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1.1 Variational Inequalities (VI)
Given a nonempty closed-convex set X ⊆ IRn and a continuous
function F : IRn → IRn, the variational inequality problem is to find
x ∈ X such that

−F (x) ∈ NX(x)

i.e. (y − x)TF (x) ≥ 0, ∀y ∈ X.

NX(x) is the normal cone to the set X at x.
Complementarity problem as a special case: X = IRn

+

−F (x) ∈ NIRn
+
(x), 0 ≤ x⊥F (x) ≥ 0

System of equations as a special case: X = IRn

F (x) = 0
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Stochastic variational inequalities
Single stage stochastic variational inequalities
A random variable ξ affects the function F and the set X .
ξ ∈ Ξ ⊆ IRL, a set representing future states of knowledge.
Given F : Ξ× IRn → IRn and Xξ ⊂ IRn, find x ∈ Xξ such that

−F (ξ, x) ∈ NXξ
(x), i.e., (y − x)TF (ξ, x) ≥ 0, ∀y ∈ Xξ.

This problem is well defined if ξ is known. “Wait-and-see”

Example
Consider f : Ξ× IRn → IR and g : Ξ× IRn → IRm

minimize f(ξ, x) subject to x ∈ Xξ

where
Xξ = {x ∈ IRn

+ | g(ξ, x) ≥ 0},

−∇f(ξ, x) ∈ NXξ
(x) —– First order optimality condition
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Wait-and-see and Here-and-now

Wait-and-see solution Given F : Ξ× IRn → IRn and Xξ ⊂ IRn, find
xξ ∈ Xξ such that

−F (ξ, xξ) ∈ NXξ
(xξ), i.e., (y − xξ)

TF (ξ, xξ) ≥ 0, ∀y ∈ Xξ.

Here-and-now solution One wants to make a decision x before
knowing ξ. Let X ≡ IE[Xξ] = {IE[xξ] |xξ ∈ Xξ, IE[xξ] < ∞}.

Expected Residual minimization (ERM) solution

min
x∈X

IE[‖r(ξ, x)‖2],

where r(ξ, ·) is a residual function.

Expected value (EV) solution

−IE[F (ξ, x)] ∈ NX(x)
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Stochastic complementarity problems
A random variable ξ affects F : Ξ× IRn → IRn,

x ≥ 0, F (ξ, x) ≥ 0, xTF (ξ, x) = 0, for ξ ∈ Ξ.

i.e. Φ(x, F (ξ, x)) = 0,where Φi(x, F (ξ, x)) = min(xi, Fi(ξ, x)), 1 ≤ i ≤ n

Expected residual minimization (ERM) formulation
Chen-Fukushima(2005)

min
x∈IRn

+

IE[r(ξ, x)], r(ξ, x) = ‖Φ(x, F (ξ, x))‖2

Expected value (EV) formulation
Gürkan-Özge-Robinson(1999), Ruszczynski-Shapiro(2003),
Jiang-Xu(2008)

x ≥ 0, IE[F (ξ, x)] ≥ 0, xT IE[F (ξ, x)] = 0

⇔ min
x∈IRn

r(x) := ‖Φ(x, IE[F (ξ, x)])‖2
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Two-stage stochastic variational inequalities
Given the (induced) probability space (Ξ ⊂ IRL,A, P ), find a pair
(

x ∈ IRn1 , u : Ξ → IRn2 A-measurable
)

, such that the following
collection of variational inequalities is satisfied:

−IE[G
(

ξ, x, uξξξ
)

] ∈ ND(x)

−F
(

ξ, x, uξξξ
)

∈NCξξξ
(uξξξ) for a.e. ξ ∈ Ξ.

G : (Ξ, IRn1 , IRn2) → IRn1 a vector-valued function, continuous
with respect to (x, u) for all ξ ∈ Ξ, A-measurable and integrable
with respect to ξ.
ND(x) the normal cone to the nonempty closed-convex set
D ⊂ IRn1 at x ∈ IRn1 .

