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Fundamental Challenge in the AI Era

Is deep learning Alchemy or science?
practitioners: trial and error approach move very fast!
theoreticians: challenged by whether relevant to practice or not

This work: mathematical theory with practical impact

understand an algorithm’s limitations
lead to new algorithm addressing the limitations

Key Message: optimization in function space makes problems easier

Motivation problem 2 / 39
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Problem

Generate Artificial Data from Examples

(a) Real Image (b) Generated Image
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Classical Approach

Given:
observed data S = {x1, . . . , xn}
a family of probability density functions pθ(x)

Procedure:
estimate θ̂ from S (frequentist)
draw sample from pθ̂(x)
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Some Difficulties of the Classical Approach

Estimation: Powerful family pθ(x) often has a form

pθ(x) ∝ exp(−fθ(x)),

difficulty: normalization factor hard to compute.
solution: unnormalized models

Draw Sample:
difficulty: Monte Carlo simulation can be slow.
solution: SDE based Monte Carlo (recent interests)

This talk:
an alternative data transformation approach that becomes popular
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The Data Transformation Approach

Want to draw samples similar to S = {x1, . . . , xn}

Procedure:
Generate z from an initial noise distribution pz

Transform z : z → G(z) so that G(z) has the same distribution as S

Key problem:

How to estimate the transformation G(z)?

Modern answers: GAN (and related, VAE)
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Generative Adversarial Network (GAN)

Noise

generator

sampled data
discriminator
(adversary)real data

can we differentiate real
data from sampled data?
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Mathematical Formulation of GAN

Real data S = {x1, . . . , xn}
Noise z1, . . . , zm

Generator G(θ; z)
Discriminator d(ψ; x)

Nonconvex Minimax Saddle Point Optimization Problem:

max
ψ

min
θ

1
n

∑
i

log d(ψ; xi) +
1
m

∑
j

log(1− d(ψ;G(θ; zj)))

 .
We have:

d(ψ; x) =
1

1 + exp(−D(ψ; x))
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Solving Saddle Point Optimization

max
ψ

min
θ

1
n

∑
i

log d(ψ; xi) +
1
m

∑
j

log(1− d(ψ;G(θ; zj)))

 .
Using SGD as follows.

Update discriminator (primal variable SGD):

ψ ← ψ + η∇ψ
[
log d(ψ; xi) + log(1− d(ψ;G(θ; zj)))

]
Update generator (dual variable SGD):

θ ← θ − η′∇θ log(1− d(ψ;G(θ; zj)))

Strange phenomenon: generator update with logD trick is practically better

θ ← θ + η′∇θ log(d(ψ;G(θ; zj))
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Mathematical Theory of GAN

The population version of GAN tries to find optimal d to maximize∫
log d(x)preal(x)dx +

∫
log(1− d(x))pgen(x)dx ,

where
pgen(x) is the density of x = G(z)

The optimal d is given by

doptimal(x) =
preal(x)

preal(x) + pgen(x)
.
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Generator Minimizes JS-divergence

max
d

min
G

[Ex log d(x) + Ez log(1− d(G(z)))] .

Substitute d by doptimal, we get Jensen-Shanon (JS) divergence
minimization:

min
G

[∫
preal(x) log

2preal(x)
preal(x) + pgen(x)

dx

+

∫
pgen(x) log

2pgen(x)
preal(x) + pgen(x)

dx
]
,

where
pgen(x) is the density of x = G(z)
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Some Issues of GAN

The optimization procedure is unstable
one proposed improvement is WGAN (changing loss function)

Practical implementation with logD trick is only a heuristic
inconsistent with the minimax formulation, implying the theory is flawed

Minimizes JS divergence, not KL divergence

We want to design a procedure that addresses the above points.
based on KL divergence minimization
stable (by modifying optimization process of GAN)
can explain the logD trick
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Our Approach: Change the Optimization Problem

Learn G(z) to minimize the KL-divergence between the distributions
of real data and generated data:∫

preal(x) log
preal(x)
pgen(x)

dx

Procedure uses functional gradient learning greedily, similar to
gradient boosting.
Learning procedure uses functional compositions in the form

Gt(z) = Gt−1(z) + ηtgt(Gt−1(z)), (t = 1, . . . ,T )

gradient descent in function space
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Adversarial Learner

Given training examples {(xi , yi)} (where yi = ±1).

Assume there is an oracle adversarial learner A that can solve the
logistic regression problem:

D(x) ≈ arg min
D

∑
i

ln(1 + exp(−D(xi)yi)).

Using
real sample S = {x1, . . . , xn} with label y = 1
generated sample {G(z1), . . . ,G(zm)} with label y = −1

We can find approximately

D(x) ≈ ln
p∗(x)

pgen(x)
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Theory (under suitable assumptions)

Theorem
Consider variable transformation X ′ = X + ηg(X ).
Let p be the probability density of random variable X.
Let p′ be the probability density of random variable X ′.
Let p∗ be the probability density of the real data.
Let D(x) := ln p∗(x)

p(x) .
Assume Dε(x) ≈ D(x) is learned from adversarial learner:∫

p∗(x)max(1, ‖∇ ln p∗(x)‖)
(
|Dε(x)−D(x)|+

∣∣∣eDε(x) − eD(x)
∣∣∣)dx ≤ ε .

