

R(X ) =
∑r

k=1 λkQpk (X ) =
∑r

k=1 λk CVaRpk (X )

“continuous” mixtures work also ←→ dual utility risk profiles



Relaxations From Worst-Case Analysis

Interpolations with CVaR:

CVaRp(X )↗ supX as p ↗ 1, CVaRp(X )↘ EX as p ↘ 0

Partitioning the future: Ω as a union of “likelihood regions” Ωk

λk > 0 for k = 1, . . . , r , λ1 + · · ·+ λr = 1

R(X ) = λ1

[
sup
ω∈Ω1

X (ω)
]
· · ·+ λr

[
sup
ω∈Ωr

X (ω)
]

is coherent



Axiomatization of Deviation, a Partner to Risk

D(X ) quantifies the nonconstancy/uncertainty in X

Key axioms for deviation measures: D : L1(Ω,A,P)→ [0,∞]
(D1) D(C ) = 0, but D(X ) > 0 for nonconstant X
(D2) convexity, (D3) lower semicontinuity

Supplementary properties of interest:
(D4) positive homogeneity: D(λX ) = λD(X ) for λ > 0
(D5) upper range boundedness: D(X ) ≤ supX − EX

Risk measures in relation to deviation measures

A one-to-one correspondence D ←→ R between deviation
measures D and averse risk measures R is furnished by

R(X ) = EX +D(X ), D(X ) = R(X − EX ),
where moreover coherency is characterized by

R(X ) satisfies (R5) ⇐⇒ D(X ) satisfies (D5)

D(X ) = λσ(X ) fails (D5), so R(X ) = EX +λσ(X ) isn’t coherent!



Optimization and Estimation in Coping With Uncertainty

support for decision-making in a stochastic environment

Optimization:
minimize a “cost” expression under constraints on the decision
the constraints could involve bounds on other “costs”
the “costs” may have a background in statistical analysis

Estimation:
approximate some quantity from empirical/historical data
minimize an error expression to get regression coefficients
different interpretations of “error” yield different results

Interplay:

optimization problems involving uncertainty depend on
estimation methodology even in coming to a formulation
estimation problems are optimization of a special sort
new and deeper connections are now coming to light



Databases: the Role of Estimation

a one-dimensional linear version for initial simplicity

Available information: a large(?) collection of pairs (xk , yk)

Perspective: empirical distribution in x , y space of r.v.’s X ,Y

Approximation: Y ≈ aX + b error gap: Z (a, b) = Y − [aX + b]



Regression From a General Point of View

Y = random variable (scalar) to be understood in terms of
X1, . . . ,Xn = some “more basic” variables (e.g., “factors”)

Approximation scheme: Y ≈ f (X1, . . . ,Xn) for f ∈ F
F = some specified class of functions f : IRn → IR
for instance f (x1, . . . , xn) = c0 + c1x1 + · · ·+ cnxn

corresponding error variable: Zf = Y − f (X1, . . . ,Xn)

Regression problem:
minimize E(Zf ) over all f ∈ F for some “error measure” E
E quantifies the “nonzeroness” of the random variable Zf

Important issue for connecting with optimization:

c (x) = c(x ,V ) may only be supported by a database
regression is essential then to get a “formula” for c (x)
for using c̄(x) = R(c (x)), shouldn’t this be “tuned” to R?



Example: an Application to Composition of Alloys

Alloy model: a mixture of various metals
amounts of chief ingredients: x = (x1, . . . , xn) “design”
amounts of other ingredients: v = (v1, . . . , vm) “contaminants”
a “characteristic” to be controlled: y ideally kept ≤ 0, say

due to uncertainty, a quantile constraint may be envisioned

Background information: y = c(x , v)? no available formula!

there is only a database in (x , v , y)-space,
{

(xk , vk , yk)
}N
k=1

view the database as an empirical distribution for random
variables X = (X1, . . . ,Xn), V = (V1, . . . ,Vm), Y

use regression of Y on X1, . . . ,XN to get a function y = c̄(x)

then impose the constraint c̄(x) ≤ 0 on the design x

shouldn’t the regression adapt then to the intended constraint?



The Effect of Regression in General

E = some measure of error: (E1) E(X ) > 0 when X 6≡ 0
(E2) convexity, (E3) lower semicontinuity

for instance E(X ) = E{ε(X )} or E(X ) = minw∈W E{ε(w ,X )}

Error projection (with respect to constants C )

Let D(X ) = min
C
E(X − C ), S(X ) = argmin

C
E(X − C ).

