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Problem formulation

Quadratically constrained quadratic programming (QCQP) problems arise
in various areas, for example, combinatorial optimization, portfolio
selection problems, economic equilibria, 0–1 integer programming and
various applications in engineering.

Consider the following QCQP problem:

(P) min xTQ0x+ cT0 x

s.t. xTQix+ cTi x+ di ≤ 0, i = 1, . . . , l,

aTj x ≤ bj , j = 1, . . . ,m,

where Qi ∈ Sn, ci ∈ Rn, di ∈ R, and aj ∈ Rn, bj ∈ R.
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• When Qi � 0 for each i, problem (P) is convex.

• semidefinite programming (SDP) relaxation is exact;

• off-the-shelf software for second order cone programming (SOCP) is

more efficient.

• In general, QCQP is NP–Hard.

• This talk mainly considers

• a convex relaxation for general QCQP, and

• reformulations and algorithms for singly constrained QCQP.
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Literature review: Basic SDP
relaxation

The basic SDP relaxation of problem (P) is

(SDP) min Q0 ·X + cT0 x

s.t. Qi ·X + cTi x+ di ≤ 0, i = 1, . . . , l, (1)

aTj x ≤ bj , j = 1, . . . ,m, (2)(
1 xT

x X

)
� 0. (3)

• However, the SDP relaxation is too loose in many cases.

• Valid inequalities are considered in the literature to strengthen the

basic SDP relaxation to make the bound tighter.

5 / 52



Literature review: RLT constraints

• [Sherali and Adams, 2013] developed the reformulation-linearization

technique (RLT)

Linearizing the product of any two linear constraints, i.e.,

(aTi x− bi)(aTj x− bj) ≥ 0

yields the following RLT constraints,

aia
T
j ·X + bibj − bjaTi x− biaTj x ≥ 0. (4)
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Literature review: SOC-RLT
constraints

[Sturm and Zhang, 2003, Burer and Saxena, 2012,
Burer and Yang, 2015] Multiplying the linear term bj − aTj x to both sides

of the second order cone representation of a convex quadratic constraint
yields a valid inequality,

(bj − aTj x)

(
1

2
(1− di − cTi x)−

∥∥∥∥ Bix
1
2 (1 + di + cTi x)

∥∥∥∥) ≥ 0.

Then, its linearization gives rise an SOC-RLT constraint:∥∥∥∥Bi(bjx−Xaj),
1

2
(−cTi Xaj + (bjc

T
i − dia

T
j − aT

j )x + (1 + di)bj)

∥∥∥∥
≤ 1

2
(cTi Xaj + (dia

T
j − aT

j − bjc
T
i )x + (1 − di)bj), (5)

i = 1, . . . , k, j = 1, . . . ,m.

7 / 52



Convex relaxations

Adding RLT constraints to the basic SDP relaxation (SDP) yields the
following strengthened reformulation:

(SDPRLT) min Q0 ·X + cT0 x

s.t. (1), (2), (3), (4).

Similarly, by adding SOC-RLT constraints to (SDPRLT) yields an even

better strengthened reformulation:

(SDPSOC-RLT) min Q0 ·X + cT0 x

s.t. (1), (2), (3), (4), (5).
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Different RLT-like constraints

We investigate the following several extensions of the RLT-like
techniques,

L× L =⇒ RLT ([Sherali and Adams, 2013])

SOC(convex)× L =⇒ SOC-RLT ([Sturm and Zhang, 2003])

SOC(nonconvex)× L =⇒ GSRT

M(� 0) ◦M(� 0) =⇒ HSOC ([Zheng et al., 2011])

SOC× SOC =⇒ SST

M(� 0)⊗M(� 0) =⇒ KSOC(� 0) ([Anstreicher, 2016])
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Motivation
W.l.o.g., we assume that Qi is positive semidefinite for
i ∈ C = {1, . . . , k} and Qi is not positive semidefinite for
i ∈ N = {k + 1, . . . , l}, where 0 ≤ k < l.

All the existing methods in the literature lose their effectiveness when
dealing with the nonconvex quadratic constraints.

• The only existing method to deal with nonconvex QCQP is to lift

the nonconvex quadratic constraints directly (as the basic SDP

relaxation does)

Qi ·X + cTi x+ di ≤ 0, i = k + 1, . . . , l.

