Lagrange-type functions in constrained optimization

A. M. Rubinov and X. Q. Yang

Classical Lagrange and penalty functions can be efficiently applied only to solving some special classes of constrained optimization problems. Thus there is a clear need to introduce and study more general functions (we shall call them *Lagrange-type functions*), which can efficiently reduce broad classes of constrained problems to unconstrained optimization. An augmented Lagrangian is one of the well-known examples of Lagrange-type functions. Different types of Lagrange-type functions also can be studied and applied . A Lagrange-type function allows one to formulate a dual problem.

We shall discuss the following questions:

When does the weak duality hold, that is the value of the dual problem does not exceed the value of the primal problem;

When does the zero duality gap property hold, that is the values of both problems coincides;

When does an exact Lagrange parameter exist (the zero duality gap property holds and the dual problem has a solution);

When does a strong exact parameter exist (the set of solution of the unconstrained problem with the exact parameter coincides with the set of solution of the given (primal) problem).

Penalty-type functions form an important subclass of Lagrange-type functions. Assume that penalty parameters are vectors with nonnegative coordinates. Then under natural assumptions each vector, which is greater than a vector of exact parameters, is also a vector of exact parameter. However, very large exact parameters lead to ill-conditioned unconstrained problems. Thus the following question arises:

How to construct a penalty-type function, which possesses a fairly small (strong) exact penalty parameter?

We propose a new penalty-type function with a small penalty parameter. Numerical experiments confirm that this function can be efficiently applied for solving some non-convex problem, including concave optimization.