
Non-Convex Phase Synchronization

via Projected Gradient Ascent

with Provable Estimation

and Convergence Guarantees

Anthony Man-Cho So
Department of Systems Engineering & Engineering Management

The Chinese University of Hong Kong (CUHK)

(Joint Work with Huikang Liu and Man-Chung Yue)

The Greater Bay Area Optimization Day

The Hong Kong Polytechnic University

24 February 2018



Phase Synchronization

• Goal: Estimate an unknown phase vector z⋆ ∈ T
n = {z ∈ C

n : |z1| = · · · =
|zn| = 1} from the noisy measurements

Cjℓ = z⋆j z̄
⋆
ℓ +∆jℓ for 1 ≤ j < ℓ ≤ n.

Here, we assume that the noise satisfies ∆jj = 0 and ∆jℓ = ∆̄ℓj. Then, we can

write C = z⋆z⋆H +∆ with Cjj = 1 and C,∆ ∈ Hn.

• Various applications

– lensless imaging

– clock synchronization in wireless networks

– localization on circle

– ranking of items based on noisy pairwise comparisons
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Phase Synchronization

• Consider the following natural least-squares formulation:

ẑ ∈ arg min
z∈Tn

∑

1≤j<ℓ≤n

|Cjℓ − zjz̄ℓ|2 = argmax
z∈Tn

{

f(z) = zHCz
}

. (QP)

– Note that if ẑ is an optimal solution, then so is eiθẑ for any θ ∈ [0, 2π). Thus,
we can at most identify z⋆ up to a global phase.

– In the Gaussian noise setting (i.e., ∆ = σW , where σ2 > 0 is the noise power
and W is a Wigner matrix), any optimal solution to (QP) is a maximum
likelihood estimator of z⋆.
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Phase Synchronization

• Given the estimation problem (QP), we are interested in the following:

– Is ẑ (optimal solution) close to z⋆ (ground truth)?

– Can we find ẑ efficiently?

• Recall that the value zHCz is invariant under multiplication of a common phase
(unit-modulus complex number).

– This motivates the following distance measure for two points w, z on T
n:

d2(w, z) = min
θ∈[0,2π)

‖w − eiθz‖2.

• Fact: [Bandeira-Boumal-Singer’17] (Estimation Error of ẑ)

d2(ẑ, z
⋆) ≤ 4‖∆‖op√

n
.

• Thus, we shall mainly focus on the second question.
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Phase Synchronization

• Given an arbitrary C, Problem (QP) is NP-hard [Toker-Özbay’98].

• However, we have a highly structured C. Perhaps we can find ẑ efficiently?

• A natural apprach: SDP relaxation

min
Z∈Hn

Tr(CZ) subject to diag(Z) = e, Z � 0. (SDP)

– Fact: [Bandeira-Boumal-Singer’17] Under the Gaussian noise setting, if
σ = O(n1/4), then (SDP) admits a unique optimal solution Ẑ that is of
rank-one.

• Despite its theoretical appeal, solving large instances of (SDP) is considered to
be computationally expensive.

Can we develop fast methods for solving (QP) while
still being able to establish some theoretical guarantee?
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Generalized Power Method for Phase Synchronization

Consider the following projected gradient-type scheme for solving (QP):

Algorithm 1 Generalized Power Method for Problem (QP) [Boumal’16]

1: input: objective matrix C ∈ H
n, step size α > 0, initial point z0 ∈ T

n

2: for k = 0, 1, . . . do
3: if termination criterion is met then
4: return zk

5: else
6: wk ←

(

I + α
nC

)

zk // gradient ascent

7: zk+1← wk

|wk| // projection onto Tn

8: end if
9: end for

• Here, 2Czk is the gradient of z 7→ zHCz at zk and

(

v

|v|

)

j

=

{

vj
|vj| if vj 6= 0,

1 otherwise

is the projection of v ∈ C
n onto T

n, which can be efficiently computed.
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Generalized Power Method for Phase Synchronization

• When α → ∞, the update becomes zk+1 ← Czk

|Czk|, which resembles the

power method for computing the dominant eigenvector of C, hence the name
generalized power method (GPM) for Algorithm 1.

• Problem (QP) is non-convex in general. Thus, one expects that the initial point
will affect the convergence performance of the algorithm.

• Consider the so-called spectral initialization z0 = vC, where vC = u
|u| and u is a

dominant eigenvector of C.

• As it turns out, the spectral initialization has many nice properties.
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Generalized Power Method for Phase Synchronization

• Fact: [Boumal’16] (Estimation Error of vC)

d2(vC, z
⋆) ≤ 8‖∆‖op√

n

(recall that d2(ẑ, z
⋆) ≤ 4‖∆‖op√

n
).

