RISK MODELING IN MANAGEMENT AND ENGINEERING

R. T. Rockafellar University of Washington, Seattle University of Florida, Gainesville

Workshop on Optimization and Risk Management The Hong Kong Polytechnic University 18 December 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Decisions in the Face of Uncertain Outcomes

Reliable design in engineering:

a structure must be engineered to withstand various impacts possible impacts can only be estimated potential for failure must be kept low

Logistics in operations research:

supplies must be stockpiled to meet demands distribution and replacement expense should be kept at bay demands and costs are random variables, but partly guesswork

Asset management in finance:

a portfolio must be chosen with intelligent safeguarding performance known at best from history and economic factors the threat of losses cannot be eliminated

The inescapable modeling challenge in stochastic optimization:

appropriate formulation of constraints and objectives

Uncertain "Costs" (Viewed Abstractly)

"costs" = quantities to be minimized or kept below given levels

General "cost" expression in decision-making:

c(x, v) with x = **decision** vector, v = **data** vector

 $x = (x_1, \ldots, x_n), \quad v = (v_1, \ldots, v_m)$

Stochastic uncertainty:

v is replaced by a **random variable** vector $V = (V_1, ..., V_m)$ then the "cost" becomes a random variable: $\underline{c}(x) = c(x, V)$ Key consequence:

the distribution of $\underline{c}(x)$ can only be **shaped** by the choice of x but how then can constraints or minimization be understood?

A Broad Pattern for Handling Risk in Optimization

Risk measures: functionals \mathcal{R} that "quantify the risk" in a random variable X by a value $\mathcal{R}(X)$ ("risk" \neq "uncertainty")

Systematic prescription

Faced with an uncertain "cost" $\underline{c}(x) = c(x, V)$ articulate it numerically as $\overline{c}(x) = \mathcal{R}(\underline{c}(x))$ for a choice of risk measure \mathcal{R}

Constraints: keeping $\underline{c}(x)$ "adequately" $\leq b$ modeled as: constraint $\overline{c}(x) = \mathcal{R}(\underline{c}(x)) \leq b$ **Objectives:** keeping $\underline{c}(x)$ "as low as reasonable" modeled as: minimizing $\overline{c}(x) = \mathcal{R}(\underline{c}(x))$ = choosing (x, b) such that $\overline{c}(x) \leq b$ for lowest b

Supporting theory: exploration of examples and guidelines but note: choosing \mathcal{R} expresses a decision-maker's preferences

Some Familiar Approaches Subject to Pros and Cons

[random cost $\underline{c}(x) = c(x, V)$ reduced to a numerical cost $\overline{c}(x)$]

Focusing on worst cases:

 $\overline{c}(x) = \sup[\underline{c}(x)] \quad [\text{ taking } \mathcal{R}(X) = \sup X \text{ (ess. sup) }]$ then $\overline{c}(x) \le b \iff \underline{c}(x) \le b$ almost surely

Passing to expectations:

 $\bar{c}(x) = \mu[\underline{c}(x)] = E[\underline{c}(x)] \quad [\text{ taking } \mathcal{R}(X) = \mu(X) = EX]$ then $\bar{c}(x) \le b \iff \underline{c}(x) \le b$ "on average"

Adopting a safety margin:

 $\bar{c}(x) = \mu[\underline{c}(x)] + \lambda\sigma[\underline{c}(x)]$ [taking $\mathcal{R}(X) = \mu X + \lambda\sigma(X)$] then $\bar{c}(x) \leq b$ unless in tail beyond λ standard deviations Looking at quantiles:

 $\bar{c}(x) = q_p[\underline{c}(x)] \quad [\text{ taking } \mathcal{R}(X) = p\text{-quantile of } X]$ then $\bar{c}(x) \leq b \iff \operatorname{prob}\{\underline{c}(x) \leq b\} \geq p$