Then D is a measure of deviation and S the associated “statistic”

S(X ) is the constant C “nearest” to X with respect to E

Regression problem “decomposition” (when f ∈ F ⇒ f + C ∈ F)

minimizing E(Zf ) over f ∈ F corresponds to minimizing D(Zf )
under the constraint S(Zf ) = 0 where Zf = Y − f (X1, . . . ,Xn)

basic examples: least-squares regression, quantile regression



The Fundamental Quadrangle of Risk: A New Paradigm

an array of functionals to be applied to random “costs” X
serving to connect methodologies usually viewed separately

risk R ←→ D deviation

optimization ↑↓ S ↓↑ estimation

regret V ←→ E error

R(X ) quantifies the “overall” cost in X
D(X ) quantifies the nonconstancy in X
E(X ) quantifies the nonzeroness in X
V(X ) quantifies the net regret in outcomes X > 0 versus X ≤ 0
S(X ) is the “statistic” associated with X through E

dualizations yield many insights and connect with relative entropy



Regret and Utility

V(X ) quantifies (net) regret in outcomes X > 0 versus X ≤ 0

Key axioms for regret measures: V : X → (−∞,∞]
(V1) V(0) = 0, (V2) convexity, (V3) closedness

Supplementary properties of interest:
(V4) positive homogeneity: V(λX ) = λV(X ) for λ > 0
(V5) monotonicity: V(X ) ≤ V(X ′) when X ≤ X ′

(V6) aversity: V(X ) > EX for nonconstant X

Coherent measure of regret: V with (V1), (V2), (V3), (V5)
Averse measure of regret: V with (V1), (V2), (V3), (V6)

Connection with utility: V ←→ U expressed by
V(X ) = −U(−X ), U(Y )− V(−Y )

this is relative utility because of the V threshold: U(0) = 0

Expectation case: V(X ) = E [v(X )], U(Y ) = E [u(Y )], where
v(x) = −u(−x) for a utility u : (−∞,∞)→ [−∞,∞)



Risk Assessed From Regret

Trade-off formula

From a regret measure V, a risk measure R can be derived by

R(X ) = min
C

{
C + V(X − C )

}
and in general this operation preserves aversity and coherency

Interpretation: write off a certain loss amount C and then only
worry about the uncertain residual loss X − C

Ideal amount to write off: S(X ) = argmin
C

{
C + V(X − C )

}
Example: R(X ) = Qp(X ) and S(X ) = qp(X ) emerge from

V(X ) = 1
1−pE [max{0,X}] (classical penalty for loss)

Important challenge: inversion R → V more generally
nonunique, but “natural” antecedents are now broadly known



Finalizing the Quadrangle

risk R ←→ D deviation

optimization ↑↓ S ↓↑ estimation

regret V ←→ E error

To consider now: V ←→ E as set forth through

E(X ) = V(X )− EX , V(X ) = EX + E(X )

expectation case: E(X ) = E [ε(X )] for ε : (−∞,∞]→ [0,∞]

Key consequence for S under V ←→ E and R ←→ D
The derivations E → D, E → S, transform now exactly to

R(X ) = min
C

{
C + V(X − C )

}
, S(X ) = argmin

C

{
C + V(X − C )

}
Final links: nonunique but “natural” inversions D → E , R → V



The Mean-Based Quadrangle

articulated with a scaling parameter λ > 0

S(X ) = EX = µ(X )
= mean

E(X ) = λ||X ||2
= L2-error, scaled

D(X ) = λσ(X )
= standard deviation, scaled

R(X ) = EX + λσ(X )
= standard-deviational tail risk

V(X ) = EX + λ||X ||2
= L2-regret

properties: aversity with convexity but not coherency



The Quantile-Based Quadrangle

at any probability level p ∈ (0, 1)

S(X ) = qp(X ) = VaRp(X )
= quantile

R(X ) = Qp(X ) = CVaRp(X )
= superquantile

D(X ) = Qp(X − EX ) = CVaRp(X − EX )
= superquantile deviation

E(X ) = E [ p
1−pX+ + X−]

X+ = max{0,X}, X− = max{0,−X}
= “normalized” Koenker-Bassett error

V(X ) = 1
1−pE [X+]

= quantile-scaled absolute loss

properties: aversity with coherency
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