F : (Ξ, IRn1 , IRn2) → IRn2 a vector-valued function, continuous
with respect to (x, u) for all ξ ∈ Ξ and A-measurable with respect
to ξ.
NCξ

(

v
)

the normal cone to the nonempty closed-convex set
Cξ ⊂ IRn2 at v ∈ IRn2 , the random set Cξξξ is A-measurable.
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Two-stage stochastic variational inequalities
The definition of the normal cone yields the following equivalent
formulation:

find x̄ ∈ D and ū : Ξ → IRn2 , A-measurable, such that ūξξξ ∈as Cξξξ and

〈IE[G(ξ, x̄, ūξξξ)], x− x̄〉 ≥ 0, ∀x ∈ D,

〈F (ξ, x̄, ūξξξ), v − ūξξξ〉 ≥ 0, ∀v ∈ Cξξξ, for a.e. ξ ∈ Ξ

Two-stage stochastic linear variational inequalities (SLVI)

0 ∈ Ax+ IE[B(ξ)u(ξ)] + q1 +ND(x),

0 ∈ N(ξ)x+M(ξ)u(ξ) + q2(ξ) +NCξ
(u(ξ)), for a.e. ξ ∈ Ξ.

Two-stage stochastic linear complementarity problems (SLCP)
D = IRn1

+ , Cξ = IRn2

+

0 ≤ x ⊥ Ax+ IE[B(ξ)u(ξ)] + q1 ≥ 0,

0 ≤ u(ξ) ⊥ N(ξ)x+M(ξ)u(ξ) + q2(ξ) ≥ 0, for a.e. ξ ∈ Ξ.
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Two-stage SLCP
X. Chen, H. Sun and H. Xu, Discrete approximation of two-stage
stochastic and distributionally robust linear complementarity problems,
(2017).
Two-stage stochastic linear complementarity problems (SLCP)

0 ≤ x ⊥ Ax+ IE[B(ξ)u(ξ)] + q1 ≥ 0,

0 ≤ u(ξ) ⊥ N(ξ)x+M(ξ)u(ξ) + q2(ξ) ≥ 0, for a.e. ξ ∈ Ξ.

Assumption There exists a positive continuous function κ(ξ) such that
IE[κ(ξ)] < +∞ and for almost every ξ,

(xT , uT )

(

A B(ξ)

N(ξ) M(ξ)

)(

x

u

)

≥ κ(ξ)(‖x‖2+‖u‖2), ∀x ∈ Rn1 , u ∈ Rn2 .

The two-stage SLCP has a unique solution (x, u(·)) ∈ Rn1 × U .
U is the space of measurable functions defined on Ξ.
Convergence of the sample average approximation
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Two-stage stochastic generalized equations
X. Chen, A. Shapiro and H. Sun, Convergence analysis of sample
average approximation of two-stage stochastic generalized equations,
(2017). without assuming relatively complete recourse

0 ∈ IE[Φ(x, u(ξ), ξ)] + Γ1(x), x ∈ D,

0 ∈ Ψ(x, u(ξ), ξ) + Γ2(u(ξ), ξ), for a.e. ξ ∈ Ξ.

Here D ⊂ IRn is a nonempty closed convex set,
Φ : IRn1 × IRn2 × IRL → IRn1 , Ψ : IRn1 × IRn2 × IRL → IRn2 ,
Γ1 : IRn1

⇉ IRn1 and Γ2 : IRn2
⇉ IRn2 are multifunctions (point-to-set

mappings).

If for almost all ξ ∈ Ξ, Θ(x, u(ξ), ξ) :=

(

Φ(x, u(ξ), ξ)

Ψ(x, u(ξ), ξ)

)

is strongly

monotone at (x, u(·)),
then the two-stage SGE with Γ1(x) = ND(x) and Γ2(u(ξ), ξ) = IRn2

+

has a unique solution (x, u(·)) ∈ IRn1 × U .
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Algorithms for two-stage SVI
R.T. Rockafellar and J. Sun, Solving monotone stochastic variational
inequalities and complementarity problems by progressive hedging,
(2017). Ξ = {ξ1, . . . , ξν}.
Extend to non-monotone stochastic VI (joint work with D. Sun and J.
Yang)
Example: two-stage stochastic linear VI

0 ∈ Ax+
ν
∑

j=1

pjB(ξj)u(ξj) + q1 +ND(x),

0 ∈ N(ξj)x+M(ξj)u(ξj) + q2(ξ
j) +NC

ξj
(u(ξj)), for j = 1, . . . , ν,

where pj > 0 and
∑ν

j=1
pj = 1.

