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Introduction

An m X n real matrix C is called a nonnegative matrix if

(€);>0,i,=1,....m j=1,...,n,

where (C); denotes the (i,j)-entry of C. Nonnegative matrices arise in various
applications such as Markov chains, linear complementarity problems, probabilistic

algorithms, discrete distributions, group theory, and economics.

A spectrum which occurs as the spectrum of some nonnegative matrix is called a
realizable spectrum for nonnegative matrices, and a nonnegative matrix with the

realizable spectrum is called a realization or realizing matrix.
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Introduction

Nonnegative inverse eigenvalue problem (NIEP) is a special kind of inverse eigen-
value problems, which concerns whether or not a self-conjugate collections of n
complex numbers (counting multiplicities) is a realizable spectrum for nonnegative

matrices. The NIEP is a classical unsolved problem in linear algebra.

The NIEP sparks the interest in constructing algorithms to find realizing matrices
for prescribed realizable spectrum.
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Introduction

In this talk, we consider the inverse eigenvalue problem of constructing a nonnega-
tive matrix with prescribed realizable spectrum.

Problem I. Given an n-tuple {\;, Az, ..., \,}, which is a realizable spectrum for
nonnegative matrices, find an n-by-n nonnegative matrix C such that its eigenvalues
are A\j, Ag, ..., Ay
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Introduction

There are a few numerical methods for solving Problem I such as the constructive
method [9], the alternating projection method [8], isospectral gradient flow methods
[2, 3, 4, 5], and a fast recursive algorithm [6] for the case where the prescribed
eigenvalues are all real and satisfy an additional inequality.

The deficiency of the existing numerical methods is that these methods are either
restricted to solve small- or medium-scale problems or can only be used to solve
some special subproblems.
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A Riemannian Inexact Newton

We would like to reformulate Problem I as an equivalent nonlinear matrix equation
between a Riemannian manifold and a Euclidean space. First we need to introduce
some special matrix sets.

The matrix set R""

RY"={S©S§|SeR™"},

where ® denotes the Hadmard product.
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A Riemannian Inexact Newton-CG Method

Since we assume the n-tuple {1, Az, ..., A, } is arealizable spectrum, it is closed
under complex conjugation. Without loss of generality, we can assume

/\2_i—l =a; + bjv/—1, /\Zj:q].,bj\/,l’ j=1,....58
NER, j=2s+1,...,n,

where a;, b; € Rforj=1,...,s. Then we define a block diagonal matrix by

A := blkdiag (AE”, OIS VT )\,,)

with diagonal blocks )\22}, ey /\?} s A2st1y - - -y An, Where
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A Riemannian Inexact Newton-CG Method

Vi={VeR™|V; =0, (ij) € I},

where Z is the index subset:

T:={@,j)]i=jorA;#0, i,j=1,...,n}.

The orthogonal group

On):={QeR™ | Q"0 =1},

where [, is the identity matrix of order 7.
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The matrix set M(A)

M(A) = {XeR™ |X=0(A+V)Q", Q€ On), VeV}.

The matrix set M(A) just consists of all the real n X n matrices with the same

spectrum { Ay, Ap, ..., Ay}

Solvability of the NIEP

The NIEP has a solution if and only if M (A) N R 2 (.
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Since the prescribed n-tuple {1, A2, ..., \,} is realizable, the Problem I aims to
solve the following constrained nonlinear matrix equation:

G(S7 Q, V) = 0n><n- (1)
The smooth mapping G : R"*" x O(n) x V — R"*" is defined by

G(S,0,V):=SOS—Q(A+V)Q", (5,0,V) € R x O(n) x V.

Once we find a solution (S, Q, V) € R™" x O(n) x V to the nonlinear equation (1),
then the matrix C := S ® S is a solution to Problem L.
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The dimension of R"*" x O(n) x V is given by

n(n—1)

2

where 7 is the complementary index set of Z with respect to the index set N :=
{(i,j)|i,j=1,...,n}, and |J| is the cardinality of 7. Thus

dim(R"™" x O(n) x V) = n* + + 171,

dim(R™" x O(n) x V) > dimR"*"  forn > 2.