• Fact: [Boumal’16] Under the Gaussian noise setting, if σ = O(n1/6) and
α = O(n1/2), then the GPM with spectral initialization will converge to an
optimal solution to (QP).

• The above results do not resolve three key issues:

– Are the estimation errors of the iterates {zk} generated by the GPM
monotonically decreasing?

– The convergence result applies to the noise regime σ = O(n1/6), while the
SDP tightness result applies to the less restrictive noise regime σ = O(n1/4).
Could the convergence result for the GPM apply to the latter noise regime?

– Can we establish the convergence rate of the GPM?
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Estimation Performance of the GPM

• Theorem: [Liu-Yue-S.’17] (Estimation Errors of the GPM Iterates) Suppose
that

– ‖∆‖op ≤ n
16,

– α ≥ 6,
– z0 = vC.

Then, the iterates {zk}k≥0 generated by the GPM satisfy

d2(z
k+1, z⋆) ≤ µk+1 · d2(z0, z⋆) +

ν

1− µ
· 8‖∆‖op√

n

for some µ ∈ (0, 1) and ν > 0.

• Curious observation: The above result does not assume the convergence of the
GPM. It gives upper bounds on the estimation errors of the iterates, and the
bounds are decreasing.

• Under the Gaussian noise setting, we have ‖∆‖op = O(σn1/2) with high
probability. Thus, the above result applies to the noise regime σ = O(n1/2).
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Key Property of Projection onto T
n

• The proof of the theorem relies crucially on the following result:

Proposition: For any w ∈ Cn and z ∈ Tn,

∥

∥

∥

∥

w

|w| − z

∥

∥

∥

∥

2

≤ 2‖w − z‖2.

• Roughly speaking, it says that the projection operator onto Tn is not too
expansive (recall that projections onto closed convex sets are always non-
expansive).
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Convergence Rate of the GPM

• From an optimization-theoretic viewpoint, we are still interested in knowing
whether the GPM will converge or not, and if so, what is the rate of convergence.

• To answer these questions, we need to first get a handle on the set of potential
optimal solutions to (QP).
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Optimality Conditions of Problem (QP)

• Recall
ẑ ∈ argmax

z∈Tn

{

f(z) = zHCz
}

. (QP)

• Viewing Tn as a manifold, the tangent space to Tn at z ∈ Tn is given by

TzT
n = {w ∈ C

n : ℜ{wj z̄j} = 0 for j = 1, . . . , n} .

The projector onto TzT
n can be computed as

ΠTzT
n(w) = w −Diag(ℜ{zjw̄j})z.

This yields the first-order optimality condition of (QP):

0 = grad f(z) = ΠTzT
n(2Cz) = −2S(z)z,

where S(z) = Diag(ℜ((Cz)j z̄j)) − C. We call grad f(z) the Riemannian
gradient of f at z ∈ T

n.
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Optimality Conditions of Problem (QP)

• We can also write down the second-order optimality condition. To do this, we
need the Riemannian Hessian Hess f(z) of f at z ∈ Tn, which is obtained by
projecting the directional derivatives of grad f(z) onto the tangent space to T

n

at z ∈ Tn:

(Hess f(z))(w) = ΠTzT
n(D grad f(z))(w) = −ΠTzT

n(2S(z)w).

• Then, the second-order optimality condition is given by

wH(Hess f(z))w = −2wHS(z)w ≤ 0 for all w ∈ TzT
n.

• Fact: Every optimal solution to (QP) is a second-order critical point; i.e., it
satisfies both the first- and second-order optimality conditions.

• Fact: [Boumal’16] Every second-order critical point z̃ ∈ T
n satisfies

(

Diag(|C̃z̃|)− C̃
)

z̃ = (Diag(|Cz̃|)− C) z̃ = 0,

where C̃ = C + n
αI , for any α > 0.
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Proximity to Second-Order Criticality

• The earlier discussion motivates us to define the following:

Σ(z) = Diag(|C̃z|)− C̃, ρ(z) = ‖Σ(z)z‖2.

• Intuitively, the residual function ρ measures the proximity to the set of second-
order critical points.

– This suggests ρ can be used to measure the progress of the GPM.

– Challenge: Although ρ(ẑ) = 0 for any optimal solution ẑ to (QP), it is not
clear the converse holds.
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Local Error Bound for Problem (QP)

• Proposition: [Liu-Yue-S.’17] (Local Error Bound for (QP)) Under the Gaussian
noise setting, if σ = O(n1/4) and α ≥ 4, then with high probability, we have

d2(z, ẑ) ≤
8

n
ρ(z) (EB)

for any z ∈ Tn satisfying d2(z, z
⋆) ≤

√
n
2 and any optimal solution ẑ to (QP).

– This shows that every second-order critical point of (QP) is optimal.