This motivates our first kind of valid constraints, generalized SOC-RLT
(GSRT) constraints.
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GSRT-A constraints

• Decompose each non-positive-semidefinite matrix Qi as
Qi = LTi Li −MT

i Mi, i = k + 1, · · · , l. Then
xTQix+ cTi x+ di ≤ 0 is equivalent to the following two constraints,∥∥∥∥Lix, 1

2
(cTi x+ di + 1)

∥∥∥∥ ≤ zi−k, (6)∥∥∥∥Mix,
1

2
(cTi x+ di − 1)

∥∥∥∥ = zi−k. (7)

• Relaxing the intractable nonconvex equality in (7) to an inequality
yields a second order cone constraint.

• Lift

(
x
z

)
to

(
X S
ST Z

)
=

(
x
z

)
(x z) and relax it to(

X S
ST Z

)
�
(
x
z

)
(x z), i.e.,

 1 xT zT

x X S
z ST Z

 � 0.
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GSRT-A constraints

• Afterwards, multiplying the both sides by a linear constraint
aTj x− bj , and linearizing them give rise to

∥∥∥∥Libjx − LiXaj,
1

2
(c

T
i (bjx − Xaj) + (di + 1)(bj − a

T
j x))

∥∥∥∥ ≤ zi−kbj − Si−kaj,∥∥∥∥Mibjx − MiXaj,
1

2
(c

T
i (bjx − Xaj) + (di − 1)(bj − a

T
j x))

∥∥∥∥ ≤ zi−kbj − Si−kaj,

where Si−k is the (i− k)th column of the matrix S.

• To further strengthen these valid inequalities, construct the following
constraint from linearization of the square of (7),

Zi−k,i−k = X ·MT
i Mi +

1

4
(cic

T
i X + (di − 1)2 + 2cTi x(di − 1)).

These five types of the new constraints make up the new class of
constraints, termed Type A generalized SOC-RLT (GSRT-A) constraints.
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GSRT-B constraints

Alternative decomposition: Define x0 = 1
2Q
†
i ci.

The main difference of GSRT-B from GSRT-A is that we use an
alternative expression of (6) and (7):

• i) If 1
4 (cTi Q

†
i ci)− di > 0, we set ‖Li(x+ x0),∆‖ ≤ zi−k and

‖Mi(x+ x0)‖ = zi−k, where ∆ =
√

1
4 (cTi Q

†
i ci)− di;

• ii) Otherwise, we set ‖Li(x+ x0)‖ ≤ zi−k and

‖Mi(x+ x0),∆‖ = zi−k with ∆ =
√
di − 1

4 (cTi Q
†
i ci).
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GSRT-B constraints

If 1
4 (cTi Q

†
i ci)− di > 0, ∆ =

√
1
4 (cTi Q

†
i ci)− di,∥∥∥∥Li(x +

1

2
Q†i ci)

∥∥∥∥ ≤ zi, i = k + 1, · · · , l, (8)∥∥∥∥Mi(x +
1

2
Q†i ci),∆

∥∥∥∥ ≤ zi, i = k + 1, · · · , l, (9)

Zi−k,i−k = MT
i Mi · (X +

1

4
Q†i cic

T
i Q
†
i + Q†i cix

T ) + ∆2, i = k + 1, . . . , l,∥∥∥∥Li(bjx−Xaj +
1

2
Q†i ci(bj − aT

j x))

∥∥∥∥ ≤ zibj − aT
j Si−k,∥∥∥∥Mi(bjx−Xaj +

1

2
Q†i ci(bj − aT

j x)),∆(bj − aT
j x)

∥∥∥∥ ≤ zibj − aT
j Si−k,

i = k + 1, · · · , l, j = 1, · · · ,m;
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GSRT-B constraints

Otherwise ∆ =
√
di − 1

4 (cTi Q
†
i ci),∥∥∥∥Li(x+

1

2
Q†i ci),∆

∥∥∥∥ ≤ zi, i = k + 1, · · · , l, (10)∥∥∥∥Mi(x+
1

2
Q†i ci)

∥∥∥∥ ≤ zi, i = k + 1, · · · , l, (11)

Zi−k,i−k = MT
i Mi · (X +

1

4
Q†i cic

T
i Q
†
i +Q†i cix

T ), i = k + 1, . . . , l,∥∥∥∥Li(bjx−Xaj +
1

2
Q†i ci(bj − a

T
j x)),∆(bj − aTj x)

∥∥∥∥ ≤ zibj − aTj Si−k,∥∥∥∥Mi(bjx−Xaj +
1

2
Q†i ci(bj − a

T
j x))

∥∥∥∥ ≤ zibj − aTj Si−k,
i = k + 1, · · · , l, j = 1, · · · ,m.
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Convex relaxation with GSRT
constraints

With GSRT constraints, we get the following convex relaxations,

(SDPGSRT−A) min Q0 ·X + cT0 x

s.t. (1), (2), (4), (5),

GSRT -A constraints, 1 xT zT

x X S
z ST Z

 � 0.