Hence, the nonlinear matrix equation (1) is under-determined for all n > 2.
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The tangent space of the product manifold R**" x O(n) x V at a point (S,Q, V) €
R"™" x O(n) x V is given by

T(S,Q,V) (Rnxn X O(i’l) X V) = {(A,QQ,B) | Qr = —Q, A7Q € RnXVt’B S V}
Let R"™" x O(n) x V be endowed with the induced Riemannian metric:

gs.ov) ((€1,Cm), (&2, G, m)) == (€7 &) + (¢ &) + tr(nf ), 2

for all (Sa Qv V) € R™" x 0(”) x 'V and (glvglarr]l)v (52) <27 772) € T(S,Q,V) (Rnxn X
O(n) x V). Then R™" x O(n) x V is an embedded Riemannian submanifold of
R™7 x R"™" x R " with the induced Riemannian metric.
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The differential DG(S, Q7 V) : T(S,Q,V) (Rnxn X O(I’l) X V) — TG(S,Q,‘/)RnX” ~
R"™" of G at (S, Q, V) € R x O(n) x V is determined by

DG(S,Q,V)[(AS,AQ,AV)] =25 ® AS + [Q(A + V)Q", AQQ] — QAVQ"

for all (AS,AQ,AV) € T(s,0,v)(R™" x O(n) x V), where [A,B] := AB — BA
means the Lie Bracket of two matrices.
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With respect to the induced Riemannian metric given by (2), the adjoint operator
(DG(S, Q, V))* : TG(S7Q7‘/)R”XH — T(S,Q,V) (Rnxn X O(I’l) X V) of DG(S, Q7 V) is
determined by

(DG(S,0,V))*[AZ]
= (s04z, %([Q(A +V)QT,(A2)"],~W © (07AZ0))
for all AZ € Tg(s,0,v)R"*", where W € R"*" is defined by
0, (i) €L,

W; =
1, (i,j))eJ.
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To solve Problem I, one may propose the following geometric Newton method:
Given the current iterate X* := (S¥, Q%, V¥) € R™" x O(n) x V, solve the Newton
equation:

DG(X")[AX"] = —G(x") 3)

for AX* := (AS*, AQ*, AVK) € Ty (R™" x O(n) x V) and set
X = Ry (AXY),

where R : T(R"™" x O(n) x V) — R™" x O(n) x V is a retraction and the set
T(R™” x O(n) x V) denotes the tangent bundle of R"*" x O(n) x V.
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The Newton equation (3) has a solution if and only if it holds
DG(X*) o (DG(X))'[-G(X")] = ~G(x"), @

where (DG(X¥))" means the pseudoinverse of the linear operator DG(X¥). The
Newton equation (3) is an under-determined linear system. If it is solvable, then it

has infinite solutions. The minimum norm solution of (3) is given by:

AX* = —(DG(X*))TG(xY).
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In particular, if the linear operator DG(X*) is surjective, then we have [7, p.165]:
(DG(X")) = (DG(x"))" o (DG(X*) o (DG(X"))") . )

Based on (5), the solvability condition (4) is satisfied if DG(X*) is surjective. In

this case, one may solve the following normal equation:
DG(X*) o (DG(X*))*[AZ}] = —G(X"), st AZF e TgpoR™" (6)
for the minimum norm solution
AXF = (DG(X*))*[AZF] € Ty (R™" x O(n) x V).