Let
Cj = Cξj , Bj = B(ξj), Nj = N(ξj), Mj = M(ξj), q2j = q(ξj)

D ⊂ IRn1 and Cj ⊂ IRn2 are boxes. Let Ω = D × C1 × · · · × Cν .
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Example: two-stage linear SVI
0 ∈ Mz + q +NΩ(z), (1)

M =













A p1B1 . . . pνBν

N1 M1

...
. . .

Nν Mν













, q =













q1

q21
...

h2ν













and z =













x

u1

...
uν













.

When Ω = IRn1+νn2 , (1) reduces to Mz + q = 0

When Ω = IRn1+νn2

+ , (1) reduces to 0 ≤ z ⊥ Mz + q ≥ 0

PH Algorithm From xk, uk
j and wk

j with
∑ν

j=1
pjw

k
j = 0, j = 1, . . . , ν

Step 1 Determine x̂k
j , ûk

j for each j by solving

0 ∈

(

A Bj

Nj Mj

)(

x

u

)

+

(

q1 + wk
j + r(x− xk)

q2j + r(u− uk
j )

)

+

(

ND(x)

NCj
(u)

)

Step 2 Update by xk+1 =
∑ν

j=1
pj x̂

k
j , uk+1

j = ûk
j

wk+1
j = wk

j + r(x̂k
j − xk+1), j = 1, · · · , ν.
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Progressive Hedging Algorithm

Give initial points x0 ∈ IRn1 , u0
j ∈ IRn2 and w0

j ∈ IRn1 , j = 1, · · · , ν such

that
∑ν

j=1
pjw

0
j = 0. Choose r > 0. Let k = 0.

Step 1. For j = 1, · · · , ν, solve the VI

−Ax−Bju− q1 − wk
j − r(x− xk) ∈ ND(x),

−Njx−Mju− q2j − r(u− uk
j ) ∈ NCj

(u),

and obtain a solution (x̂k
j , û

k
j ), j = 1, · · · , ν.

Step 2. Let xk+1 =
∑ν

j=1
pj x̂

k
j .

uk+1
j = ûk

j , wk+1
j = wk

j + r(x̂k
j − xk+1), j = 1, · · · , ν.

PHA for monotone SVI is an application of Douglas-Rachford splitting
method; convergence analysis for non-monotone SVI. (joint work with
D. Sun and J. Yang)
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Algorithms for two-stage SVI
X. Chen, T.K. Pong and R. J-B Wets, Two-stage stochastic variational
inequalities: an ERM-solution procedure, Math. Program., 165(2017).
Using suitable residual functions, the two-stage stochastic VI can be
formulated as the two-stage stochastic optimization problem

min θ(x) + λIE[r(ξ, u(ξ, x)) +Q(ξ, x)]

s.t. x ∈ D

u(ξ, x) = x+Wy∗ξ , Q(ξ, x) = 1

2
(y∗ξ )

THy∗ξ , ξ ∈ Ξ,

where

y∗ξ = argmin{ 1

2
yTξ Hyξ |x+Wyξ ∈ Cξ}.

(2)

λ > 0, H ∈ IRn2×n2 is positive definite, yξ ∈ IRn2 is the recourse
variable, W ∈ IRn1×n2 is the recourse matrix and θ, r are residual
functions.

Douglas-Rachford splitting method
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Applications & Future research
1. Optimality conditions for a stochastic program

2. A Walras equilibrium problem

3. Prevailing network flow analysis (traffic, data transmission,
high-speed rail, airline, power system)

4. Stochastic convex game

I. Distributionally robust two-stage variational inequalities

0 ∈ Ax+ IEP [B(ξ)u(ξ)] + q1 +ND(x), P ∈ P

0 ∈ N(ξ)x+M(ξ)u(ξ) + q2(ξ) +NCξ
(u(ξ)), for a.e. ξ ∈ Ξ.

II. Stochastic dynamic variational inequalities

ẋ(t) = A(t)x(t) + IEPt
[B(t, ξ)u(t, ξ)] + q1(t) +ND(x(t)), t ∈ [0, T ]

0 ∈ N(t, ξ)x(t) +M(t, ξ)u(t, ξ) + q2(t, ξ) +NCξ
(u(t, ξ)), for a.e. ξ ∈ Ξ.

III. Multistage stochastic variational inequalities
x(ξ) = (x1, x2(ξ1), x3(ξ1, ξ2), . . . , xN (ξ1, ξ2, . . . , ξN−1))
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