(SDPGSRT−B) min Q0 ·X + cT0 x

s.t. (1), (2), (4), (5)

GSRT -B constraints, 1 xT zT

x X S
z ST Z

 � 0.

16 / 52



Dominance relationship

Theorem 1

v(P) ≥ v(SDPGSRT) ≥ v(SDPSOC-RLT) ≥ v(SDPRLT) ≥ v(SDP),

where GSRT represents either GSRT-A or GSRT-B.

Numerical experiments showed GSRT-B constraints are always tighter
than GSRT-A constraints, i.e., v(SDPGSRT-B) ≥ v(SDPGSRT-A).
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Example 1

(P) min xTQ0x+ cT0 x

s.t. xTQ1x+ cT1 x+ d1 ≤ 0,

aT1 x ≤ b1,

Q0 =

 0.3 0 0
0 −2 0
0 0 2.4

; Q1 =

 1 0 0
0 1 0
0 0 −1

; a1 =

 −0.6
−2
0.8

;

b1 = −0.5; c0 =

 −0.2
0.8
0.2

; c1 = 0; d1 = −1.

• v(P) = −1.21788,
v(SDPGSRT-A) = −1.2249,
v(SDPRLT) = −1.9900.
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Example 2

Q0, Q1, c0, c1, d1, a1, b1 remain the same with Example 1 but there is
another linear constraint with a2 = (0.3, 0.2, 0.6)T and b2 = −0.3.

• The optimal solution is v(P) = −0.7449 with

x∗ = (−0.1264, 1.3250,−0.8785)T .

• v(SDPGSRT-A) = −0.7449,

v(SDPRLT) = −1.9252,

v(SDP) = −1.9900.

Note that the above two examples only have nonconvex quadratic
constraints, so the SOC-RLT constraints don’t exist in these two cases.
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Some special cases

• A case with no need to introduce augmented variable zi:

When 1
4 (cTi Q

†
i ci)− di < 0, Mi(x+ 1

2Q
†
i ci) is a scalar and

Mi(x+ 1
2Q
†
i ci) ≥ 0, the corresponding GSRT-B constraint reduces

to ∥∥∥∥Li(x +
1

2
Q†i ci), ∆

∥∥∥∥ ≤ Mi(x +
1

2
Q†i ci).

• [Jin et al., 2013] proved that the SDP relaxation with GSRT

constraints admits no gap for the problem of minimizing a quadratic

objective subject to

xTx ≤ (a1 + aT2 x+ aT3 x)2, a1 + aT2 x+ aT3 x ≥ a4 ≥ 0. or

xTx ≤ (a1 + aT2 x+ aT3 x)2, a5 ≥ a1 + aT2 x+ aT3 x ≥ a4 ≥ 0.
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Valid inequalities with extra
redundant constraint αu ≥ uTx

[Zheng et al., 2011] introduced an artificial inequality,
αu = max{uTx | x ∈ Ω} > 0, with a chosen
u ∈ <n++ = {y ∈ <n | yi > 0, i = 1, . . . , n}, where Ω is some suitable
set that contains the feasible region.
Using the following fact,(

diag(u)diag(x) diag(u)x
xTdiag(u) αu

)
� 0⇔ αu ≥ uTx,

they derived the valid linear matrix inequality

X � αudiag(u)−1diag(x). (12)
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Improvement of the
decomposition-approximation method

Each convex quadratic constraint, xTQix+ cTi x+ di ≤ 0, is equivalent
to the following linear matrix inequality (by representing Qi as BiB

T
i ),

0 �
(
−In Bix
xTBTi cTi x+ di

)
.

Then applying Hadamard product yields [Zheng et al., 2011]

0 �
(
−In Bix
xTBTi cTi x+ di

)
◦
(

diag(u)diag(x) diag(u)x
xTdiag(u) αu

)
(13)

=

(
−diag(u)diag(x) diag(u)Diag(Bixx

T )
(Diag(Bixx

T ))Tdiag(u) αu(cTi x+ di)

)
. (14)

Linearizing (14) yields another valid inequality, termed HSOC,(
−diag(u)diag(x) diag(u)Diag(BiX)

(Diag(BiX))Tdiag(u) αu(cTi x+ di)

)
� 0. (15)

22 / 52



Dominance of the valid inequalities
Theorem 2

The valid inequality (12) is dominated by the the RLT constraints
generated by x ≥ 0 and αu ≥ uTx, i.e, αuxi ≥ uTX·i, i = 1, . . . , n.