Thus, the conjugate gradient (CG) method can be used to solve the self-adjoint and

positive definite equation (6).
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If DG(X*) o (DG(X¥))* is singular, then the equality in (5) does not hold. For the
pseudoinverse (DG(X*))T, we have

(DG(X"))' = lim (DG(X"))" o (DG(X*) o (DG(X"))" + aidy, , poxe)

oc—0t

where idTG(Xk)]Ran denotes the identity operator on T¢(x«)R"*". Instead of (6), one
may solve the following perturbed normal equation:

(DG(Xk) o (DG(X*))* +EidTG(Xk)Rm) [AZ] = —G(x*)

for AZF € TxR™" =~ R"™ ", where & > 0 is a prescribed constant.
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A Riemannian Inexact Newton-CG Method

Algorithm 2.1 (Riemannian inexact Newton-CG method)

Step 0. Choose an initial point X° € R™" x O(n) X V, Tmax; Tax> Tmax € [0,1),
€ (0,1),0 < Opin < Omax < 1. Letk := 0.
Step 1. Apply the CG method to solving

(DG(X") o (DG(X"))* +Tsidr,  moxn) [AZ] = ~G(X"), (7
for AZF € Tg(xe)R"™*" such that
I(DG(X*) o (DG(X))*" +Tidy, , woxn ) [AZ]+ GXY)|| ; < T GXO) [, (8)

and
IDG(X*) o (DG(X*))*[AZ"] + G(X")|IF < Tmax |GXH) |, ©)

where 7 := min{Gax, [ G(X*) |7} 7y := min{Tpgy, [|GX) £}
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Step 2.

Step 3.

Then let

IDGXY[AX'] + G4 |

AX' = (DG(X9)*[AZY], 7= retarn

(10)

Evaluate G(R% (ﬁk)) Set 1, = 7 and AX* = AX.
Repeat until [G(Ry (AX4)) [ < (1= 1(1 = 1)) [G(XY) |
Choose 0 € [Omin, Omax]-
Replace AX* by OAX* and 1, by 1 — (1 — np).
end (Repeat)
Set
XM= Ry (AXY).

Replace k by k + 1 and go to Step 1.
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A retraction R : T(R™" x O(n) x V) — R x O(n) x V is given by

Rs.ov)(Es, Cosmv) = (S + &, af(Q + o), V + )

forall (S,0,V) € R™"x O(n) x V and (&5, 19, W) € T(s,0,v) (R™" x O(n) x V).
Here, qf(A) means the Q factor of the QR decomposition of a nonsingular matrix
A € R™" in the form of A = OR with Q € O(n) and R being an upper triangular
matrix with strictly positive diagonal entries.
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Convergence Analysis

—k
On the iterate AX generated by Algorithm 2.1, we have the following estimate.

Lemma 3.1
Assume that DG(XY) : Tye(R™" x O(n) x V) — TgxR™" is surjective for all
k. If the linear matrix equation (7) is solvable such that conditions (8) and (9) are
satisfied for all &, then one has for all &,

JAX')| < (1 +BIOGERY) |- |G-

Let
id = idr, . . J(X*) := DG(X*) o (DG(XX))* +Tiid, V(X¥) := G(X*)+J(X*)[AZH.
We get by (8),

IVX*)F < T |G ||£- (11)
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Convergence Analysis

By the assumption that DG(X*) is surjective for all k, we have by (8) and (11),

|AX|| = |(DG(x4))[aZH)
< IDGEN))* o (I(XA) 7| - 19(X*)[AZH|
= [I(DG(x*)* (xk))‘ V) - G|
< IOGEE)* o (JX9) - (VXS e+ 1GXH) )
< (1 +7)IDGEN)" o (J(X9) I - 6Nl
< (1+7)lI(DG(X¥)* o (DG(XF) o (DG(X¥))*) ™| - [|G(X)||r

(1 + 7 OGE)) - IGXE) |-
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Convergence Analysis

On the upper bound of the iterate 7 generated by Algorithm 2.1, we have the fol-

lowing result.