Quantiles and "Superquantiles": $\ensuremath{\operatorname{VaR}}$ and $\ensuremath{\operatorname{CVaR}}$

 F_X = cumulative distribution function for random variable X

Quantile: "value-at-risk" in finance $q_p(X) = \operatorname{VaR}_p(X) = F_X^{-1}(p)$

Superquantile: "conditional value-at-risk" in finance $Q_p(X) = \text{CVaR}_p(X) = E[X | X \ge q_p(X)] = \frac{1}{1-p} \int_p^1 q_t(X) dt$

Replacing quantiles by superquantiles:

 $\bar{c}(x) = Q_p[\underline{c}(x)]$ [taking $\mathcal{R}(X) = p$ -superquantile of X] then $\bar{c}(x) \leq b \iff \underline{c}(x) \leq b$ on average even in *p*-quantile-tail

An Engineering Perspective in Reliable Design

a "cost" triggering "failure": $X = c(x_1, \ldots, x_n; V_1, \cdots, V_r)$

Probability of failure: $p_f(X) = \text{prob}\{X > 0\}$ $p_f(X) \le 1 - p \iff q_p(X) \le 0$

Troubles with this quantile concept:

- How to compute or at least estimate?
- How to cope with dependence on x₁,..., x_n in optimization?
 both p_f and the threshold shift with changes in x₁,..., x_n
 Alternative to consider: switch to a superquantile concept

Buffered Failure — Enhanced Safety

uncertain cost: $X = c(x_1, \ldots, x_n; V_1, \cdots, V_r)$

Buffered probability of failure: $P_f(X) = \text{prob}\{X > q\}$ with q determined so as to make E[X | X > q] = 0!

 $P_f(X) \leq 1 - p \iff Q_p(X) \leq 0$

Suggestion: adjust failure modeling to $P_f(X)$ in place of $p_f(X)$ safer by integrating tail information, and easier also to work with in optimization! why?

$$\begin{aligned} \operatorname{CVaR}_{p}(X) &= \min_{C \in R} \left\{ C + \frac{1}{1-\rho} E \left[\max\{0, X - C\} \right] \right\} \quad p \in (0,1) \\ \operatorname{VaR}_{p}(X) &= \operatorname{argmin} \quad (\text{if unique, otherwise the lowest}) \end{aligned}$$

Application to CVaR models: convert a problem in x like minimize $\text{CVaR}_{p_0}(\underline{c}_0(x))$ subject to [hard constraints and] $\text{CVaR}_{p_i}(\underline{c}_i(x)) \leq 0, i = 1, \dots, m$

into a problem in x and auxiliary variables C_0, C_1, \ldots, C_m :

minimize
$$C_0 + \frac{1}{1-p_0} E\left[\max\{0, \underline{c}_0(x) - C_0\}\right]$$
 while requiring
 $C_i + \frac{1}{1-p_i} E\left[\max\{0, \underline{c}_i(x) - C_i\}\right] \le 0, \quad i = 1, \dots, m$

Important case: this converts to linear programming when (1) each $\underline{c}_i(x) = c_i(x, V)$ depends linearly on x, (2) the future state space Ω is modeled as finite

Axiomatization of Risk

Key axioms for risk measures: $\mathcal{R} : \mathcal{L}^{p}(\Omega, \mathcal{A}, P) \to (-\infty, \infty]$

(R1) $\mathcal{R}(C) = C$ for all constants C

(R2) convexity, (R3) lower semicontinuity

Supplementary properties of interest:

- (R4) positive homogeneity: $\mathcal{R}(\lambda X) = \lambda \mathcal{R}(X)$ for $\lambda > 0$
- (R5) monotonicity: $\mathcal{R}(X) \leq \mathcal{R}(X')$ when $X \leq X'$
- (R6) aversity: $\mathcal{R}(X) > EX$ for nonconstant X

Coherent measure of risk: \mathcal{R} satisfying (R1), (R2), (R3), (R5) **Averse** measure of risk: \mathcal{R} satisfying (R1), (R2), (R3), (R6)