Theorem 3

The HSOC valid inequality (15) is dominated by the SOC-RLT

constraints generated by x ≥ 0, αu ≥ uTx and ‖Bix‖2 ≤ −cTi x− di, i.e.,∥∥∥∥( BiX·,j
1
2 (xj + cTi X·,j + dixj)

)∥∥∥∥ ≤ 1

2
(xj − cTi X·,j − dixj) (16)

and ∥∥∥∥( αuBix−BiXu
1
2 (αu(1 + cTi x+ di)− (1 + di)u

Tx− uTXci)

)∥∥∥∥
≤ 1

2
(αu(1− cTi x− di)− (1− di)uTx+ uTXci). (17)
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Valid inequalities with extra linear
constraint

Theorem 4

Assume relaxation (SDPαGSRT) is (SDPGSRT) enhanced with RLT,
SOC-RLT, and GSRT constraints corresponding to the extra linear
constraint uTx ≤ αu, then we have v(SDPαGSRT) ≥ v(SDPGSRT).

Similar technique can also be found in [Burer and Anstreicher, 2013].

• In their paper, they add extra redundant linear constraints and add
extra SOC-RLT constraints of quadratic constraints and the extra
redundant linear constraints. By adding these extra SOC-RLT
constraints they successfully improve the relaxation gap.
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Example 3

min 21x2
1 + 34x1x2 − 24x2

2 + 2x1 − 14x2

s.t x2
1 + 4x1x2 + 2x2

2 + 8x1 + 6x2 − 9 ≤ 0,

−5x2
1 − 8x1x2 − 5x2

2 − 4x1 + 4x2 + 4 ≤ 0,

x1 + 2x2 ≤ 2,

x ∈ [0, 1]2.

• The optimal solution is v∗ = −3.327 with x∗ = (0.427, 0.588)T .

• In [Zheng et al., 2011], they set u = (1, 2)T and αu = 1.8029, and
got a tighter bound -10.86.
Regarding uTx ≤ αu as an extra linear constraint in Example 3, we
get tighter bounds in the following table.
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Example 3

Table: SDP bounds for Example 3

SDP relaxation Lower bound Extra linear constraint Lower bound

(SDP) -20.28 — —
(SDPRLT) -16.23 (SDPαRLT) -11.66
(SDPSOC-RLT) -13.99 (SDPαSOC-RLT) -8.445
(SDPαu

) -10.86 — —
(SDPGSRT-A) -6.011 (SDPαGSRT-A) -4.887
(SDPGSRT-B) -3.331 (SDPαGSRT-B) -3.327
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Singly constrained QCQP

Now let us consider a special QCQP problem with one quadratic
constraint, also known as the generalized trust region subproblem
(GTRS),

(G) min f1(x) :=
1

2
xTQ1x+ bT1 x

s.t. f2(x) :=
1

2
xTQ2x+ bT2 x ≤ c,

• The classical trust region subproblem (TRS) first arose as a
subproblem in trust region methods for unconstrained nonlinear
programming.

• TRS: Q2 = I, b2 = 0, c = 1,
• TRS is a quadratic approximation in the trust region around the

current point.

• Other applications: least square, robust optimization.
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GTRS in Consensus ADMM
• A subproblem in Consensus ADMM algorithms for nonconvex QCQP

with numerous applications in signal processing, machine learning,
and wireless communications [Huang and Sidiropoulos, 2016].

• Problem reformulation:

min xHA0x− 2R{bH0 x}
s.t. xHAix− 2R{bHi x} ≤ ci,∀i = 1, . . . ,m.

• Consensus form, zHi Aizi − 2R{bHi zi} ≤ ci, zi = x, ∀i = 1, . . . ,m

• Consensus ADMM updates:

x ← (A0 +mρI)−1

(
b0 + ρ

m∑
i=1

(zi + ui)

)
,

zi ← arg min
zi
‖zi − x+ ui‖2 ,

s.t. zHi Aizi − 2R{bHi zi} ≤ ci
ui ← ui + zi − x.
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Methodology

• Iterative algorithms for TRS
[Moré and Sorensen, 1983, Mart́ınez, 1994, Ye, 1992]

• SDP relaxations [Sturm and Zhang, 2003, Ye and Zhang, 2003,
Burer and Anstreicher, 2013, Burer and Yang, 2015]

• A linear-time algorithm for the TRS with respect to the nonzero
entries in the input [Hazan and Koren, 2015]

• Iterative algorithms for GTRS
[Moré, 1993, Ben-Tal and Teboulle, 1996, Sturm and Zhang, 2003,
Feng et al., 2012]

• GTRS with an interval constraint (c1 ≤ 1
2x

TAx+ bTx ≤ c2)
[Stern and Wolkowicz, 1995, Pong and Wolkowicz, 2014]
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Literature review: Simultaneous
Diagonalization

[Ben-Tal and den Hertog, 2014] If the two matrices in the quadratic
forms are simultaneously diagonalizable (SD), then problem (GTRS) can
be transformed into a second order cone programming (SOCP) problem,
which can be solved much faster than the SDP algorithm and thus
applicable to large scale problems.

