AN MODIFIED ABS ALGORITHM FOR SOLVING SINGULAR NONLINEAR SYSTEMS WITH RANK ONE DEFECT(1)

RENDONG GE ZUN-QUAN XIA (P.R.CHINA)

Dalian Nationality University Dalian University of Technology 1.abstract

Consider the following nonlinear system

$$F(x) = 0 \tag{1}$$

where x 2 Rⁿ, F(x) = $(f_1(x); f_2(x); \dots; f_n(x))^T$. We assume that there exists a solution x^{μ} of (1), F(x^{μ}) = 0, F⁰ is Lipschitzian around x^{μ} and furthermore that

rank(
$$F^{U}(x^{n})$$
) = n_i 1
rf_i(xⁿ) $\mathbf{6}$ 0 i = 1; 2; ...n; (2)

Assume c^{x} is the unique solution of the following equation (3)based on the processing of pivoting Gauss elimination with a component of c^{x} obtaining 1

$$J_{n_{i} 1}(x^{\mu})c^{\mu} = \begin{bmatrix} r f_{1}(x^{\mu}) \\ r f_{2}(x^{\mu}) \\ \vdots \\ r f_{n_{i} 1}(x^{\mu}) \end{bmatrix} \begin{bmatrix} r f_{1}(x^{\mu}) \\ r f_{2}(x^{\mu}) \\ \vdots \\ r f_{n_{i} 1}(x^{\mu}) \end{bmatrix}$$
(3)

Letting: $f_n^A(x) = f_n(G^{\alpha}x + b^{\alpha})$, where

$$(G^{\mathtt{m}})^{\mathsf{T}} = \frac{\mathtt{c}^{\mathtt{m}} \mathtt{r} \, \mathtt{f}_{n}^{\mathsf{T}}(\mathtt{x}^{\mathtt{m}})}{\mathtt{k} \mathtt{r} \, \mathtt{f}_{n}^{\mathsf{T}}(\mathtt{x}^{\mathtt{m}}) \mathtt{k}^{2}}; \quad \mathtt{b}^{\mathtt{m}} = \mathtt{x}^{\mathtt{m}} \, \mathtt{i} \quad G^{\mathtt{m}} \mathtt{x}^{\mathtt{m}}$$

Let $T(x) = (f_1(x); f_2(x); ...; f_n^{A}(x))^T$. Then $T(x^{a}) = 0$ and $T^{0}(x^{a})$ is of full rank. By combining the discreted ABS algorithm and the idea of rotating transforming ,we have established a modi⁻ed ABS method and discussed its Q-superlinear convergence. In practical, at the process of iterating we will generate two sequence $G^{(k)}$ and $b^{(k)}$ such that

$$G^{(k)}$$
 ! G^{a} ; ; $b^{(k)}$! b^{a} :

In algorithm ,we hope to substitute $f_n^{(k)}(x)$ by $f_n^{(k)}(x) = f_n(G^{(k)}x + b^{(k)})$.

1