Artzner et al. (2000) introduced coherency without aversity

Preservation of convexity under coherency of ${\cal R}$	
$\underline{c}(x) = c(x, V)$ convex in $x \implies$	$\overline{c}(x) = \mathcal{R}(\underline{c}(x))$ convex in x

a further advantage of coherency: it promotes dualizations

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りゅう

Coherency or its Absence

- $\mathcal{R}(X) = q_p(X) = \operatorname{VaR}_p(X)$ fails (R2), (R3), and (R6)!
- $\mathcal{R}(X) = Q_p(X) = \operatorname{CVaR}_p(X)$ satisfies **all** axioms
- $\mathcal{R}(X) = \sup X$ satisfies **all** axioms
- $\mathcal{R}(X) = \mu(X) = EX$ fails (R6) (coherency without aversity)
- $\mathcal{R}(X) = \mu(X) + \lambda \sigma(X), \lambda > 0$, fails (R5) (no monotonicity)

Mixtures of risk measures

 $\mathcal{R}(X) = \sum_{k=1}^r \lambda_k \mathcal{R}_k(X)$ with $\lambda_k > 0$, $\sum_{k=1}^r \lambda_k = 1$

- \mathcal{R}_k coherent for $k = 1, \dots, r \implies \mathcal{R}$ coherent
- \mathcal{R}_k averse for $k = 1, \ldots, r$ \implies \mathcal{R} averse

a versatile example: enjoying both coherency and aversity $\mathcal{R}(X) = \sum_{k=1}^{r} \lambda_k Q_{p_k}(X) = \sum_{k=1}^{r} \lambda_k \operatorname{CVaR}_{p_k}(X)$ "continuous" mixtures work also \longleftrightarrow dual utility risk profiles

Relaxations From Worst-Case Analysis

Interpolations with CVaR:

 $\operatorname{CVaR}_p(X) \nearrow \sup X \text{ as } p \nearrow 1$, $\operatorname{CVaR}_p(X) \searrow EX \text{ as } p \searrow 0$

Partitioning the future: Ω as a union of "likelihood regions" Ω_k

$$\mathcal{R}(X) = \lambda_1 \left[\sup_{\omega \in \Omega_1} X(\omega) \right] \cdots + \lambda_r \left[\sup_{\omega \in \Omega_r} X(\omega) \right] \text{ is coherent}$$

Axiomatization of Deviation, a Partner to Risk

 $\begin{array}{l} \mathcal{D}(X) \text{ quantifies the nonconstancy/uncertainty in } X\\ \text{Key axioms for deviation measures:} \quad \mathcal{D}: \mathcal{L}^1(\Omega, \mathcal{A}, P) \to [0, \infty]\\ (D1) \quad \mathcal{D}(\mathcal{C}) = 0, \text{ but } \mathcal{D}(X) > 0 \text{ for nonconstant } X\\ (D2) \text{ convexity,} \quad (D3) \text{ lower semicontinuity}\\ \text{Supplementary properties of interest:}\\ (D4) \text{ positive homogeneity:} \quad \mathcal{D}(\lambda X) = \lambda \mathcal{D}(X) \text{ for } \lambda > 0 \end{array}$

(D5) upper range boundedness: $D(X) \leq \sup X - EX$

Risk measures in relation to deviation measures

A **one-to-one** correspondence $\mathcal{D} \longleftrightarrow \mathcal{R}$ between deviation measures \mathcal{D} and **averse** risk measures \mathcal{R} is furnished by

 $\mathcal{R}(X) = EX + \mathcal{D}(X), \qquad \mathcal{D}(X) = \mathcal{R}(X - EX),$ where moreover **coherency** is characterized by

 $\mathcal{R}(X)$ satisfies (R5) $\iff \mathcal{D}(X)$ satisfies (D5)

 $\mathcal{D}(X) = \lambda \sigma(X)$ fails (D5), so $\mathcal{R}(X) = EX + \lambda \sigma(X)$ isn't coherent!