Then one may ask:

• When the two matrices in the objective and constraint functions are
SD? (Answered in [Jiang and Li, 2016])

• Can this result be extended to a general pair of matrices that are not
SD? (Answered in [Jiang et al., 2017] )
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Main contributions for solving GTRS

Our contributions are summarized as follows:

• Show that all GTRS with optimal value bounded from below are
SOCP representable.

• Derive conditions for the attainableness of the optimal value.

• Derive a closed-form solution when IPD = {λ : Q1 + λQ2 � 0} is a
singleton, which includes the case that the two matrices are not SD.

• Extend our method with slight modification to the equality and
interval constraint variants of GTRS.

To obtain the SOCP representation, we invoke and extend the
simultaneous block diagonalization canonical form in [Uhlig, 1976], the
transformation methods in [Ben-Tal and den Hertog, 2014] and the
S-lemma.
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Simultaneous diagonalization

[Ben-Tal and den Hertog, 2014] Assume that A and D can be
simultaneously diagonalized by a nonsingular S. Using a one to one
change of variables z = Sx, problem (GTRS) can be transformed as:

(Q1) min
∑
i

(
1

2
δix

2
i + eixi)

s.t.
∑
i

(
1

2
αix

2
i + bixi) + c ≤ 0.

By setting yi = 1
2x

2
i and relaxing it to 1

2x
2
i ≤ yi, (Q1) can be relaxed to

(Q2) min δT y + eTx

s.t. αT y + bTx+ c ≤ 0,
1

2
x2
i ≤ yi, i = 1, . . . , n.

The above relaxation is exact when Slater condition holds.
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Notations

Define diag(A1, . . . , Ak) as Define E as the the block diagonal
matrix anti-diagonal matrix

A1 0
·
·
·

0 Ak

 .


0 1

·
·

·
1 0

 .

Define F as the lower Define J(λ,m) as
striped matrix. an m×m Jordan block

0
0 1

. . .
0 1

0 1

 .


λ e
· ·
· ·
λ e

λ

 .
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Canonical form of two symmetric
matrices

Theorem 5 (Canonical form )

For any two n × n real symmetric matrices A and D, there exists an
n× n real invertible matrix S such that

STAS = diag(τ1E1, . . . , τkEk, τk+1Ek+1, . . . , τpEp,

τp+1Fp+1, . . . , τmFm, 0, . . . , 0) (18)

and

STDS = diag(τ1E1J(κ1, n1), . . . , τkEkJ(κk, nk), τk+1Fk+1,(19)

. . . , τpFp, τp+1Ep+1, . . . , τmEm, 0 . . . , 0)

where dimEi = dimFi = ni, i = k + 1, . . . ,m, and
τi = ±1, i = 1, . . . ,m. The signs of τi are uniquely (up to permutations)
determined by the associated Jordan blocks J(κi, ni), Ei or Fi. The
values of κi are uniquely (up to permutations) determined by the
associated Jordan blocks J(κi, ni).
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Canonical form of two symmetric
matrices

Three types of block pairs in (18) and (20):

• Type A block pairs: (τiEi, τiEiJ(κi, ni)) or (τiEi, τiFi);

• Type B block pairs: (τiFi, τiEi);

• Type C block pairs: (0, 0).

The following assumption avoids naive cases.

Assumption 1

i) There is at least one feasible solution in problem (GTRS); ii) The
following three conditions do not hold true at the same time: Q2 � 0,
b2 ∈ Range(Q2) and c = 1

2b
T
2 Q
†
2b2.

Assumption 1 is equivalent to the Slater condition, i.e., there
exists an x such that f2(x) < 0.
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Unbounded cases

Using the canonical form of two matrices, we have the following theorem.

Theorem 6 (Unbounded cases)

The objective value of (GTRS) is unbounded from below, if any of the
following conditions hold,

1 there is a type A block pair and the size of the associated Jordan
block is greater than 2 and the associated eigenvalue is real;

2 there is a type A block pair and the eigenvalues of the associated
Jordan block form a complex pair;

3 there is a type B block pair (τiFi, τiEi) and dimFi ≥ 2.

Enlighten by Theorem 6, we can now focus on a subproblem associated a
type A block with size 2 and a real eigenvalue, by fixing all other
variables.