Assume that DG(X*) : Ty (R™" x O(n) x V) — TgxeR™" is surjective for all
k. If the linear matrix equation (7) is solvable such that conditions (8) and (9) are
satisfied for all k, then one has for all &,

~ . o _
< + s f/max b 12
e = e { Amin (DG(X*) o (DG(X*))*) + T« T } (12

where Apin(-) means the smallest eigenvalue of a positive definite linear operator.
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Convergence Analysis

Let id, J(X*) and V(X*) be defined as in Lemma 3.1. By assumption, DG(X¥) is
surjective for all k. It follows from (10) and (11) that for all £,

|G(x*) + DG(XH)[AX 7

)

IG(X*) + DG(X¥) [(DG(X¥))*[AZ]] |

IG(X*) + <DG<x'<> (DG(X}))*) o (J(X¥)) ™' [V(X*) — G(X¥)] ¢
(DG(X*) o (DG(x4)*) o (J(X*)) "] - 1G(X¥) e

+IH(DG(X") o <DG<Xk>>*) o (J(xX4) Ml - IV(X*)llr

—1

IN

llid —

o ~
= </\min(DG(Xk)o(DG(Xk))*)_|_Ek +77k)||G(Xk)||F-

This, together with (9), yields (12).
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Convergence Analysis

On the repeat-loop of Algorithm 2.1, we have the following lemma.

Assume that the differential DG(XY) : Ty« (R™" x O(n) x V) — TgxR™" is

surjective and the linear matrix equation (7) is solvable such that conditions (8)

and (9) are satisfied in the k-th iteration of Algorithm 2.1. Then the repeat-loop
terminates in finite steps with AX* and 7, satisfying

IG(X*) + DG(X*)[AX]||F < ml|GXY)lIF,

IGE)llr < (1= #(1 = 1)) |GXO)l|F-

13)
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Convergence Analysis

Assumption 3.4

The linear operator DG(X) : Tx(R"™" x O(n) x V) — TgzR™" is surjective,
where X € R™" x O(n) x V is an accumulation point of the sequence {X*} gen-
erated by Algorithm 2.1.

Under the above assumption, we have the following theorem on the global conver-
gence of Algorithm 2.1.

Let X be an accumulation point of the sequence {X*} generated by Algorithm 2.1.
Suppose that Assumption 3.4 is satisfied. Then the sequence {X*} converges to X
and G(X) = 0,,x,-
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Convergence Analysis

Quadratic convergence

We have the following result on the backtracking line search procedure.

Let X be an accumulation point of the sequence {X*} generated by Algorithm 2.1.

7
Suppose that Assumption 3.4 is satisfied. Then 7, = 7; and AX* = AX for all k
sufficiently large.

We now establish the quadratic convergence of Algorithm 2.1.

Let X be an accumulation point of the sequence {X*} generated by Algorithm 2.1.

Suppose that Assumption 3.4 is satisfied. Then the sequence {X*} converges to X
quadratically.

Xiao-Qing Jin, University of Macau
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Convergence Analysis

Denote
J5 := Diag(vec(S)) € R >,
Jgi=(z = P) (SO &L 1L, (o) e R,
Jy := Diag(vec(W))(Q ® Q)T € R xn*
and
5
Jgi=1Jg | € R¥ X
Ty

The operator DG(X) is surjective <= The matrix Jy is of full column rank.
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Numerical Experiments

Example 4.1

We consider Problem I with varying n. Let C be arandom n1x n nonnegative matrix
with each entry generated from the uniform distribution on the interval [0, 1]. We
choose the eigenvalues of C as prescribed spectrum.

