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Fundamental Challenge in the Al Era

Is deep learning Alchemy or science?
@ practitioners: trial and error approach move very fast!
@ theoreticians: challenged by whether relevant to practice or not
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Fundamental Challenge in the Al Era

Is deep learning Alchemy or science?
@ practitioners: trial and error approach move very fast!
@ theoreticians: challenged by whether relevant to practice or not

This work: mathematical theory with practical impact

@ understand an algorithm’s limitations
@ lead to new algorithm addressing the limitations

Key Message: optimization in function space makes problems easier
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Generate Artificial Data from Examples

(a) Real Image (b) Generated Image
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Classical Approach

Given:
@ observed data S = {xq,..., Xy}
@ a family of probability density functions py(x)
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Classical Approach

Given:
@ observed data S = {xq,..., Xy}
@ a family of probability density functions py(x)

Procedure:
@ estimate 4 from S (frequentist)
@ draw sample from p;(x)
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Some Difficulties of the Classical Approach

Estimation: Powerful family py(x) often has a form

Po(X) o< exp(—Ty(x)),

@ difficulty: normalization factor hard to compute.
@ solution: unnormalized models
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Some Difficulties of the Classical Approach

Estimation: Powerful family py(x) often has a form
Po(x) o< exp(—fy(x)),

@ difficulty: normalization factor hard to compute.

@ solution: unnormalized models

Draw Sample:
@ difficulty: Monte Carlo simulation can be slow.
@ solution: SDE based Monte Carlo (recent interests)
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Some Difficulties of the Classical Approach

Estimation: Powerful family py(x) often has a form
Po(x) o< exp(—fy(x)),

@ difficulty: normalization factor hard to compute.

@ solution: unnormalized models

Draw Sample:
@ difficulty: Monte Carlo simulation can be slow.
@ solution: SDE based Monte Carlo (recent interests)

This talk:
an alternative data transformation approach that becomes popular
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The Data Transformation Approach

Want to draw samples similarto S = {xy,..., X}

Procedure:
@ Generate z from an initial noise distribution p,
@ Transform z : z — G(z) so that G(z) has the same distribution as S
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The Data Transformation Approach

Want to draw samples similarto S = {xy,..., X}

Procedure:
@ Generate z from an initial noise distribution p,
@ Transform z : z — G(z) so that G(z) has the same distribution as S

Key problem:

@ How to estimate the transformation G(z)?

Modern answers: GAN (and related, VAE)
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Generative Adversarial Network (GAN)

generator

discriminator
(adversary)

sampled data

can we differentiate real
data from sampled data?
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Mathematical Formulation of GAN

@ Realdata S = {xq,...,Xn}
@ Noise zq,...,2znp

@ Generator G(6; z)

@ Discriminator d(v; x)

Nonconvex Minimax Saddle Point Optimization Problem:

max min /17 z/: log d(v; x;) + 15 Ej: log(1 — d(v; G(6; Z)))

We have: ’

d(y; x) = 1+ exp(—D(v; x))
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Solving Saddle Point Optimization

max min [:) Z,: log d(v; x;) + % Z]: log(1 — d(v; G(b; Zj)))] :

Using SGD as follows.

@ Update discriminator (primal variable SGD):
¥ ¢ +1Vy [log d(v; x;) +log(1 — d(v; G(6; 2))))]
@ Update generator (dual variable SGD):

0« 0 —n'Vglog(1 — d(; G(6; z})))

e\ algorithm 9/39



Solving Saddle Point Optimization

max min [:) Z,: log d(v; x;) + % Z]: log(1 — d(v; G(b; Zj)))] :

Using SGD as follows.