36 / 52



A subproblem with a single block

Theorem 7 (Subproblem)

Consider the case where there exists a type A block pair
(τiEi, τiEiJ(κi, ni)) in problem (GTRS) and the eigenvalue of the
associated Jordan block Ji(λ, 2) is real. Assume there is a feasible
solution x̄ = (z̄T , ȳT )T and let π = τ1z̄1z̄2. Let
ρ = inf{ τiλz1z2 + 1

2τiz
2
2 + e1z1 + e2z2 | τiz1z2 ≤ π}. We have the

following three cases:

1 When τi = 1. If (λ ≤ 0, e1 = 0, e2 6= 0) or
(λ = 0, e1 = 0, e2 = 0, π ≥ 0) or (λ < 0, e1 = 0, e2 = 0, π = 0),
then ρ = λπ − 1

2e
2
2 and the infimum is attainable;

2 When τi = 1. If (λ = 0, e1 = 0, e2 = 0, π < 0) or
(λ < 0, e1 = 0, e2 = 0, π 6= 0) , then ρ = λπ − 1

2e
2
2 and the

infimum is unattainable;

3 Otherwise, ρ = −∞ and thus problem (GTRS) is unbounded from
below.
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Necessary conditions

Now we are ready to provide necessary conditions for problem (GTRS)
being bounded from below.

Theorem 8 (Necessary conditions)

If problem (GTRS) has an optimal value bounded from below, then:

1 dimEi ≤ 2, i = 1, . . . , p, dimEi = 1, i = p+ 1, . . . ,m, and there
is no complex eigenvalue pair in J(κi, ni);

2 If for some index i, dimEi = 2, then the ith block satisfies the
conditions in either case 1 or case 2 in Theorem 7.

We next provide an SOCP reformulation for problem (GTRS) under the
two necessary conditions in Theorem 8.
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Reformulation via canonical form
Now we can rearrange the block pairs and express A and D as

A = diag(α1, . . . , αl, E1, . . . , En−l
2

), (20)

D = diag(δ1, . . . , δl, E1J(ζ1, 2), . . . , En−l
2
J(ζn−l

2
, 2)), (21)

where l is the number of block pairs with size one.

W.o.l.g, assume bi = 0, i = l + 1, . . . , n and
el+2j−1 = 0, j = 1, . . . , n−l2 (case 1 and 2 in Theorem 7).

Then problem (GTRS) can be reduced to the following problem, termed
(P1):

min
l∑
i=1

(δix
2
i + eixi) +

∑
j=1,...,n−l

2

(ζjxl+2j−1xl+2j +
1

2
x2
l+2j + el+2jxl+2j)

s.t.

l∑
i=1

(αix
2
i + bixi) +

∑
j=1,...,n−l

2

(xl+2j−1xl+2j) + c ≤ 0.
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SOCP reformulation

SOCP reformulation for problem (GTRS):

(P2) min

l∑
i=1

(δiyi + eixi) +

n−l
2∑
j=1

ζjzj + c0

s.t.

l∑
i=1

(αiyi + bixi) +

n−l
2∑
j=1

zj + c ≤ 0,

1

2
x2
i − yi ≤ 0, ∀i = 1, 2, . . . , l,

x, y ∈ <l, z ∈ <
n−l
2 ,

where c0 = −
∑
j=1,...,n−l

2

1
2e

2
l+2j .

We next fully characterize the equivalence of (P2) and (GTRS) and the
attainableness of problem (GTRS) in Theorem 10.
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Theorem 9 (Reformulation and attainableness of GTRS)

Assume that items 1 and 2 in Theorem 8 are satisfied, then
v(GTRS) = v(P1) = v(P2), More specifically, if (P2) admits an optimal
solution, then there exists an optimal solution (x̄, ȳ, z̄) to (P2) with
1
2 x̄

2
i = ȳi, i = 1, 2, . . . , l. Moreover, we can find an optimal solution (or

an ε optimal solution) x̃ to (P2) with

x̃i = x̄i, i = 1, . . . , l,

x̃l+2j =

 1/M if

{
ζj = 0, el+2j = 0, z̄j < 0,
or ζj < 0, el+2j = 0, z̄j 6= 0,

−el+2j otherwise,
j = 1, . . . , n−l2 ,

x̃l+2j−1 =
z̄j

x̃l+2j
, j = 1, . . . , n−l2 .

Particularly, if (P2) is bounded from below, then the optimal value of
(P2) is unattainable if and only if
ζj = 0, el+2j = 0, z̄j < 0 or ζj < 0, el+2j = 0, z̄j 6= 0. In this case, for
any ε > 0, there exists an ε optimal solution x̃ such that
f(x̃)− v(P1) < ε with a sufficiently large M > 0.
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Remarks

• It seems that there is no stable algorithm to compute the canonical

form. But the canonical form still provides rich information for

solving the GTRS efficiently.