Optimization and Estimation in Coping With Uncertainty

support for decision-making in a stochastic environment

Optimization:

minimize a "cost" expression under constraints on the decision the constraints could involve bounds on other "costs" the "costs" may have a background in statistical analysis

Estimation:

approximate some quantity from empirical/historical data minimize an error expression to get regression coefficients different interpretations of "error" yield different results

Interplay:

- optimization problems involving uncertainty depend on estimation methodology even in coming to a formulation
- estimation problems are optimization of a special sort
- new and deeper connections are now coming to light

Databases: the Role of Estimation

a one-dimensional linear version for initial simplicity **Available information:** a large(?) collection of pairs (x_k, y_k) **Perspective:** empirical distribution in x, y space of r.v.'s X, Y**Approximation:** $Y \approx aX + b$ error gap: Z(a, b) = Y - [aX + b]

Regression From a General Point of View

 $Y = \text{random variable (scalar) to be understood in terms of} X_1, \ldots, X_n = \text{some "more basic" variables (e.g., "factors")}$ **Approximation scheme:** $Y \approx f(X_1, \ldots, X_n)$ for $f \in \mathcal{F}$ $\mathcal{F} = \text{some specified class of functions } f : \mathbb{R}^n \to \mathbb{R}$ for instance $f(x_1, \ldots, x_n) = c_0 + c_1 x_1 + \cdots + c_n x_n$ **corresponding error variable:** $Z_f = Y - f(X_1, \ldots, X_n)$

Regression problem:

minimize $\mathcal{E}(Z_f)$ over all $f \in \mathcal{F}$ for some "error measure" \mathcal{E} \mathcal{E} quantifies the "**nonzeroness**" of the random variable Z_f

Important issue for connecting with optimization:

• $\underline{c}(x) = c(x, V)$ may only be supported by a database

- regression is essential then to get a "formula" for $\underline{c}(x)$
- for using $\bar{c}(x) = \mathcal{R}(\underline{c}(x))$, shouldn't this be "tuned" to \mathcal{R} ?

Example: an Application to Composition of Alloys

Alloy model: a mixture of various metals amounts of chief ingredients: $x = (x_1, ..., x_n)$ "design" amounts of other ingredients: $v = (v_1, ..., v_m)$ "contaminants" a "characteristic" to be controlled: y ideally kept ≤ 0 , say due to uncertainty, a quantile constraint may be envisioned Background information: y = c(x, v)? no available formula! there is only a database in (x, v, y)-space, $\{(x^k, v^k, y^k)\}_{k=1}^N$

- view the database as an empirical distribution for random variables $X = (X_1, \dots, X_n), V = (V_1, \dots, V_m), Y$
- use regression of Y on X_1, \ldots, X_N to get a function $y = \bar{c}(x)$
- then impose the constraint $\overline{c}(x) \leq 0$ on the design x

shouldn't the regression adapt then to the intended constraint?

The Effect of Regression in General

 $\begin{array}{l} \mathcal{E} = \text{ some measure of error:} & (E1) \quad \mathcal{E}(X) > 0 \text{ when } X \not\equiv 0 \\ & (E2) \text{ convexity,} & (E3) \text{ lower semicontinuity} \\ \text{for instance } \mathcal{E}(X) = E\{\varepsilon(X)\} \text{ or } \mathcal{E}(X) = \min_{w \in W} E\{\varepsilon(w, X)\} \\ \text{Error projection (with respect to constants } C) \end{array}$

Let
$$\mathcal{D}(X) = \min_{C} \mathcal{E}(X - C), \quad \mathcal{S}(X) = \operatorname*{argmin}_{C} \mathcal{E}(X - C).$$

Then ${\mathcal D}$ is a measure of deviation and ${\mathcal S}$ the associated "statistic"