@ Update discriminator (primal variable SGD):
W+ ¥ +nVy [log d(y; xi) +log(1 — d(v; G(6; 2)))]
@ Update generator (dual variable SGD):
0 < 0 —n'Vglog(1 - d(¢; G(9; Z)))
Strange phenomenon: generator update with logD trick is practically better
0 < 0 +n'Vglog(d(v: G(9; 2))
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Mathematical Theory of GAN

The population version of GAN tries to find optimal d to maximize

[ 109 d)pea(x)ai -+ [ 1og(1 - d(x))pgen(x)d.

where
Pgen(X) is the density of x = G(2)
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Mathematical Theory of GAN

The population version of GAN tries to find optimal d to maximize

[ 109 d)pea(x)ai -+ [ 1og(1 - d(x))pgen(x)d.

where
Pgen(X) is the density of x = G(2)

The optimal d is given by

Preal(X)

Aopti = .
optimal () Preal(X) + Pgen(X)
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Generator Minimizes JS-divergence

mgx mGin [Exlogd(x) + Ezlog(1 — d(G(2)))] .

Substitute d by dyptimal, We get Jensen-Shanon (JS) divergence
minimization:

2Preal(X)
mm [/ Preal(X preal( ) + Pgen(X)

2pgen(X)
+ x)lo ax|,
/pgen( )log Preal(X) + Pgen(X)

where
Pgen(X) is the density of x = G(2)
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Some Issues of GAN

@ The optimization procedure is unstable
e one proposed improvement is WGAN (changing loss function)
@ Practical implementation with logD trick is only a heuristic
@ inconsistent with the minimax formulation, implying the theory is flawed

@ Minimizes JS divergence, not KL divergence

We want to design a procedure that addresses the above points.
@ based on KL divergence minimization

@ stable (by modifying optimization process of GAN)

@ can explain the logD trick
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Our Approach: Change the Optimization Problem

@ Learn G(z) to minimize the KL-divergence between the distributions
of real data and generated data:

Preal(X)
(x)lo ax
/preal )log ——— Pgon(X)

@ Procedure uses functional gradient learning greedily, similar to
gradient boosting.

@ Learning procedure uses functional compositions in the form

Gi(z) = Gi—1(2) + 1t9t(Gi-1(2)), (t=1,....7)

gradient descent in function space
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Adversarial Learner

Given training examples {(x;, i)} (where y; = +1).

Assume there is an oracle adversarial learner A that can solve the
logistic regression problem:

D(x) ~ argmin > " In(1 + exp(—D(x)y;))-

Using

@ real sample S = {x1, ..., xp} with label y =1

@ generated sample {G(z1), ..., G(zm)} with label y = —1
We can find approximately

i P(X)
D(x) =~ In Poon(X)
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Theory (under suitable assumptions)

Consider variable transformation X' = X + ng(X).

Let p be the probability density of random variable X.

Let p' be the probability density of random variable X'.

Let p. be the probability density of the real data.

LetD(x) :=In ‘2;‘((;()).

Assume D.(x) ~ D(x) is learned from adversarial learner:

[ -Gomax(1.[9inp.(0l) (1B.x) = D) + 02 — 62

)dxge.

Then for some constant ¢ > 0:

KL(p.||P") < KL(p:|IP) —n / P+(X) 9(x) "V Dc(x) dx + cn? + cne.
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Interpretation of the Theory

The result is
KL(p.|p) < KL(p.Ip) — / p.(x)g(x) TV D(x) dx + O(1).

If we further take
9(x) = s(x)VD(x),

where s(x) > 0 is a scaling factor, then

KL(p.IIp) < KL(p.Ip) = 1 [ p.(x)s(x) VD) di + O(rP)

Implication:
[ p.0s(x) VD03 i — 0.

which means

o Pe(x)
D(x) =In Poon(X)

CFG theory 16/39
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Algorithm: CFG for Generative Adversarial Learning

Algorithm 1 CFG: Composite Functional Gradient Learning

Require: real data x7, ..., x;, initial generator Gy(2)
1: fort=1,2,..., T do
Dy(x) « argminp [ 377 In(1 + €~ P00) + T 577 In(1 + eX(G1ED)]

N

9i(x) < si(x)VDi(x)  (usually s¢(x) = 1)

Gi(2) + Gi-1(2) + 1:9:(Gi-1(2)), for some n; > 0.
: end for

return generator Gr(2)

o 9Nk w

Theory:as n— ocoand T — oo

Gr(2) ~ p-()
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Incremental Composite Functional Gradient Learning

Algorithm 2 ICFG: Incremental Composite Functional Gradient Learning

Require: training examples S,, prior p;, initial generator Gy, discrimi-
nator D
1: fort=1,2,..., T do
2: for U steps do

3: Sample x7,...,x; from S,, and zy,. .., z, according to p;.