To illustrate the efficiency of our algorithm, we compare Algorithm 2.1 with the
alternating projection method (ALP) [8], the Riemannian Fletcher-Reeves conju-
gate gradient method (RFR) [10], and the geometric Polak-Ribiere-Polyak-based
nonlinear conjugate gradient method (GPRP) [11].
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Numerical Experiments

The starting points by the built-in functions rand, schur, and svd:
S®S=rand(n,n), PL=SeR>" C'=5"05,
[0°, V] = schur (§°® 8, 'real’), V'=WoV.
The stopping criteria are set to be
IG(X")||F < 1078,

In our numerical tests, we set Tmax = 0.01, 0 = 0.1, Jimax = 0.9, Oiin = 0.1,
Omax = 0.9, and t = 10~*. The largest number of iterations in ALP is set to be
100000. The largest number of outer iterations in Algorithm 2.1 is set to be 100 and
the largest number of iterations in the CG method is set to be n?.
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Numerical Experiments

For comparison purposes, we repeat our experiments over 10 different starting
points. In our numerical tests, we use the following notations.

@ ‘CT.’ : the averaged total computing time in seconds;
@ IT.’ : the averaged number of iterations;

@ ‘NF.’: the averaged number of function evaluations;
@ ‘NCG.’: the averaged number of inner CG iterations;
@ ‘Res.’ : the averaged residual ||G(X*)| r;

@ ‘grad.’: the averaged residual ||grad ¢(X¥)||, where

1
#(S,0,V) := 5||G(S,Q, % (S,0,V) € R™" x O(n) x V.
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Table: Numerical results of Example 4.1.

Alg. n CT. IT. NF. NCG. Res. grad.
50 | 03731s | 352.4 357.7 9.7 x 107° 6.0 x 1078
GPRP 100 | 2.4659s | 753.7 760.1 9.8x 107 | 9.1 x 1078
150 | 8.3070s | 1225.9 | 1232.9 9.9 x 107° 1.1 x 1077
200 | 17.208s | 1492.9 | 1500.9 9.9 x 107° 1.2 x 1077
50 | 03781s | 308.6 313.6 9.4 x 107 7.0 x 1078
RFR 100 | 1.7944s | 523.0 529.0 9.7 x 107° 1.1 x 1077
150 | 6.7529s | 951.2 958.2 9.8 x 1077 1.1 x 1077
200 | 14.094s | 1163.9 | 1170.9 9.9 x 107° 1.4 x 1077
50 | 2.1249s | 388.5 7.4 %1077
ALP 100 | 17.053s | 913.6 4.2 % 107°
150 | 13236 | 3292.5 5.1 %1077
200 | 1349.5s | 19111 0.1681*
50 | 0.0550s 6.0 7.0 525 1.8x 107 [ 23 %1071
Alg. 2.1 | 100 | 0.3634s 6.8 7.8 80.6 | 1.2x107° | 32x 1078
150 | 0.9421s 7.0 8.0 986 | 3.9x 1078 | 1.2x 107!
200 | 1.7102s 7.0 8.0 1053 | 1.8 x 1071 | 6.1 x 10710
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Table: Numerical results of Example 4.1.

Alg. n CT. IT. NF. NCG. Res. grad.
400 04m17s | 3074 3083 99x 1077 [ 9.0x 1078
GPRP 600 14m1ls | 3641 3650 9.9x 1077 | 25%x 1077
800 41m47s | 5108 5118 9.9x 1077 | 42x 1077
1000 | 01h14m23s | 5420 5430 9.9x 107 | 5.0x 1077
400 04m36s | 3324 3332 9.9%x 1077 [ 1.9x 1077
RFR 600 24m23s | 5840 5849 9.9x 1077 | 1.9x 1077
800 | 01h07m53s | 8087 8096 9.9x 1077 | 25x 1077
1000 | 02h38m59s | 11157 | 11167 9.9x 1077 | 2.6 x 1077
400 23.7s 8.0 9.0 1669 | 3.2x 1075 | 7.1 x 107
Alg. 2.1 600 01mo05s 8.0 9.0 1695 | 3.4x 1072 | 27 %x 10710
800 02m23s 8.0 9.0 1624 | 83x107° | 1.7x107°
1000 07mo09s 9.0 10.0 2293 | 1.2x 1072 | 42x 107"
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