 $\mathcal{S}(X)$ is the constant C "nearest" to X with respect to \mathcal{E}

Regression problem "decomposition" (when $f \in \mathcal{F} \Rightarrow f + C \in \mathcal{F}$)

minimizing $\mathcal{E}(Z_f)$ over $f \in \mathcal{F}$ corresponds to minimizing $\mathcal{D}(Z_f)$ under the constraint $\mathcal{S}(Z_f) = 0$ where $Z_f = Y - f(X_1, \dots, X_n)$

basic examples: least-squares regression, quantile regression

The Fundamental Quadrangle of Risk: A New Paradigm

an array of functionals to be applied to random "costs" X serving to connect methodologies usually viewed separately

 $\begin{array}{ccc} \operatorname{risk} \mathcal{R} & \longleftrightarrow \mathcal{D} \text{ deviation} \\ \operatorname{optimization} & \uparrow \downarrow \mathcal{S} & \downarrow \uparrow & \operatorname{estimation} \\ \operatorname{regret} \mathcal{V} & \longleftrightarrow \mathcal{E} \text{ error} \end{array}$

 $\begin{array}{l} \mathcal{R}(X) \quad \text{quantifies the "overall" cost in } X \\ \mathcal{D}(X) \quad \text{quantifies the nonconstancy in } X \\ \mathcal{E}(X) \quad \text{quantifies the nonzeroness in } X \\ \mathcal{V}(X) \quad \text{quantifies the net regret in outcomes } X > 0 \text{ versus } X \leq 0 \\ \mathcal{S}(X) \quad \text{is the "statistic" associated with } X \text{ through } \mathcal{E} \end{array}$

dualizations yield many insights and connect with relative entropy

Regret and Utility

 $\mathcal{V}(X)$ quantifies (net) regret in outcomes X > 0 versus $X \le 0$ Key axioms for regret measures: $\mathcal{V} : \mathcal{X} \to (-\infty, \infty]$ (V1) $\mathcal{V}(0) = 0$, (V2) convexity, (V3) closedness Supplementary properties of interest:

- (V4) positive homogeneity: $\mathcal{V}(\lambda X) = \lambda \mathcal{V}(X)$ for $\lambda > 0$
- (V5) monotonicity: $\mathcal{V}(X) \leq \mathcal{V}(X')$ when $X \leq X'$
- (V6) aversity: $\mathcal{V}(X) > EX$ for nonconstant X

Coherent measure of regret: \mathcal{V} with (V1), (V2), (V3), (V5) **Averse** measure of regret: \mathcal{V} with (V1), (V2), (V3), (V6)

Connection with utility: $\mathcal{V} \longleftrightarrow \mathcal{U}$ expressed by $\mathcal{V}(X) = -\mathcal{U}(-X), \quad \mathcal{U}(Y) - \mathcal{V}(-Y)$

• this is **relative** utility because of the \mathcal{V} threshold: $\mathcal{U}(0) = 0$

Expectation case: $\mathcal{V}(X) = E[v(X)], \ \mathcal{U}(Y) = E[u(Y)], \text{ where}$ $v(x) = -u(-x) \text{ for a utility } u: (-\infty, \infty) \rightarrow [-\infty, \infty)$

Risk Assessed From Regret

Trade-off formula

From a regret measure \mathcal{V} , a risk measure \mathcal{R} can be derived by

$$\mathcal{R}(X) = \min_{C} \{ C + \mathcal{V}(X - C) \}$$

and in general this operation preserves aversity and coherency

Interpretation: write off a certain loss amount C and then only worry about the uncertain residual loss X - CIdeal amount to write off: $S(X) = \operatorname{argmin} \{C + V(X - C)\}$

Example: $\mathcal{R}(X) = Q_p(X)$ and $\mathcal{S}(X) = q_p(X)$ emerge from $\mathcal{V}(X) = \frac{1}{1-p} E[\max\{0, X\}]$ (classical penalty for loss)