• When the set {λ : Q1 + λQ2 � 0} is an interval, the two matrices

are SD and the case reduces to [Ben-Tal and den Hertog, 2014].

• When the set {λ : Q1 + λQ2 � 0} is a singleton, the SOCP

reformulation implies a closed form solution. Further investigation

tells us that an optimal solution can be computed without

calculating the canonical form.

42 / 52



Convex quadratic reformulation for
TRS

Next we will derive a new reformulation for the GTRS. Before that, let us
review a convex reformulation for the TRS
[Wang and Xia, 2016, Ho-Nguyen and Kilinc-Karzan, 2016].

min f1(x) :=
1

2
xT (Q1 − λmin(Q1)I)x+ bT1 x+

1

2
λmin(Q1)

s.t. xTx ≤ 1.

The above problem can be solved efficiently by Nesterov’s accelerated
gradient projection method.

Remark: This reformulation can be easily extended to the GTRS with
positive definite Q2.
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Quadratic convex reformulation

Define IPD = {λ : Q1 + λQ2 � 0} ∩ R+, which is an interval
[Moré, 1993].

Consider the case that the set IPD = [λ1, λ2] with λ1 < λ2 is nonempty.

We have the epigraph Reformulation:

(G1) min
x,t
{t : f1(x) ≤ t, f2(x) ≤ 0}.

Theorem 10

Suppose the set IPD = [λ1, λ2] with λ1 < λ2 is nonempty. By defining
hi(x) = f1(x) + λif2(x), i = 1, 2, problem (G) is equivalent to

(G2) min
x,t
{t : h1(x) ≤ t, h2(x) ≤ t}.
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Minmax Formulation

(G2) is further equivalent to the minmax problem

minh(x) := max{h1(x), h2(x)}.

We developed two steepest descent algorithms based on two line search
rules for the step size βk,

xk+1 = xk + βkdk.
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Kurdyka- Lojasiewicz (KL) property

Definition 1

Let f : Rn → R ∪ {+∞} be a proper lower semicontinuous function
satisfying that the restriction of f to its domain is a continuous function.
The function f is said to have the KL property if for any
∀x∗ ∈ {x : 0 ∈ ∂f(x)}, there exist C, ε > 0 and θ ∈ [0, 1) such that

C ‖y‖ ≥ |f(x)− f∗(x)|θ, ∀x ∈ B(x∗, ε), ∀y ∈ ∂f(x),

where θ is known as the KL exponent.

Theorem 11

Assume that minh1(x) < minH(x) and minh2(x) < minH(x). Then
h(x) has the KL property with exponent θ = 1/2.
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Algorithm 1

Assume that hi is the active function and hj is the other function. Let
dk be the steepest descent direction and the associated step size be
chosen as follows.

• When h1(xk) = h2(xk), βk = 1/L.

• When h1(xk) 6= h2(xk) and the following quadratic equation for γ,

aγ2 + bγ + c = 0, (22)

where a = 1
2∇hi(xk)>(Ai −Aj)∇hi(xk),

b = (∇hi(xk)> −∇hj(xk)>)∇hi(xk) and c = hi(xk)− hj(xk),
has no positive solution or any positive solution γ ≥ 1/L, set
dk = −∇hi(xk) with and βk = 1/L;

• When h1(xk) 6= h2(xk) and the quadratic equation (22) has a
positive solution γ < 1/L, set βk = γ and dk = −∇hi(xk).

Then the sequence {f(xk)} has a local convergence rate O(log(1/ε))
under assumptions in Theorem 11 and a global convergence rate O(1/ε)
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Algorithm 2

Modified Armijo rule

Choose the smallest nonnegative integer k such that the following
inequality holds for the step size βk = ξsk with 0 < ξ ≤ 1 and 0 < s < 1,

f(xk + βkpk) ≤ f(xk)− σβkp>k d,

where 0 ≤ σ ≤ 0.5 and d is the steepest descent direction.

This algorithm converges to an approximate stationary point.
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Preliminary numerical results

• Data setting: Q1 is positive definite and Q2 is indefinite

• Use Matlab package eigifp to calculate the minimum generalized

eigenvalue of the matrix pair (A,B) for positive definite B

• If the null space of the Hessian matrix, Q1 + λ∗Q2, with λ∗ being

the optimal Lagrangian multiplier of problem (P), is orthogonal to

b1 + λ∗b2, we are in the hard case; otherwise we are in the easy case.