4: Update discriminator D by SGD with minibatch gradient:
Voog Xt [IN(1+exp(=D(x))) + In(1 + exp(D(Gi-1(2)))]

5. end for

6:  gi(x) < sy(x)VD(x) (most simply sy(x) = 1)

7. Gi(z) « Gi-1(2) + t9t(Gi—1(2)), for some 7y > 0.

8: end for
9: return generator Gt
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Graphical lllustration

Output

Input z

Generator network automatically derived by CFG
T =3 and ‘@’ indicates addition

Problem: network depth grows when T increases
Solution: use a fixed depth approximator
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Algorithm: xICFG of GAN

Algorithm 3 xICFG: Approximate Incremental CFG Learning

Require: a set of training examples S,, prior p,, approximator G at its
initial state, discriminator D.
1: loop
2:  S; + aninput pool of the given size, sampled according to p.
3 gz < the uniform distribution over S,.
4: G, D « output of ICFG using S, gz, G, D as input.
5. if some exit criteria is met then
6 return generator G
7. endif
8: Update the approximator G to minimize 5 Zzesz HG( ) — G(2)|?
9: end loop

é(z) is a network of the fixed size B
G(z) is of growing but limited size (initialized from G(z) every time)
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Approximator Network

| fc #pixels,Tanh |
B

| fc,512$ReLU
[ fc,512:RelL.U
6-
[ fc.512.ReLU
| fc,512fReLU |

Input z

Figure: Fully-connected networks with shortcuts for use as a xICFG
approximator or a GAN generator.
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Compare to Original GAN (GANO)

Algorithm 4 GANO(Generative Adversarial Nets)

Require: training examples S., prior p,, discriminator D, generator G.

1: Initialize discriminator d and generator G randomly.

2: for T steps do

3:  Update discriminator D by ascending the stochastic gradient:

4. Sample z, ..., zp according to p;.

5 Update the generator by descending the stochastic gradient:

IS0 (1 +exp(—D(G(2)))) " Ve, D(G(z)))
s(G(z))

@

: end for
: return generator G

~

Problem: s(G(z)) ~ 0 when D(G(z)) < 0, which happens in the
beginning.
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Compare to GAN with logD trick (GAN1)

Algorithm 5 GAN1(Generative Adversarial Nets)

Require: training examples S., prior p,, discriminator D, generator G.

1: Initialize discriminator d and generator G randomly.

2: for T steps do

3:  Update discriminator d by ascending the stochastic gradient:

4. Sample zi, ...,z according to p;.

5 Update the generator by descending the stochastic gradient:

3220 (1 +exp(D(G(2)))) " Vs D(G(2))
s(S(2))

4

: end for
: return generator G

~

Good! s(G(z)) ~ 1 when D(G(z)) < 0, which happens in the beginning.
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Remarks of GAN

@ GANO is original GAN
@ SGD optimization of the minimax formulation of GAN
@ GANT1 is GAN with log trick, which is a heuristics

e cannot be explained using the original minimax formulation of GAN
@ can be explained by our theory

@ xICFG

o similar to GAN1
@ grows generator using composite function gradient
@ use approximator to reduce the network to fixed size
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Evaluation

@ quality inception score:

exp(ExKL(Pr(y|x)[[Pr(y)))

e high-quality images should lead to high confidence in classification, and
high inception score.

@ diversity diversity score:

exp(—KL(Pr(y)|[Pr.(y))

o diversity of generated images measured by diversity score becomes
large (approaching to 1) when generated class distribution mimics real
class distribution.
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MNIST Performance Comparisons

MNIST convolutional, image quality _ MINIST, fully-connected, image quality
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Figure: MNIST. Image quality (upper) and diversity (lower) with convolutional
(‘cv’) approximator/generator (left) and fully-connected (‘fc’)
approximator/generator (right).