Important challenge: inversion $\mathcal{R} \to \mathcal{V}$ more generally nonunique, but "natural" antecedents are now broadly known

 $\begin{array}{ccc} \operatorname{risk} \mathcal{R} & \longleftrightarrow \mathcal{D} \text{ deviation} \\ \operatorname{optimization} & \uparrow \downarrow & \mathcal{S} & \downarrow \uparrow & \text{estimation} \\ \operatorname{regret} \mathcal{V} & \longleftrightarrow & \mathcal{E} \text{ error} \end{array}$

To consider now: $\mathcal{V} \longleftrightarrow \mathcal{E}$ as set forth through $\mathcal{E}(X) = \mathcal{V}(X) - EX, \qquad \mathcal{V}(X) = EX + \mathcal{E}(X)$ expectation case: $\mathcal{E}(X) = E[\varepsilon(X)]$ for $\varepsilon : (-\infty, \infty] \to [0, \infty]$

Key consequence for S under $\mathcal{V} \longleftrightarrow \mathcal{E}$ and $\mathcal{R} \longleftrightarrow \mathcal{D}$ The derivations $\mathcal{E} \to \mathcal{D}, \ \mathcal{E} \to S$, transform now exactly to $\mathcal{R}(X) = \min_{C} \{C + \mathcal{V}(X - C)\}, \quad S(X) = \operatorname*{argmin}_{C} \{C + \mathcal{V}(X - C)\}$

Final links: nonunique but "natural" inversions $\mathcal{D} \to \mathcal{E}, \ \mathcal{R} \to \mathcal{V}$

articulated with a scaling parameter $\lambda > 0$

 $\mathcal{S}(X) = EX = \mu(X)$ = mean

 $\begin{aligned} \mathcal{E}(X) &= \lambda ||X||_2 \\ &= L^2 \text{-error, scaled} \end{aligned}$

 $\mathcal{D}(X) = \lambda \, \sigma(X)$

= standard deviation, scaled

 $\mathcal{R}(X) = EX + \lambda \, \sigma(X)$

= standard-deviational tail risk

 $\mathcal{V}(X) = EX + \lambda ||X||_2$ = L^2 -regret

properties: aversity with convexity but not coherency

at any probability level $p \in (0,1)$

 $\mathcal{S}(X) = q_p(X) = \operatorname{VaR}_p(X)$ = quantile

 $\mathcal{R}(X) = Q_p(X) = \mathrm{CVaR}_p(X)$

= superquantile

 $\mathcal{D}(X) = Q_p(X - EX) = \text{CVaR}_p(X - EX)$ = superquantile deviation

 $\mathcal{E}(X) = E[\frac{p}{1-p}X_{+} + X_{-}] \\ X_{+} = \max\{0, X\}, \ X_{-} = \max\{0, -X\}$

= "normalized" Koenker-Bassett error

 $\mathcal{V}(X) = \frac{1}{1-p} E[X_+]$

= quantile-scaled absolute loss

properties: aversity with coherency

Some References

 H. Föllmer, A. Schied (2002, 2004), *Stochastic Finance*.
 R.T. Rockafellar, S.P. Uryasev (2002), "Conditional Value-at-Risk for General Loss Distributions," *J. Banking and Finance* 26, 1443–1471.

[3] R.T. Rockafellar, S. Uryasev, M. Zabarankin (2008), "Risk tuning in generalized linear regression," *Mathematics of Operations Research* 33, 712–729.

[4] R. T. Rockafellar, J. O. Royset (2010), "On buffered failure probability in design and optimization of structures," *Journal of Reliability Engineering and System Safety* 95, 499–510.

[5] R.T. Rockafellar, S.P. Uryasev (2013), "The fundamental risk quadrangle in risk management, optimization and statistical estimation," *Surveys in OR and Management Science* 18, 33–55.
 my website: www.math.washington.edu/~rtr/mypage.html