• Preliminary numerical results showed that our algorithms outperform

the state-of-the-art methods in [Pong and Wolkowicz, 2014] (the

ERW algorithm in the tables on the following pages)

• Algorithm 2 is more efficient than Algorithm 1 in most cases. This

may be because of the aggressiveness of Armijo line search rule.
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Table: Numerical results for positive definite A and indefinite B

cond n
Easy Case

Alg1 Alg2
timeeig

ERW
iter time iter time iter time fail

10 10000 90 1.03 109.3 1.24 1.45 5.9 4.89 0
10 20000 52 2.82 72.2 3.91 9.20 6.8 25.1 0
10 30000 60.9 9.81 83.2 13.4 25.2 6.6 75.0 0
10 40000 58.3 17.1 95.2 27.8 49.7 6.8 153 0
100 10000 417.7 4.26 424.9 4.34 3.99 5.9 11.4 0
100 20000 474.3 24.6 342.4 17.8 18.4 6.1 69.4 0
100 30000 196.9 28.0 162.1 23.1 51.8 6.2 147 0
100 40000 135.8 40.1 114.7 33.9 153.6 6.3 309 0
1000 10000 4245 44.7 1706.7 17.8 14.2 5.3 56.7 0
1000 20000 4177.3 216 1182.7 61.2 70.8 6.10 368 0
1000 30000 2023.8 289 813.7 116 189 5.9 1220 0
1000 40000 2519.8 652 1003 301 640.9 6.8 2960 0
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Table: Numerical results for positive definite A and indefinite B

cond n
Hard Case 1

Alg1 Alg2
timeeig

ERW
iter time iter time iter time fail

10 10000 1490 16.7 609.6 6.81 1.19 6 11.1 1
10 20000 530.3 27.9 313.9 16.7 7.56 6.5 53.9 0
10 30000 1014.6 157 270.6 41.0 30.1 7.3 170 1
10 40000 1866.4 520 782.7 219 54.0 7.1 356 1
100 10000 3328.2 33.9 1131.6 13.6 3.63 5.7 24.6 3
100 20000 6494.9 350 1410 76.8 42.2 6.4 123 5
100 30000 2836.6 420 1197.9 176 44.2 5.2 388 0
100 40000 906.7 257 506.1 143 173.5 6.5 639 0
1000 10000 25982.6 261 5090.7 51.3 24.0 5.75 81.1 6
1000 20000 26214.8 1360 2726.8 139 98.1 5.8 346 5
1000 30000 15311.4 2190 2591.9 385 195 5.8 1530 3
1000 40000 8735.8 3060 1343 1020 853 6.25 3280 2
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Conclusions

• Derive the GSRT valid inequalities for nonconvex quadratic

constraints using RLT-like techniques.

• Deduce an SOCP reformulation for singly constrained QCQP

without the simultaneous diagonalization condition.

• Propose a convex quadratic reformulation for singly constrained

QCQP and further show its equivalence to a minimax problem. Also

develop an efficient algorithms that outperform the state-of-the-art

algorithms in the literature.
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Moré, J. J. and Sorensen, D. C. (1983).

52 / 52



Computing a trust region step.
SIAM Journal on Scientific and Statistical Computing, 4(3):553–572.

Pong, T. K. and Wolkowicz, H. (2014).

The generalized trust region subproblem.
Computational Optimization and Applications, 58(2):273–322.

Sherali, H. D. and Adams, W. P. (2013).

A reformulation-linearization technique for solving discrete and continuous nonconvex
problems, volume 31.
Springer Science & Business Media.

Stern, R. J. and Wolkowicz, H. (1995).

Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations.
SIAM J. Optim., 5(2):286–313.

Sturm, J. F. and Zhang, S. (2003).

On cones of nonnegative quadratic functions.
Math. Oper. Res, 28(2):246–267.

Uhlig, F. (1976).

A canonical form for a pair of real symmetric matrices that generate a nonsingular pencil.
Linear Algebra and its Applications, 14(3):189–209.

Wang, J. and Xia, Y. (2016).

A linear-time algorithm for the trust region subproblem based on hidden convexity.
Optimization Letters, pages 1–8.

Ye, Y. (1992).

A new complexity result on minimization of a quadratic function with a sphere constraint.
In Recent Advances in Global Optimization, pages 19–31. Princeton University Press.

Ye, Y. and Zhang, S. (2003).

52 / 52



New results on quadratic minimization.
SIAM J. Optim., 14(1):245–267.

Zheng, X. J., Sun, X. L., and Li, D. (2011).

Convex relaxations for nonconvex quadratically constrained quadratic programming: matrix
cone decomposition and polyhedral approximation.
Math. Program., 129(2):301–329.

52 / 52


