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     Classical Lagrange and penalty  functions can be efficiently  applied only to solving 
some special classes of constrained optimization problems. Thus there is a clear need to 
introduce and study more general functions (we shall call them Lagrange-type functions), 
which can efficiently reduce broad classes of constrained problems to unconstrained 
optimization. An augmented Lagrangian is one of the well-known examples of Lagrange-
type functions.  Different types of Lagrange-type functions also can be studied and 
applied .  A Lagrange-type function allows one to formulate a dual problem.  
   We shall discuss the following questions:    
 
When does the weak duality hold, that is the value of the dual problem does not exceed 
the value of the primal problem; 
When does the zero duality gap  property hold, that is the values of both problems 
coincides; 
When does an exact Lagrange parameter exist (the zero duality gap property holds and 
the dual problem has a solution); 
When does a strong exact parameter exist (the set of solution of the unconstrained 
problem with the exact parameter coincides with the set of solution of the given (primal) 
problem). 
 
 Penalty-type functions form an important subclass of Lagrange-type functions. Assume 
that penalty parameters are vectors with nonnegative coordinates. Then under natural 
assumptions each vector, which is greater than a vector of exact parameters, is also a 
vector of exact parameter.  However, very large exact parameters lead to ill-conditioned  
unconstrained problems. Thus the following question arises: 
 
How to construct a penalty-type function, which possesses a fairly small (strong) exact 
penalty parameter? 
 
We propose a  new penalty-type  function with a small penalty parameter. Numerical 
experiments confirm that this function can be efficiently applied for solving some non-
convex problem, including concave optimization.  
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