Then for some constant c > 0:

KL(p∗||p′) ≤ KL(p∗||p)− η
∫

p∗(x) g(x)>∇Dε(x) dx + cη2 + cηε.

CFG theory 15 / 39



Interpretation of the Theory

The result is

KL(p∗||p′) ≤ KL(p∗||p)− η
∫

p∗(x)g(x)>∇D(x) dx + O(η2).

If we further take
g(x) = s(x)∇D(x),

where s(x) > 0 is a scaling factor, then

KL(p∗||p′) ≤ KL(p∗||p)− η
∫

p∗(x)s(x) ‖∇D(x)‖22 dx + O(η2).

Implication: ∫
p∗(x)s(x) ‖∇D(x)‖22 dx → 0,

which means
D(x) = ln

p∗(x)
pgen(x)

= constant
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Algorithm: CFG for Generative Adversarial Learning

Algorithm 1 CFG: Composite Functional Gradient Learning

Require: real data x∗1 , . . . , x
∗
n , initial generator G0(z)

1: for t = 1,2, . . . ,T do
2: Dt(x) ← arg minD

[ 1
n

∑n
i=1 ln(1 + e−D(x∗

i )) + 1
m

∑m
i=1 ln(1 + eD(Gt−1(zi )))

]
3: gt(x)← st(x)∇Dt(x) (usually st(x) = 1)
4: Gt(z)← Gt−1(z) + ηtgt(Gt−1(z)), for some ηt > 0.
5: end for
6: return generator GT (z)

Theory: as n→∞ and T →∞

GT (z) ∼ p∗(·)
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Incremental Composite Functional Gradient Learning

Algorithm 2 ICFG: Incremental Composite Functional Gradient Learning

Require: training examples S∗, prior pz , initial generator G0, discrimi-
nator D

1: for t = 1,2, . . . ,T do
2: for U steps do
3: Sample x∗1 , . . . , x

∗
b from S∗, and z1, . . . , zb according to pz .

4: Update discriminator D by SGD with minibatch gradient:
∇θD

1
b
∑b

i=1
[
ln(1 + exp(−D(x∗i ))) + ln(1 + exp(D(Gt−1(zi))))

]
5: end for
6: gt(x)← st(x)∇D(x) (most simply st(x) = 1)
7: Gt(z)← Gt−1(z) + ηtgt(Gt−1(z)), for some ηt > 0.
8: end for
9: return generator GT
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Graphical Illustration

G0

g1

g2

+

g3

+

Input z

+

Output 

G1

G2

G3

Generator network automatically derived by CFG
T = 3 and ‘⊕’ indicates addition

Problem: network depth grows when T increases
Solution: use a fixed depth approximator
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Algorithm: xICFG of GAN

Algorithm 3 xICFG: Approximate Incremental CFG Learning

Require: a set of training examples S∗, prior pz , approximator G̃ at its
initial state, discriminator D.

1: loop
2: Sz ← an input pool of the given size, sampled according to pz .
3: qz ← the uniform distribution over Sz .
4: G,D ← output of ICFG using S∗,qz , G̃,D as input.
5: if some exit criteria is met then
6: return generator G
7: end if
8: Update the approximator G̃ to minimize 1

2
∑

z∈Sz
‖G̃(z)−G(z)‖2

9: end loop

G̃(z) is a network of the fixed size
G(z) is of growing but limited size (initialized from G̃(z) every time)
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Approximator Network

fc,512,ReLU

fc,512,ReLU

fc,512,ReLU 

fc,512,ReLU

+

fc,#pixels,Tanh

+

Input z

Figure: Fully-connected networks with shortcuts for use as a xICFG
approximator or a GAN generator.

CFG algorithm 21 / 39



Compare to Original GAN (GAN0)

Algorithm 4 GAN0(Generative Adversarial Nets)

Require: training examples S∗, prior pz , discriminator D, generator G.
1: Initialize discriminator d and generator G randomly.
2: for T steps do
3: Update discriminator D by ascending the stochastic gradient:
4: Sample z1, . . . , zb according to pz .
5: Update the generator by descending the stochastic gradient:

1
b

∑b
i=1 (1 + exp(−D(G(zi))))

−1︸ ︷︷ ︸
s(G(zi ))

∇θG D(G(zi))

6: end for
7: return generator G

Problem: s(G(z)) ≈ 0 when D(G(z))� 0, which happens in the
beginning.
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Compare to GAN with logD trick (GAN1)

Algorithm 5 GAN1(Generative Adversarial Nets)

Require: training examples S∗, prior pz , discriminator D, generator G.
1: Initialize discriminator d and generator G randomly.
2: for T steps do
3: Update discriminator d by ascending the stochastic gradient:
4: Sample z1, . . . , zb according to pz .
5: Update the generator by descending the stochastic gradient:

1
b

∑b
i=1 (1 + exp(D(G(zi))))

−1︸ ︷︷ ︸
s(S(zi ))

∇θG D(G(zi))

6: end for
7: return generator G

Good! s(G(z)) ≈ 1 when D(G(z))� 0, which happens in the beginning.
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Remarks of GAN

GAN0 is original GAN
SGD optimization of the minimax formulation of GAN

GAN1 is GAN with log trick, which is a heuristics
cannot be explained using the original minimax formulation of GAN
can be explained by our theory

xICFG
similar to GAN1
grows generator using composite function gradient
use approximator to reduce the network to fixed size
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Data

MNIST

Street View House Numbers

large-scale scene understanding (LSUN)
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Evaluation

quality inception score:

exp(Ex KL(Pr(y |x)||Pr(y)))

high-quality images should lead to high confidence in classification, and
high inception score.

diversity diversity score:

exp(−KL(Pr(y)||Pr∗(y))

diversity of generated images measured by diversity score becomes
large (approaching to 1) when generated class distribution mimics real
class distribution.
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MNIST Performance Comparisons
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Figure: MNIST. Image quality (upper) and diversity (lower) with convolutional
(‘cv’) approximator/generator (left) and fully-connected (‘fc’)
approximator/generator (right).

cv: xICFG produces higher scores than GAN.
fc: xICFG performs well but GAN of both types fails.
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Generated Images (MNIST)

(a) Real images

(b) cv-xICFG (9.60) (c) cv-GAN1 (9.30) (d) cv-GAN0 (9.13)

(e) fc-xICFG (9.56) (f) fc-GAN1 (2.57) (g) fc-GAN0 (1.00)

Figure: MNIST. (a) Real images. (b-g) Generated images. The numbers in
the parentheses are the inception scores averaged over 10K images.
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House Number Performance Comparisons
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Figure: LSUN BR+LR. Image quality (upper) and diversity (lower). With the
convolutional (left) and the fully-connected (right) approximator/generator.
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Generated Images (House Number)

(a) Real images

(b) cv-xICFG (8.09) (c) cv-GAN1 (7.29) (d) cv-GAN0 (5.90)

(e) fc-xICFG (7.65) (f) fc-GAN1 (4.48) (g) fc-GAN0 (3.51)

Figure: SVHN. (a) Real images. (b-g) Generated images. The numbers in
the parentheses are the inception scores averaged over 10K images.
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LSUN Performance Comparisons
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Figure: LSUN BR+LR. Image quality (upper) and diversity (lower). With the
convolutional (left) and the fully-connected (right) approximator/generator.
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Generated Images (LSUN)

Figure: LSUN bedrooms & living rooms. Real images from the training set.

(a) cv-xICFG (1.55). High quality. No signs of modal collapse.
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Generated Images (LSUN)

(a) cv-GAN1 (1.55). High quality. But it suffers from modal collapse; see the
similar images marked by red.

Figure: LSUN bedrooms & living rooms. Generated using the convolutional
appoximator/generator after 100K seconds of training. GAN1’s modal
collapse started after about 50K seconds of training.
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WGAN: a variation of GAN to improve stability

WGAN uses a different loss function than log-loss

It claims to improve stability of GAN

The CFG procedure claims improved stability as well
by making optimization easier

How does CFG compare to WGAN?

Experiments WGAN 34 / 39
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Comparison with WGAN: convolutional networks
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Figure: Image quality. Convolutional networks. The legends are sorted from
the best to the worst. xICFG outperforms the others.
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WGAN: fully-connected networks
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Figure: Image quality. Fully-connected approximator/generator. The legends
are sorted from the best to the worst. xICFG outperforms the others.

Experiments WGAN 36 / 39



Image Example: Creativity in LSUN (Tower & Bridge)

Figure: Real Golden Gate Bridge images: the red tower has 4 grids

(a) “Realistic” (b) “Creative”

(a) Images generated by xICFG that resemble Golden Gate Bridge

(b) Images generated by xICFG that modify Golden Gate Bridge
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Summary

In the generative adversarial learning setting:
GAN’s minimax formulation optimizes JS-divergence
GAN’s algorithm is not stable.
the practical use of logD trick inconsistent with the minimax formulation

The optimization problem is hard and unstable
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Summary

This work: change optimization, gradient descent in function space

Learn generator G(z) using CFG (composite functional gradient).
Theory: minimizes KL-divergence
Theory: lead to the new stable algorithm xICFG.
Theory: explains the logD trick of GAN.
Experiments: xICFG performs better than GAN/WGAN
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Final Remarks: is deep learning Alchemy or science?

Big Theoretical Challenge

Theoretical research in the AI Era needs to be relevant
either improving fundamental understanding
or solving an important practical problem

Encourages problem driven theory→ Practical Impact

understanding how algorithms work and their limitations
lead to new practical algorithms
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