– The above error bound allows us to follow rather standard arguments to
establish the convergence rate of the GPM.
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Convergence Rate of the GPM

• Proposition: [Liu-Yue-S.’17] Under the Gaussian noise setting, suppose that

– σ = O(n1/4),
– α = O(n1/4),
– z0 = vC.

Then, for any optimal solution ẑ to (QP), the iterates {zk}k≥0 generated by the
GPM possess the following properties:

– (Sufficient Ascent) There exists a constant a0 > 0 such that

f(zk+1)− f(zk) ≥ a0 · ‖zk+1 − zk‖22. (A1)

– (Cost–to–Go Estimate) There exists a constant a1 > 0 such that

f(ẑ)− f(zk) ≤ a1 · d2(zk, ẑ)2. (A2)

– (Safeguard) There exists a constant a2 > 0 such that

ρ(zk) ≤ a2 · ‖zk+1 − zk‖2. (A3)
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Convergence Rate of the GPM

• By combining (EB) and (A1)–(A3), we have the following:

Theorem: [Liu-Yue-S’.17] (Linear Convergence of the GPM) Under the above
setting, for any optimal solution ẑ to (QP), the iterates {zk}k≥0 generated by
the GPM satisfy

f(ẑ)− f(zk) ≤
(

f(ẑ)− f(z0)
)

λk,

d2(z
k, ẑ) ≤ a

(

f(ẑ)− f(z0)
)1/2

λk/2

for some a > 0 and λ ∈ (0, 1).

• The above result applies to the noise regime σ = O(n1/4), which matches that
required for the tightness of the SDP relaxation.
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Extension to MIMO Detection

• The GPM is rather versatile and can be easily adapted to other problems.

• Take, for instance, MIMO detection, where we have the model

y = Hx⋆ + ν.

Here,

– y ∈ C
m is the received signal vector,

– H ∈ Cm×n is the channel matrix,
– x⋆ ∈ C

n is the transmitted symbol vector,
– ν ∈ Cm is the noise vector.

• We assume that each symbol xi is drawn from some discrete constellation S,
where S is either the (4u2)-QAM constellation

Qu = {z ∈ C : ℜ(z),ℑ(z) = ±1,±3, · · · ,±(2u− 1)}

or the MPSK constellation

SM = {exp (2πik/M) : k = 0, 1, . . . ,M − 1},
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Extension to MIMO Detection

• We are interested in the following maximum likelihood (ML) estimation problem:

min
x∈Sn

{

F (x) = ‖y −Hx‖22
}

. (ML)

• We can then write down the GPM for solving (ML) as follows:

Algorithm 2 Generalized Power Method for MIMO Detection

1: input: initial point x0 ∈ Sn and step sizes {αk}k≥0

2: if stopping criterion is not met then
3: ∇F (xk)←− 2H∗(Hxk − y)
4: xk+1←− ΠSn

(

xk − αk
m∇F (xk)

)

5: k ←− k + 1
6: end if

• Note that for S = Qu and S = SM , the projection ΠSn(w) can be efficiently
computed.
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Analysis of the GPM for MIMO Detection

• Interestingly, we can also establish some convergence guarantee for the GPM.

• Key to the analysis is the following result, which concerns the not–too–
expansiveness of the projection operator ΠSn:

Proposition: [Liu-Yue-S.-Ma’17] Consider the case where S = Qu or S = SM .
Let z ∈ Cn and x ∈ Sn be given. Then,

‖ΠSn(z)− x‖2 ≤ 2‖z − x‖2.
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Analysis of the GPM for MIMO Detection

• Theorem: [Liu-Yue-S.-Ma’17] Let {xk}k≥0 be the sequence of iterates
generated by the GPM with step sizes {αk}k≥0 satisfying

∥

∥

∥

∥

2αk

m
H∗ν

∥

∥

∥

∥

∞
<

1

c
and

∥

∥

∥

∥

I − 2αk

m
H∗H

∥

∥

∥

∥

op

≤ β <
1

4
, (P)

where c = 4
mins6=s′∈S |s−s′| < ∞ (hence, we have c = 2 for S = Qu and

c = 2
sin(π/M) for S = SM). Then, we have

‖xk+1 − x⋆‖2 ≤ 4β‖xk − x⋆‖2

for all k ≥ 0.

• In particular, after at most k⋆ =
⌈

ln
(

2
c‖x0−x

⋆‖2

)

/ ln(4β)
⌉

iterations, we have

xk = x⋆ for all k ≥ k⋆; i.e., the GPM admits finite convergence.

• Under suitable probabilistic assumptions on H and ν, one can show that
condition (P) will be satisfied with high probability.
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Closing Remarks

• There has been much recent interest in the design and analysis of fast methods
for structured non-convex optimization problems.

• Many such problems arise in machine learning and signal processing.

• Similar to the convex case, error bounds play a fundamental role in the
convergence analyses of these methods.
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Thank You!
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