@ cv: xICFG produces higher scores than GAN.
o fc: xICFG performs well but GAN of both types fails.
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Figure: MNIST. (a) Real images. (b-g) Generated images. The numbers in

the parentheses are the inception scores averaged over 10K images.
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House Number Performance Comparisons
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Figure: LSUN BR+LR. Image quality (upper) and diversity (lower). With the
convolutional (left) and the fully-connected (right) approximator/generator.
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Generated Images (House Number)

(€) 1c-xICFG (7.65)  (f) fc-GANT (4.48) () fc-GANO (3.51)

Figure: SVHN. (a) Real images. (b-g) Generated images. The numbers in
the parentheses are the inception scores averaged over 10K images.
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LSUN Performance Comparisons

16 LSUN BR+LR,convolutional,image quality 16 LSUN BR+LR, fully-connected,image quality
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Figure: LSUN BR+LR. Image quality (upper) and diversity (lower). With the
convolutional (left) and the fully-connected (right) approximator/generator.
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Generated Images (LSUN)

',,__:‘ A-.M‘r: . ':z ,{W‘- 3_1_ 5 '
FG (1.55). High quality. No signs of modal collapse.

(a) ov-xIC
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Generated Images (LSUN)

- =i -';' % I
-_“i y = - .55 ‘ .
(a) cv-GANT (1.55). High quality. But it suffers from modal collapse; see the
similar images marked by red.

Figure: LSUN bedrooms & living rooms. Generated using the convolutional
appoximator/generator after 100K seconds of training. GAN1’s modal
collapse started after about 50K seconds of training.
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WGAN: a variation of GAN to improve stability

WGAN uses a different loss function than log-loss
It claims to improve stability of GAN

The CFG procedure claims improved stability as well
@ by making optimization easier

Experiments WGAN
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WGAN: a variation of GAN to improve stability

WGAN uses a different loss function than log-loss
It claims to improve stability of GAN

The CFG procedure claims improved stability as well
@ by making optimization easier

How does CFG compare to WGAN?

Experiments WGAN
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Comparison with WGAN: convolutional networks
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Figure: Image quality. Convolutional networks. The legends are sorted from
the best to the worst. xICFG outperforms the others.
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WGAN: fully-connected networks

9.8 - MNIST, fully-connected G,G SVHN, fully-connected G,G
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Figure: Image quality. Fully-connected approximator/generator. The legends
are sorted from the best to the worst. xICFG outperforms the others.
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Image Example: Creativity in LSUN (Tower & Bridge)

Figure: Real Golden Gate Bridge images: the red tower has 4 grids

(a) “Realistic” (b) “Creative”

(a) Images generated by xICFG that resemble Golden Gate Bridge
(b) Images generated by xICFG that modify Golden Gate Bridge
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In the generative adversarial learning setting:
@ GAN'’s minimax formulation optimizes JS-divergence

@ GAN’s algorithm is not stable.
@ the practical use of logD trick inconsistent with the minimax formulation

The optimization problem is hard and unstable

38/39
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This work: change optimization, gradient descent in function space

@ Learn generator G(z) using CFG (composite functional gradient).
@ Theory: minimizes KL-divergence

@ Theory: lead to the new stable algorithm xICFG.

@ Theory: explains the logD trick of GAN.

@ Experiments: xICFG performs better than GAN/WGAN

Summary summary 38/39



Final Remarks: is deep learning Alchemy or science?

Big Theoretical Challenge

Theoretical research in the Al Era needs to be relevant
@ either improving fundamental understanding
@ or solving an important practical problem

39/39
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Final Remarks: is deep learning Alchemy or science?

Big Theoretical Challenge

Theoretical research in the Al Era needs to be relevant
@ either improving fundamental understanding
@ or solving an important practical problem

Encourages problem driven theory — Practical Impact

@ understanding how algorithms work and their limitations
@ lead to new practical algorithms

Summary summary
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